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Abstract
In this paper, we briefly introduce the solution developed by our team, HFUT-VUT, for the Micro-gesture
Online Recognition track in the MiGA challenge at IJCAI 2024. The Micro-gesture Online Recognition
task involves identifying the category and locating the start and end times of micro-gestures in video
clips. Compared to the typical Temporal Action Detection task, the Micro-gesture Online Recognition
task focuses more on distinguishing between micro-gestures and pinpointing the start and end times of
actions. Our solution ranks 2nd in the Micro-gesture Online Recognition track.
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1. Introduction

Humans can express emotions and communicate with others through various non-verbal forms,
among which gestures play a crucial role in emotional expression and communication [1,
2, 3, 4, 5]. Examples include “cover face”, “fold arms”, and “cross fingers”, which convey
human emotions to the outside world. Additionally, these micro-gestures (MGs) are often not
spontaneous but occur unconsciously in specific environments. Unlike macro gestures intended
for communication, non-spontaneous MGs better reflect genuine human emotions, making the
study of MGs more meaningful in understanding human emotions. SMG [2] and iMiGUE [6]
are the datasets to assess and analyze human emotional states through MGs information. These
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datasets provide a stronger representation of human emotions, significantly contributing to a
deeper understanding of genuine human feelings.

Compared to common macro gestures, Micro-gesture Online Recognition is more challenging
because MGs appear more irregularly and randomly than existing action or gesture recognition
datasets. Additionally, there may be co-occurrence relationships between different classes of
actions, and transformations may occur between different MGs. Moreover, the finer distinctions
between different categories of MGs make it more difficult to determine the start and end times
of actions due to their smaller movement amplitudes.

In this challenge, we adopt PointTAD [7] as the baseline. The main contributions of our
method are as follows:

• We introduce the Mamba-MHSA block for Micro-gesture Online Recognition, which
better distinguishes and locates action categories compared to the baseline model.

• In the Micro-gesture Online Recognition challenge, our solution achieves an F1 score
of 14.34 on the test set, securing 2nd in the competition. The experimental results
demonstrate that our model can effectively distinguish and locate MGs.

2. Related Work

Current research predominantly focuses on common macro gestures or actions [8, 9], which
have limited capability in reflecting human emotions. This is because humans can subjectively
control their gestures and actions to hide their true emotions. In contrast, MGs typically
occur involuntarily and uncontrollably, providing a more accurate reflection of genuine human
emotions, which is crucial for understanding behavior and emotions. Here, we review the
related technologies: micro-gesture datasets, temporal action detection, and Mamba.

Micro-gesture Datasets. The iMiGUE [6] dataset is the first publicly available dataset, aimed
at recognizing and understanding suppressed or hidden emotions through MGs. It includes 359
videos with a total duration of 2092 minutes, collected from 72 subjects from 28 countries. The
dataset is annotated with 18,499 MG samples across 32 categories, averaging 51 MG actions
per video, with each MG instance ranging from 0.18 seconds to 80.92 seconds, and an average
duration of 2.55 seconds. The SMG [2] dataset focuses on naturally occurring MGs under stress,
collected from 40 participants of various ages, genders, and racial backgrounds, divided into 16
types of MGs. The SMG dataset has been applied in various studies on micro-gesture recognition
and emotion analysis, demonstrating its utility in these research fields.

Micro-gesture Online Recognition. Guo et al. [10] proposed a novel deep network combin-
ing graph convolution and Transformer encoders to extract motion features from 2D skeleton
sequences. This combination leverages the strengths of both graph convolution and Transformer.
Their contributions collectively advance the state-of-the-art in micro-gesture recognition, pro-
viding a robust framework for emotion analysis based on MGs.

