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Abstract
Several models have been proposed to represent human genomic information. An interesting approach
for supporting genomic applications for health consists of a two-layer representation. In this approach,
high-level concepts describing distinct aspects of the human genome at an abstract level are mapped
to data representing actual physical measurements. This two-layer method allows users to formulate
high-level queries on the concepts and map them onto real datasets. Additionally, the approach is
extensible, allowing new conceptual views corresponding to specific genomic features to be mapped to
the lower data layer without impacting previous mappings.

We here present how concept-layer and data-layer instances can be composed into patterns corre-
sponding to classic genomic studies: diseases with case-control comparisons, multi-omic representations
for the same patients, and comparisons within families for rare genetic diseases. We show that these
patterns effectively support genomic data users (i.e., clinicians, geneticists, and bioinformaticians) in
genomic analysis practices.
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1. Introduction

The Human Genome, with its vast complexity, presents challenges in capturing, representing,
and utilizing its extensive information; consequently, the landscape of genomic data sources is
wide and diverse. Commonly used databases include The Cancer Genome Atlas, a landmark
cancer genomics program now embeddedwithin Genomic Data Commons [1]; the 1000 Genomes
Project [2], a catalog of common human genetic variation; GTEx [3], a resource database to
study the relationship between genetic variation and gene expression in multiple reference
tissues; and GEO [4], the most general and widely used among genomic repositories.

In the genomics domain, conceptual models have long been employed to effectively manage
and represent extensive data, as well as to accurately depict the structure and functions of
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the genome. Starting in the late nineties, pioneers such as Okayama et al. [5] ventured into
representing DNA genomic sequences in databases. In the 2000s, Paton et al. [6] introduced
data models for transcription/translation processes, alongside genomic sequences and protein
structures. Subsequent works leveraged conceptual models to articulate biological entities and
interactions, leading to databases like GenMapper Warehouse [7] and BioMart [8].

This background research has later motivated conceptual modeling-based approaches focus-
ing on either characterizing the genome’s structure conceptually [9] or applying it in data-driven
contexts [10, 11]. Bridging these perspectives emerged as a pertinent issue, more recently ad-
dressed in [12]. In their proposal, the authors describe a novel conceptual model that merges
concepts-based and data-based perspectives for genomic information modeling. Specifically,
they link a concepts-layer delineating genome elements and their connections to a data-layer,
detailing real-world datasets from genome sequencing. This dynamic linkage facilitates focused
visualization, understanding of commonalities, and complex query expression across genomic
data types, expanding the modular view-based approach to genomic data management.

This work focuses on the perspective of data users who frequently need to access and query
genomic data resources. Genomic data practitioners typically perform similar types of queries
repeatedly. Currently, there are systems that allow for basic data extraction using simple
queries (conjunctive/disjunctive) over data. Examples of such systems include [1] for single
consortia databases and [13] and [14] for integrated databases. However, while basic queries are
supported, more sophisticated approaches tailored for more advanced data analysis purposes
are still lacking.
We propose a pattern-driven approach to bridge the existing gap, facilitating more complex

and specific data analysis tasks. This approach largely leverages the conceptual linking provided
by the two-layer conceptual model described in [12], serving as a foundation for generating
these query patterns over paramount genomic data sources. The effectiveness of this approach
is demonstrated through the instantiation of query patterns that yield significant results in
contemporary clinical and genetic research. These patterns include the extraction of datasets
for genetic case-control studies [15, 16, 17], integrative multi-omics analyses [18, 19, 20, 21], and
family trio analyses [22, 23]. Our proposal aims to offer a flexible and expandable representation
of concepts, data, and their typical interconnections, providing simple query templates for
guiding concept exploration, inspiring the identification of novel correspondences among data,
and enhancing the findability of interoperable data instances.

In the remainder of the manuscript, Section 2 provides notions on the two-layer conceptual
model; Section 3 describes our core contribution, i.e., the data analysis patterns and several
example instantiations; Section 4 discusses the implications and limitations of the approach;
and Section 5 concludes.

