
An Architecture for Integrating Large Language
Models into Metamodeling Platforms:
The Example of MM-AR

Gunakar Challa1,*, Aya Gartini1, Fabian Muff1 and Hans-Georg Fill1

1University of Fribourg, Boulevard de Pérolles 90, 1700 Fribourg, Switzerland.

Abstract
The large-scale adoption of large language models for the integration of generative artificial intelligence
capabilities is occurring across several domains. This also applies to the domain of conceptual modeling,
where a number of approaches are currently being investigated for the creation and interpretation of
models utilizing this technology. However, a significant number of these approaches are currently limited
to a specific modeling language. Accordingly, the current paper proposes an architecture on the level of
metamodeling platforms to facilitate the integration of large language models into modeling editors for
triggering actions on arbitrary types of models. We describe the underlying concept and report on a first
prototypical implementation of the approach for the web-based MM-AR metamodeling platform.

Keywords
Large Language Models, OpenAI, Enterprise Modeling, MM-AR

1. Introduction

LLMs can be useful in conceptual modeling, where experiments have shown the enormous
potential of large language models such as ChatGPT1 to support modeling tasks [1]. This
can include the creation, modification, or analysis of conceptual models or even metamodels.
However, as shown in [2], current LLMs are not yet capable of interpreting complex model data
such as metamodels or model instances that must follow a predefined structure. Therefore, the
integration of descriptive prompts to create or modify conceptual models based on complex
metamodels is not yet possible. What is missing is an approach that is capable of creating
and modifying conceptual models based on predefined metamodels, without the need for a
large language model to understand the complex and generic structure of different modeling
languages.

Therefore, in this paper we present a new approach for integrating LLMs into metamodeling
platforms in a generic way. We will use the MM-AR metamodeling platform as an example [3] to

ER2024: Companion Proceedings of the 43rd International Conference on Conceptual Modeling: ER Forum, Special Topics,
Posters and Demos, October 28-31, 2024, Pittsburgh, Pennsylvania, USA
*Corresponding author.
$ gunakar.challa@unifr.ch (G. Challa); aya.gartini@unifr.ch (A. Gartini); fabian.muff@unifr.ch (F. Muff);
hans-georg.fill@unifr.ch (H. Fill)
� http://www.unifr.ch/inf/digits (F. Muff); http://www.unifr.ch/inf/digits (H. Fill)
� 0009-0007-2697-0215 (G. Challa); 0009-0004-3731-5521 (A. Gartini); 0000-0002-7283-6603 (F. Muff);
0000-0001-5076-5341 (H. Fill)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://openai.com/index/chatgpt/ last accessed: 25.07.2024

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gunakar.challa@unifr.ch
mailto:aya.gartini@unifr.ch
mailto:fabian.muff@unifr.ch
mailto:hans-georg.fill@unifr.ch
http://www.unifr.ch/inf/digits
http://www.unifr.ch/inf/digits
https://orcid.org/0009-0007-2697-0215
https://orcid.org/0009-0004-3731-5521
https://orcid.org/0000-0002-7283-6603
https://orcid.org/0000-0001-5076-5341
https://creativecommons.org/licenses/by/4.0


Gunakar Challa et al. CEUR Workshop Proceedings 1–5

convey the practical aspects of implementation. In contrast to other approaches, the LLM does
not need to know the context of the entire metamodel, but only some predefined functions to
call. A user’s textual input is then mapped to these predefined functions that can be executed by
the metamodeling platform. This reduces the complexity of the task for the LLM and restricts the
possible output to a controllable set of functions, making the approach flexible and extendable.

The remainder of the paper is structured as follows. First, we discuss related work in Section 2,
followed by a description of the concept of the approach in Section 3 and the prototypical
implementation of the proposed methodology in Section 4. In Section 5 we illustrate the
approach on two metamodels.

2. Related Work

Several approaches have been explored for the application of large language models to conceptual
modeling and metamodeling. These will be briefly characterized in the following.

In initial experiments, large language models were used to create and interpret entity rela-
tionship diagrams (ERD), business process models, UML class diagrams, and Heraklit models [1]
and later also BPMN process models and Petri nets [4]. However, the reported experiments
were restricted to these modeling languages and did not target the level of metamodeling.