Temporal Action Detection. Temporal action detection has been studied as a multi-label
frame-wise classification problem in previous literature. Early models [11] mainly focused
on modeling the temporal relationships between frames using Gaussian filters in the time
dimension. Current research primarily deals with processing information at different scales
and integrating spatiotemporal attention during processing. Tirupattur et al. [12] introduced
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Figure 1: The proposed model consists of a video encoder, which extracts video features from continuous
RGB frames, and an action decoder.

an attention-based Multi-label Action Dependency layer (MLAD) in their model, significantly
improving the co-occurrence dependencies and temporal dependencies of actions. Dai et al. [13]
proposed a novel ConvtransFormer network named MS-TCT that incorporates global and local
time relationship encoders and a time-scale mixer for effective multi-scale feature fusion [14],
addressing the complexities of temporal relationships. Tan et al. [7] presented an end-to-end
action detection model named PointTAD that leverages learnable query points for precise
localization and differentiation of actions in multi-label videos. These studies provide valuable
insights for micro-gesture online recognition.

Mamba. The Transformer architecture and its core self-attention mechanism [15, 16, 17, 18]
achieve significant success in deep learning. However, the Transformer faces inefficiency issues
when processing long sequences. Structured State Space Models (SSMs) [19] [20], combining
characteristics of Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs), have shown potential in certain data modalities. SSMs perform well on continuous signal
data but less effectively on discrete and information-dense data. To address these shortcomings,
Mamba introduces a selection mechanism that allows SSM parameters to adjust dynamically
based on input data, improving model performance on discrete modalities. Mamba has notable
advantages in inference speed and sequence length scalability. Thus, we incorporate Mamba into
our model, combining Mamba [21] [22] with self-attention to better model different semantics.

3. Method

3.1. Task Definition

We formulate the Micro-gesture Online Recognition task as a set prediction problem.
Given a continuous video clip with 𝑇 frames, we predict a set of action instances 𝜑 =

{𝜑𝑛 = (𝑡𝑠𝑛, 𝑡
𝑒
𝑛, 𝑐𝑛)}

𝑁𝑞

𝑛=1, where 𝑁𝑞 is the number of learnable queries, 𝑡𝑠𝑛 and 𝑡𝑒𝑛 are the starting
and ending timestamps of the 𝑛-th detected instance, and 𝑐𝑛 is its action category. The ground

truth action set to detect is denoted as �̂� =
{︁̂︁𝜑𝑛 =

(︀ ̂︀𝑡𝑠𝑛, ̂︀𝑡𝑒𝑛, ̂︀𝑐𝑛)︀}︁𝑁𝑔

𝑛=1
, where ̂︀𝑡𝑠𝑛 and ̂︀𝑡𝑒𝑛 are the

starting and ending timestamps of the 𝑛-th action, ̂︀𝑐𝑛 is the ground truth action category, and
𝑁𝑔 is the number of ground truth actions.



3.2. Overall Architecture

The overall architecture of our model is shown in Figure 1. The model consists of a video encoder
and an action decoder. For each video sequence, we select an RGB sequence of length 𝑇 , a set
of learnable query points 𝑃 = {𝑃𝑖}

𝑁𝑞

𝑖=1, and query vectors 𝑄 = R𝑇×𝐷. The learnable query
points are used to locate the positions of action boundaries, and the query vectors decode action
semantics and positions from the features input to the model. The action decoder comprises
𝐿 stacked decoder layers. Each layer of the action decoder takes video features, the latest
query points 𝑃 , and the latest query vectors 𝑄 as input. Each action decoder layer includes
two parts: 1) the Mamba-MHSA block models the relationships among query vectors and the
potential relationships between different action categories; 2) the Multi-level Interactive Module
dynamically models the relationships based on query vectors between point-level and same
action categories. Finally, we use a Feed-Forward Network(FFN) to decode the action labels
from the query vectors and convert the query points into detection outputs.

3.3. Video Encoder

We use the I3D network [23] as our model’s video encoder, integrating the video encoder with
the action decoder for end-to-end training. To facilitate model deployment and speed up feature
extraction, we avoid using the optical flow part of the I3D backbone network. Finally, the
temporal stride of the encoded video features is 4, and the spatiotemporal representations are
compressed into temporal features through spatial average pooling.