2. Two-Layer Genomic Representation

Our work takes inspiration from the holistic view presented in [12], which bridges a model of the
genomic concepts and a model of the genomic datasets to facilitate genome data management
through robust conceptual modeling support. More specifically, we consider a two-layer concep-
tual model: 1) the “concepts-layer” encapsulates human genome mechanism knowledge; and 2)



the “data-layer” portrays genomic data types and experiments through structured information
formats. The abstract idea can be appreciated in Figure 1: genomic information can be viewed
as a dual system approached in opposite directions: connecting data to pre-existing abstract
concepts (top-down) or building concepts based on available data (bottom-up).

A top-down approach initially models biological entities and then verifies data sources; this
direction allows us to reveal issues with data structure definition and quality. Conversely, a
bottom-up strategy starts from available data and subsequently constructs models to systematize
and organize it, aiming to create user-friendly systems for domain experts.
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Figure 1: High-level representation of the concepts/data-layers and their connection.

The data-layer (depicted in blue in in Figure 1), centers on the Sample concept, representing
a typical genomic data file, which contains a set of SampleRegions, i.e., rows in the file,
which represent an interval of the genome on a specific chromosome strand, with start and
end coordinates. Multiple samples are collected within Datasets, which are homogeneous
in the Schema (i.e., their sample regions have the same columns and semantics) and in the
ExperimentType (a description of the experimental assay run to produce the data). The
experiment has been performed on biological material, which is described by the BioSample
class, which belongs in turn to a Donor (an actual living patient tissue or an immortalized cell
line or single cells that have undergone a sequencing process). Samples are grouped within
Projects (informing on the management metadata information).
The concepts-layer has different modules (or views, depicted as light blue rectangles in

Figure 1) describing aspects of the human genome, such as DNA variation, gene or microRNA
(miRNA) expression quantification, DNA methylation levels, or any other genomic data type.
To each experiment type in the data-layer, we associate a given genomic data view (see light
blue arrows). Each view includes classes representing concepts that are measurable through
genomic sequencing technologies (e.g., the expression levels of genes or the reading of a DNA
variation). In Figure 1, these concepts are drawn in red; given concepts could be common to
different views (e.g., the “expression level”).

The concepts-layer and the data-layer are linked through relationships between concepts (such
as a variation in the DNA) and instances of data-layer classes (i.e., a specific data record). For
example, a SampleRegion from a DNA-Seq experiment can be represented by its corresponding
concept, a Variant spanning positions 43,044,295 to 43,170,245 on the negative strand of



chromosome 17.
New links between the concepts and data-layers can be established when specific data

types are selected (in the data-layer), thereby triggering the selection of specific views (of the
concepts-layer). Through a classical Ontology-Based Data Access approach [24], it is possible
to allow access to datasets of a specific genomic data type by specifying a query on the view of
interrelated concepts.

2.1. The Concepts-Layer Model

While the data-layer is static because new genomic data types are simply another instance
of the related entities, the concepts-layer is flexible and can grow according to the specific
needs of a use case. Figure 2 illustrates a portion of the concepts-layer model containing classes
associated with DNA variations, familial relationships, gene expression, miRNA expression,
and DNA methylation.
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Figure 2: Excerpt of the concepts-layer model. Colors denote different groups of classes: blue (Familiar
relationships-associated classes); red (DNA methylation); salmon (Gene Expression); dark green (miRNA
expression); olive green (DNA Variation). Classes shared among multiple views are in white.

In this model, the Individual is the primary class, representing a person. Individuals
can be classified as a HealthyIndividual or an UnhealthyIndividual based on their di-
agnosis of a specific Disease. It is possible to establish familial links among individuals
(FamiliarRelationship); individuals aggregate in GroupOfIndividuals, such as Family. These
aggregations are modeled with the purpose, for instance, of exploring the interaction between



DNA variations and diseases within families; this aspect is crucial for determining patterns of
inheritance and the pathogenicity of variants. Individuals are composed of many Locations,
such as Tissues.
Different Measurements are performed on individuals. Two types of measurements are

captured in the model, as relevant to our portion. The Reading describes the appearance of
a DNA variation (or Variant) in an individual. Variants are distinguished by a name and
description, a type (substitution, insertion, or deletion), and a set of alleles (i.e., reference,
alternative, and ancestral). Each variant can have multiple positions (VariantPosition), each
determined according to a specific reference system, also known as Assembly. Variants are
crucial in understanding the genetic basis of many diseases.
The second type of measurement is the ExpressionLevel, which is always related to a

genetic component. Unlike the previously mentioned type of measurement (i.e., readings), the
expression level is specific for a given Tissue, with significant differences among tissues. Three
are the different expression levels considered in the excerpt:

• GeneExpression: a biological process that ensures correct Genes (which are Transcript-
ableElements) are expressed at the right time and in appropriate amounts, enabling cells
to perform their functions correctly. Gene expression measurement can help identify
differentially expressed genes between normal and cancerous tissues.