3.4. Learnable Query Points

Using only the start and end times to represent an action instance limits its boundary and content
description. Therefore, to improve the representation flexibility, a point-based representation
method is used to learn keyframes of action boundaries and semantics within instances. For
each query, the point-based representation is 𝑃 = {𝑡𝑖}𝑁𝑠

𝑖=1, where 𝑡𝑖 is the time position of
the 𝑖-th query point, and the number of points per query is 𝑁𝑠. During training, query points
are initially placed at the midpoint of the input video sequence and are then refined through
iterations in the action decoder layers by the query vectors 𝑄, gradually approaching their final
positions. Specifically, at each layer, the offsets of query points are predicted from the updated
query vectors via linear projection. In action decoder layer 𝑙, the representation of a query’s
query points is 𝑃 𝑙 =

{︀
𝑡𝑙𝑖
}︀𝑁𝑠

𝑖=1
, with the offsets denoted as

{︀
∆𝑡𝑙𝑖

}︀𝑁𝑠

𝑖=1
. This operation can be

summarized as:
𝑃 𝑙+1 =

{︁(︁
𝑡𝑙𝑖 +∆𝑡𝑙𝑖 · 𝑠𝑙 · 0.5

)︁}︁𝑁𝑠

𝑖=1
, (1)

where 𝑠𝑙 = max
(︀
𝑡𝑙𝑖
)︀
−min

(︀
𝑡𝑙𝑖
)︀
. For relatively short actions, the update step size of the query

points is smaller, aiding in the localization of short actions. Additionally, the action query points
updated by the previous action decoder layer become the input to the next action decoder layer
after passing through a layer of FFN.



3.5. Mamba-MHSA Block

Compared to Transformers [24, 25, 26], the recently proposed Mamba has demonstrated powerful
capabilities in sequence modeling. Therefore, we introduce Mamba into our model and combine
it with the Multi-Head Self-Attention (MHSA) to model the relationships of query vectors,
forming the Mamba-MHSA block. Our Mamba-MHSA module consists of 𝑀 of Mamba blocks
and an MHSA. The Mamba block processes the query vectors 𝑄𝑚 of the 𝑚-th Mamba block
based on a selective state space model.

Mamba is designed based on state space models (SSMs) and requires defining three key
parameters 𝐴 ∈ R𝐷×𝐷, 𝐵 ∈ R𝐷×1, and 𝐶 ∈ R1×𝐷. The SSMs are defined by the following
differential equations:

ℎ′(𝑡) = 𝐴ℎ(𝑡) +𝐵𝑄𝑚(𝑡), (2)

𝑦(𝑡) = 𝐶ℎ(𝑡). (3)

We need to discretize the above equations. The discretized SSMs include a time parameter
∆, which converts the continuous parameters 𝐴 and 𝐵 into discrete parameters. The specific
formulas are as follows:

𝐴𝑥 = exp(∆𝐴), (4)

𝐵𝑥 = (∆𝐴)−1(exp(∆𝐴)− 𝐼)∆𝐴. (5)

After discretization, the block can be expressed as:

ℎ𝑡 = 𝐴𝑥ℎ𝑡−1 +𝐵𝑥𝑄
𝑚
𝑡 , (6)

𝑦𝑡 = 𝐶ℎ𝑡. (7)

Next, we use a global convolution operation to obtain the output 𝑄𝑚+1 by convolving the
input sequence 𝑄𝑚 with a structured convolutional kernel 𝐾 . The convolution kernel 𝐾 is
precomputed from the parameters 𝐴, 𝐵, and 𝐶 , and its calculation method is as follows:

𝑄𝑚+1 = 𝑀𝑎𝑚𝑏𝑎(𝑄𝑚) = 𝑄𝑚 ×𝐾 = 𝑄𝑚 × (𝐶𝐵,𝐶𝐴𝐵, . . . , 𝐶𝐴𝐷−1𝐵). (8)

After passing through 𝑀 of Mamba blocks, the query vectors 𝑄𝑀 are input into a Multi-
Head Self-Attention block to obtain the output. With the Mamba-MHSA block, the model gains
stronger selectivity and perceptual capability for the input query vectors, allowing it to better
model the relationships between different action instances.