• miRNAExpression: a biological process associated with biological components that
regulate gene expression. miRNA expression measurements capture the levels of miRNA,
a kind of non-coding RNA (ncRNA), corresponding to a MatureTranscript (as opposed
to genes, which are a kind of PrimaryTranscript). Measurement of miRNA levels allows
for a better understanding of cancer development and progression, providing insight into
the regulatory mechanisms underlying cancer.

• DNAMethylation: a biological process altering gene expression, happening in corre-
spondence with CpGIslands, particular featured regions in Chomosomes. Measuring
DNA methylation is crucial to understanding how environmental factors affect -for
instance- cancer development and progression.

3. Concepts-Data Typical Analysis Patterns

As suggested in [12], the two-layer representation –drawing direct linking between concepts
and data in the genomic domain– allows:
(a) real data inspection improving its conceptual representation (e.g., by identifying cases

where many different variant positions exist from chromosome elements or variants);
(b) use of abstract knowledge (i.e., concepts-layer) as an extractor of existing datasets (i.e.,

data-layer), for instance, by leveraging the explicit conceptual relation between positions
and elements (including genes and transcripts); and

(c) formulation of inter-data type queries over data (i.e., coming from different Measurement
types), by controlling the datasets’ concepts that regard different genomic data types.

These aspects could be translated into simple view-driven queries, where concepts are selected
in the upper layer and are translated into queries over the data. Here, we propose to make a
step forward with respect to (a)–(c): we use conceptual linking as a glue for generating classical



genomic analysis patterns that are typically used in research practice. In this section, we describe
the most relevant ones, selected according to the enduring experience of the authors in the
field, developed during several interdisciplinary collaborations with clinicians, biologists, and
geneticists. In this work, we focus on:
(1) observational studies in which two existing groups –that differ in outcome (e.g., healthy

or non-healthy)– are compared based on a supposed causal attribute (e.g., presence of a
DNA mutation);

(2) biological analyses in which the datasets are multiple “omes” (e.g., the genome and the
transcriptome) used to study life overlapping multiple layers; and

(3) data analyses that investigate aspects within the genetic hierarchical relationships of
families (e.g., causal variations for inherited diseases).

Finally, we show how patterns can be combined in complex patterns, e.g., joining the approach
described in (1) and (3); additional patterns can be built along similar lines. Next, we describe
patterns one by one by exposing relevant examples in the scientific literature and showing a
UML instance diagram [25] depicting the concepts-data-layers linking.

3.1. Case-Control Studies

Case-control studies constitute a commonplace method in clinical research aimed at comparing
diverse genomic datasets from ill individuals (cases) and unaffected individuals (controls) to
delineate genetic elements that contribute to increased susceptibility or severity to disease.
Publicly accessible data repositories such as The Cancer Genome Atlas (TCGA, [1]) for cases and
The GTEx Consortium [3] for controls are fundamental for increasing sample sizes and identify
cases and controls in scenarios where they were previously unavailable, thereby enhancing the
efficiency and robustness of genomic studies. Two types of case-control analyses are typically
produced:

1. At the population-level, examining cases and controls using data that is specific to a
particular tissue, with the purpose of investigating how diseases or phenotypic traits
affect that tissue.

2. At the patient-level, analyzing both healthy and diseased tissue samples extracted from
the same patient to determine the impact of cancer processes on a given tissue.

Population-level case-control. The advantages of population-level case-control analyses
focusing on the same tissue type have been extensively described in the literature. In the
concrete domain of cancer genomics, such studies typically involve comparing healthy tissues
(derived from patients without cancer) of the same tissue type as those giving rise to cancer
(obtained from patients with a specific cancer subtype).

For instance, Aran et al. [15] combined data from the TCGA and GTEx projects to analyze
gene expression disparities between healthy and across eight tissues and corresponding tumor
types. This approach facilitated the comprehension of tumor development and the discovery of
novel biomarkers, critical for effective prevention and therapeutic stratagem selection.
In Figure 3 we present a simplified version of the scenario outlined in [15], featuring two

distinct patients: one afflicted (extracted from TCGA, with ID = “TCGA-A2-A04N”) and one
healthy (extracted from GTEx, with ID = “074b0792-df3c-4b59-9f50-793bc14bcb81”) individual.



Figure 3: Selection of population-level case-control instances. Samples are extracted from TCGA (top
rectangle, showing one example) selecting non-healthy donors, while one sample is extracted from GTEx
representing the tissue-specific (i.e., breast tissue) gene expression of typical healthy patients.

Note that the afflicted patient has a non-healthy biosample (is_healthy = false) associated
with the Ductal and Lobular Neoplasm disease.

The process of selecting cases and controls with specific conditions and from the same tissue
type within such datasets is nontrivial and necessitates sophisticated instance modeling. For
example, identifying patients who are “male, white, and 79 years old” within TCGA [1] is not
feasible. Consequently, pairing cases and controls entail not only ontological mediation (via
the concepts-layer) but also an understanding of the data sources. Our proposed approach
streamlines this process by enabling a consistent representation of biological concepts and
a technologically-independent data representation. The expression levels are observed on
a specific gene (TP53), which is fixed at the conceptual level and therefore searched in the
SampleRegions of GTEx and TCGA Samples to extract appropriate values.

Patient level case-control. Numerous studies have highlighted the clinical advantages of
performing case-control analyses at the patient level. For individual patients, the analysis
involves comparing samples from adjacent tumor tissue (considered as control) and tumor tissue
(case). Collectively, these two types of samples are referred to as paired samples.

In [16], Kim et al. analyzed paired samples from patients with Colon Adenocarcinoma, showing
that this type of analysis significantly impacts the prediction of cancer recurrence. Oh and
Lee [17], instead, examined the differences in gene expression between paired samples in Lung
Adenocarcinoma and Breast Invasive Carcinoma, among others. Using machine learning models,
they concluded that such analyses can aid in predicting the prognosis of certain cancers, thus
facilitating appropriate clinical treatments. Both studies employed the TCGA public resource



Figure 4: Selection of patient-level case-control instances. Note that the model allows for the selection
of data derived from different samples (i.e., one healthy and one unhealthy) from the same patient. This
extraction can be repeated for many patients to build a dataset of paired samples.

to obtain patient data. In Figure 4 we show the case of a patient possibly included in this
patient-level case-control analysis [17]. This patient, diagnosed with Lung Adenocarcinoma (id
= “TCGA-44-6146”), holds paired samples available in TCGA.
TCGA is a repository that provides information on files resulting from specific genomic

analyses of healthy and tumor tissues from cancer patients. The analytical nature of TCGA
makes the search for paired samples challenging, requiring advanced data processing and
search functionality to identify analyses from the same patient (e.g., files associated with the
same Donor). Currently, this is not allowed even by the updated TCGA major entry point [1].
Note that, in the concepts-data framework, the data-layer enables easy identification of the
patient (or Donor) from whom each sample originates, while the concepts-layer facilitates the
identification of both samples as belonging to the same individual.

3.2. Integrative Multi-Omics Studies

Multi-omics approaches are innovative frameworks that integrate multiple omics datasets to
enhance understanding of genetic disease [26]. Particular attention is given to multi-omics
studies to study cancer’s molecular and clinical features. Here, areas of research include
segmentation into subtypes, improvement of survival predictions and therapeutic outcomes,
and uncovering key pathophysiological processes across different molecular layers. Again, we
refer to the TCGA data source, while other cancer genomics could also be considered (see the



ICGC [27]). For multi-omics analysis, two types of inquiries typically hold significant interest:

1. At the population-level, analyzing a specific disease or phenotypic trait, by using genomic
samples that refer to different genomic data types (i.e., features in the genome).

2. At the patient-level, analyzing a specific disease or phenotypic trait, considering specific
patients whose samples have been analyzed according to multiple genomic data tests (i.e.,
for whom multiple data types are available).