3.6. Multi-Level Interactive Module

Previous temporal action detectors often have deficiencies in decoding sampled frames, as they
typically aggregate semantics from different aspects and levels infrequently. Thus, we consider
a multi-level interactive module to aggregate multi-level semantics.
Point-Level Local Semantic Extraction We use the deformable convolution [27, 28] to

extract point-level features within a local neighborhood. For the 𝑖-th query point, considering
that more time offsets can more precisely cover the area around the sub-points, thereby capturing
more information, but they also increase the computational cost, we predict 4 time offsets



{∆𝑝𝑖}4𝑖=1 and corresponding weights {𝑤𝑖}4𝑖=1 from the position of this point. Using the query
point at frame 𝑡𝑖 as the center point, we add time offsets to form four deformable sub-points.
These sub-points represent the local area around the center point. The features at the sub-points
are extracted through bilinear interpolation and multiplied by the weight values to obtain the
point-level feature 𝑥𝑖. This process can be represented as:

𝑥𝑖 =

4∑︁
𝑖=1

(𝑡𝑖 +∆𝑝𝑖)× 𝑤𝑖. (9)

The offsets and weights are generated by linear projection from the query vector 𝑞. This
process can be represented as:

∆𝑞 = Linear(𝑞) ∈ R𝑁𝑞×4, (10)

𝑤 = Softmax(Linear(𝑞)) ∈ R𝑁𝑞×4. (11)

Instance-Level Semantic Mixing Since actions can occur simultaneously, modeling only
the temporal aspect may cause overlapping actions to have similar representations, leading to
classification errors. Therefore, dynamic convolution is used to mix semantics across frames
and channels. The mixed features of the query points use 𝑥 ∈ R𝑁𝑠×𝐷 . Given the query vector
𝑞, the parameters for frame mix and channel mix are generated:

𝜃𝑓 = Linear(𝑞) ∈ R𝑁𝑠×𝑁𝑠 , 𝜃𝑐,1 = Linear(𝑞) ∈ R𝐷×𝐷′
, 𝜃𝑐,2 = Linear(𝑞) ∈ R𝐷′×𝐷. (12)

Frame mix is performed by projecting and then activating with LayerNorm and ReLU across
𝑁𝑠 points to explore intra-instance relationships:

𝑥𝑓 = ReLU(LayerNorm(𝑥𝑇 𝜃𝑓 )) ∈ R𝐷×𝑁𝑠 . (13)

Channel mix enhances action semantics using dynamic projection along the channel dimen-
sion:

𝑥𝑐 = ReLU(LayerNorm(ReLU(LayerNorm(𝑥𝜃𝑐,1))𝜃𝑐,2)) ∈ R𝑁𝑠×𝐷. (14)

These two features are then concatenated along the channel and compressed through a linear
layer to the size of the query vector. The query vector is updated to obtain the query vector for
the next layer input 𝑞𝑙+1. This process can be represented as:

𝑞𝑙+1 = 𝑞𝑙 + Linear(Concat(𝑥𝑇𝑓 , 𝑥𝑐)). (15)

4. Experiments

4.1. Dataset and Evaluation Metric

Dataset. The spontaneous Micro-Gesture (SMG) dataset [2] consists of 3,692 samples of 17
MGs. The dataset employs a cross-subject evaluation protocol by dividing the 40 subjects into a
training group consisting of long sequences from 35 subjects and a testing group of sequences
from 5 subjects. We only use RGB sequences as input.



Evaluation Metric. We jointly evaluate the detection and classification performances of
algorithms using the 𝐹1 score measurement defined below:

𝐹1 = 2 · Precision · Recall
Precision + Recall

. (16)

Given a long video sequence that needs to be evaluated, Precision is the fraction of correctly
classified MGs among all gestures retrieved in the sequence by the algorithms, while Recall (or
sensitivity) is the fraction of MGs that have been correctly retrieved over the total amount of
annotated MGs.

4.2. Implementation Details

We use the I3D backbone network to extract video frames at a rate of 10 fps. A sliding window
mechanism is employed to preprocess video sequences, with the window size(𝛽) set to 128
frames to accommodate most action categories. During training, the overlap ratio is set to 0.75,
while for inference, the overlap ratio is 0. We set 𝑁𝑞 to 48 and 𝑁𝑠 to 30. The I3D backbone uses
pre-trained weights from Kinetics400 [29]. The batch size is set to 1, and the initial learning
rate is 1e-4, halved every 10 epochs, for a total of 50 epochs.

Table 1
The top-3 results of Micro-gesture Online Recognition on the SMG test set. Data is provided by the
Kaggle competition page1.

Rank Team F1 Score

1 NPU-MUCIS 27.57

2 HFUT-VUT(ours) 14.34

3 JDY203 9.28

4.3. Experimental Results

As shown in Table 1, we report the results of the top three teams on the SMG dataset test set.
Our team secured the second place. Although there remains a notable performance disparity
between our method and the first-place “NPU-MUCIS” team, our method significantly exceeds
the performance of the third-place “JDY203” team by 54.52%.

4.4. Ablation Study

Study on the Number of Query Points (𝛼). In Table 2a, we conduct an ablation study on different
numbers of query points. We observe that the model’s performance improves as the number of
query points increases when the number is less than 30. However, when the number of query
points exceeds 30, the model’s performance starts to decrease. Therefore, we choose 30 as the
default number of query points for our model.

1The Kaggle competition page: https://www.kaggle.com/competitions/2nd-miga-ijcai-challenge-track2/leaderboard

https://www.kaggle.com/competitions/2nd-miga-ijcai-challenge-track2/leaderboard


Table 2
The ablation experiments of our method on the SMG dataset.

a. Query Points in action
detectors parameter 𝛼

𝛼 F1-score

25 11.33
27 13.48
30 14.34
31 13.49
32 13.43
35 9.81

b. Window size in action
detectors parameter 𝛽

𝛽 F1-score

16 7.33
32 8.45
64 9.27
128 14.34
200 7.95

c. Action decoder param-
eter 𝐿

𝐿 F1-score

2 8.3
3 11.96
4 14.34
5 10.01

d. Mamba Block parame-
ter 𝑀

𝑀 F1-score

1 8.42
2 14.34
3 9.22

Study on Window Size (𝛽). We examine the potential impact of different window sizes on
the model results. We consider five different initializations for window size to accommodate
the majority of action lengths in the dataset. As shown in Table 2b, the model achieves the best
performance when the window size is set to 128. Thus, we set the window size to 128.

Study on the number of layers in the Action Decoder (𝐿). We investigate the influence of
different numbers of layers in the action decoder on the model. According to the results in
Table 2c, increasing the number of layers in the action decoder allows the model to learn deeper
information, thereby improving its performance. However, when the number of layers exceeds
4, the model’s performance begins to decrease.

Study on the number of Mamba Blocks (𝑀 ). To balance computational resources, we study
the impact of the number of Mamba blocks on the model. As indicated in Table 2d, the model
performs best when 𝑀 is set to 2. Additionally, when the number of Mamba blocks exceeds 2,
the model encounters issues with gradient explosion.

5. Conclusion

In this paper, we present a solution for the Micro-gesture Online Recognition (MiGA) challenge
at IJCAI 2024. Our approach is based on the PointTAD baseline, enhanced with Mamba-MHSA
to improve the model’s ability to model sequences. This module effectively enhances the model’s
capability for Micro-gesture Online Recognition, achieving an experimental result of 14.34 on
the SMG dataset. In future work, we will consider incorporating skeletal data into the model to
enhance its recognition ability for Micro-gesture Online Recognition.
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