Population-level multi-omics. Associating variation signatures or gene expression/methyla-
tion/miRNA profiles with diagnostic/prognostic values is of high importance in cancer research.
Pinoli et al. [18] examine the rich presence of variants, abnormal methylation levels, as well as
copy number alteration events, in the proximity of specific topological structures for 26 cancer
types. Mehrgou and Teimourian [19] utilize gene expression, methylation, and miRNA datasets
from both TCGA and GEO sources to derive insights on Colorectal cancer, with applications in
diagnosis, prognosis, and targeted therapy.

Patient-level multi-omics. Focusing on specific tissues, we aim to find patients whose
biological samples have been analyzed using different genomic experiments (i.e., for whom
multiple data types are available). Grouping data by the same patient enables building richer
disease models. We call this pattern one-to-one linking and to the multiple samples derived
from the same patient as linked multi-omics samples (connecting mutations, expression, and
epigenomic signals such as methylation levels).

Figure 5: Selection of patient-level multi-omics instances. Several samples can be extracted from TCGA
to represent different genomic data types (i.e., DNA variation, DNA methylation, miRNA expression,
gene expression). It can be repeated for many patients to build a dataset of linked multi-omics samples.

Figure 5 illustrates a patient (ID = “TCGA-33-4589”) with lung adenocarcinoma for whom
data on variants, methylation levels, miRNA, and gene expression are available in TCGA.
The comprehensive data of this patient facilitates multiple analyses with significant clinical
applications. For instance, in [20], miRNA and gene expression data were analyzed in patients
with lung adenocarcinoma to classify patients based on survival. This has crucial implications



for cancer prognosis, enabling the identification of patients who may require more intensive
monitoring due to a poor prognosis. Similar studies have been conducted for survival prediction
in breast cancer, utilizing gene and miRNA expression, DNA methylation, and CNV data [21].

3.3. Family Trio Analyses

Rare disorders are conditions with a low frequency in the population and often have a genetic
component. Despite the significance of genetics in these disorders, most patients remain
undiagnosed after standard genetic testing [8]. Family trio analysis involves comparing the
genetic information of the patient with that of their parents. Consequently, it is possible
to identify de novo variations, i.e., DNA variations unique to the patient and not inherited
from either parent. This kind of analysis has been shown to positively impact rare disease
contexts, by improving diagnostic and serving as a powerful tool in identifying disorder-causing
variations [23].

Figure 6 illustrates information about a family trio reported in [22]. In this study, the authors
examine family trios in the context of Amyotrophic Lateral Sclerosis (ALS) to identify risk factor
variants associated with this devastating disease. They identified several de novo variations, such
as the v1 instance of the Variant class in Figure 6. This variant is considered de novo because it
was identified only in the affected individual (son instance of the UnhealthyIndividual class)
and not in either parent (father and mother instances in the concepts-layer). The identified
variants helped the authors improve the understanding of the genetic role in ALS.

Figure 6: Selection of samples of patients related in a family-trio pattern, using the information
presented in the concepts-layer. This process can be repeated for many families to build a comprehensive
dataset of family-trio samples.



In this particular pattern, the data-layer represents fundamental information about the
experiment, such as the sequencing technology, which cannot be represented in the concepts-
layer. On the other hand, the concepts-layer allows us to infer that the variant shown in
Figure 6 is de novo, as it captures the familial relationships between individuals. The ontological
connection between bothmodels provides a holistic representation of all the relevant information
needed for family trio analysis.
An important genomic data source, the 1000 Genomes Project, collected a huge dataset

intending to identify all the genetic variants with frequencies of at least 1% in several world-
wide populations. The last release of the project covered 26 populations and observed single
nucleotide variants (SNVs) and insertions/deletions (indels) from different 602 parent/child trios
produced within the project [28]. The pattern described in Figure 6 can be reproduced on 1000
Genomes data to perform a database-wide analysis on family-trio samples.

3.4. Complex Patterns

Above, we have demonstrated traditional data analysis patterns in genomics. However, more
complex analysis patterns have gained attention.

Figure 7: Selection of two family-trio patterns to build a complex family-trio case-control study. Each
family instance is condensed into a box in the data-layer. Analysis of Family 1’s data-layer reveals that
the affected son carries two candidate variants potentially linked to the observed disease. In contrast,
Family 2’s data-layer depicts a healthy family member carrying one of the candidate variants. Utilizing
Family 1 as the case and Family 2 as the control, the complex pattern represented in the concepts-layer
facilitates the identification and exclusion of one of the two candidate variants (i.e., v2).

One example of a complex pattern involves family-trio case-control analysis, which cor-
responds to performing case-control analyses (see Section 3.1) on family trios (see Section



3.3). Specifically, it compares the genetic information of families with an affected individual
to families with no affected individuals. In [29], this strategy was employed to identify genes
and mutation types that are highly associated with Schizophrenia. Figure 7 illustrates that
scenario, by using only two families (for simplification purposes). Here, it can be observed that
the v2 Variant appears in the offspring of both families; this insight can be used to rule out the
association of this variation with schizophrenia (as s1 is an UnhealthyIndividual, whereas s2
is a HealthyIndividual). Conversely, the v1 Variant appears only in the family member s1,
who is affected by schizophrenia; however, it does not appear in any of her/his parents, which
offers strong evidence of the potential relationship between variant v1 and schizophrenia.
Another example of a complex pattern is multi-omics case-control analyses. Here, experts

compare different data types from patients with a certain characteristic (cases) to those without
it (controls) to determine if there is a clinically relevant relationship between any omic feature
and the characteristic under study. For instance, in [30], the authors used multi-omic data to
predict the risk of developing asthma, and in [31], they employed this type of analysis to predict
the development of preeclampsia.

4. Discussion

The two-layer framework described in Section 2 allows us to incorporate new concepts and
relationships according to a data-agnostic approach. Indeed, as acquired knowledge in genomics
is constantly evolving, new concepts will be added and changes will recur in the concepts-
layer. The model will not remain the same as the one presented in Figure 2, which -in turn-
extends previous work [12]. Conversely, the data-layer is typically not impacted by genomic
concepts’ changes as long as all genomic data can be represented as Samples containing
SampleRegions. Even when experts’ understanding of genomic-related knowledge mutates,
possibly impacting the interpretation of data analysis results, data keeps the same model; this
favors the maintainability of potential data mappings, processing pipelines, and bio-tools that
leverage this representation.
Here, we show that a strong connection between data and concepts compensates for the

limitations of approaches that consider the layers separately, allowing a holistic representation
of the genomic domain. The identification of interesting patterns of analysis and the consequent
reasoning can only be explained by using an interactive two-layer representation. Our rationale
is to use the conceptual linking as a glue for generating classical patterns of case-controls, multi-
omics, or family-trios by having the conceptuals-layer model in the middle and instantiating
the data-layer model as many times as needed. At the patient-level, case-controls typically have
two-instance-replication (see Figure 4). Instead, multi-omics have many-instance-replication;
we showed four, in the example of Figure 5, replicating the data model for four genomic data
types thereby creating one copy for each sample of a same patient. In this way, we let classical
genomic data analysis patterns emerge, where we “pivot” upon ontological knowledge (concepts-
layer) as the mediator across several instantiations of the data-layer, playing clearly identified
roles. We demostrated the capability to perform queries with high complexity, which facilitates
the extraction of relevant data from highly-heterogeneus disorganized repositories and the
advancement of data exploitation in the domain.



5. Conclusion

In this paper, we explain five basic patterns and then hint at how they can be composed to
form more complex patterns. This framework will allow easy extension to novel query patterns
that will go along with the rapidly-evolving state of genomic knowledge In current practice,
domain experts typically navigate genomic data source interfaces and download data without
a clear formalization of the underlying concepts and their semantic relationships. In this
work, we describe a conceptual modeling-based framework that enables a unified querying
strategy. Building on this, we envision a next-generation genomic data query builder that,
starting from high-level concepts, allows users to execute abstract queries. This approach will
relieve practitioners from the complexities of data formats and heterogeneity, enabling them
to seamlessly formulate data extractions that align more closely with the classical problem
formulations they are familiar with. The patterns presented in this work demonstrate initial
prototypes of modular queries that can be implemented in such a system. Prospectively,
this data query builder will be the main component of a visual model-driven query system
for practitioners, where the conceptual model in the concepts layer is used to identify data
instances in the underlying data layer.
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