Baumann et al. [5], attempted to generate models for domain-specific languages for which
an LLM had little or no training data. They used a Retrieval Augmented Generation (RAG)
approach to automatically retrieve relevant examples from a knowledge base based on the user’s
query. This permits to a certain extent to target arbitrary modeling languages, but the approach
did not consider the LLM-based manipulation of the models.

Subsequently, experiments were conducted in which an LLM was provided with a meta-
metamodel, several metamodels, and instance models in JSON format created by a metamodeling
platform and accompanied by natural language descriptions [2]. On this basis, the LLM was
asked for various outputs that required an understanding of the connections between the differ-
ent layers. The experiments showed that ChatGPT was not able to interpret the relationships
between meta-metamodels, metamodels and model instances, resulting in unstable and invalid
results, which was mainly due to the large size of input data.

Although previous approaches showed very well the utilization of large language models for
the creation and interpretation of conceptual models, only few investigations have so far been
made that can be applied to any modeling language and are integrated in a model editor.

3. Concept of the Approach

The idea of our approach is to build the final model incrementally in small steps. Each step
involves running a few lines of code in the form of a function. When these functions are
triggered they perform a UI action on the existing instance of the model, such as creating an
instance, naming an instance, moving an instance, deleting a relation, etc. Our approach relies
on these functions as the interface to the large language model - see the architecture depicted
in Figure 1. The LLM is provided with all the available functions and input from the modeler.
The function names, descriptions, parameter names, parameter descriptions, and dynamically

2



Gunakar Challa et al. CEUR Workshop Proceedings 1–5

Global
Datastructure

Node Server 1

API-Server
(Express)

Node Server 2

Client
(Aurelia, ThreeJS)

UiFunctions

createInstance()

deleteInstance()

callOpenAI()

RightNav

prompt

reply

onSend() prompt

reply

Stores & retrieves the
meta-model and

instances of the model

The prompt along with the
functions' details are sent

via node package in
JSON format to LLM for

processing

The function to be
called along with
parameters are

received in JSON
format from LLM

Stores and retrieves the instances
of models via internal APIs

The meta meta-modelling
specifications are used for

creation/modification of
metamodels

The meta-modelling
specifications are used for
the creation/modification of

instances of models

DB-Server

Database
(PostgreSQL)

OpenAI

GPT-3.5 Turbo

{
    "model": "gpt-3.5-turbo-0125",
    "messages": [
        {
            "role": "user",
            "content": "Create an Exclusive-Gateway at x=1 and y=2"
        }
    ],
    "tools": [
        {
            "type": "function",
            "function": {
                "name": "create_entity",
                "description": "Creates instance of the class",
                "parameters": {...}
            }
        },...
    ],
    "tool_choice": "auto"
}

{
    "id": "chatcmpl-9lFq9TPv5UgsRbjc6cUTxpT3XuRHA",
    "object": "chat.completion",
    "created": 1721049333,
    "model": "gpt-3.5-turbo-0125",
    "choices": [
        {
            "index": 0,
            "message": {
                "role": "assistant",
                "content": null,
                "tool_calls": [
                    {
                        "id": "call_YexDC3SctJa6P9UZaDvSuXAY",
                        "type": "function",
                        "function": {
                            "name": "create_event",
                            "arguments": "{\"className\":\"Exclusive-Gateway\",\"x\":1,\"y\":2}"
                        }
                    }
                ]
            },
            "logprobs": null,
            "finish_reason": "tool_calls"
        }
    ],
    "usage": {
        "prompt_tokens": 235,
        "completion_tokens": 24,
        "total_tokens": 259
    },
    "system_fingerprint": null
}

Figure 1: Architecture of LLM integration into the MM-AR Metamodeling platform.

obtained sample values of the parameters are provided to the LLM as context information.
There is no need for the LLM to know specific information about the meta-metamodel or the
underlying metamodels of the platform. Based on the user’s input and context information
provided, the LLM returns the function name to call, including the function parameters to pass
to the function. For example, if the user specifies keywords like create, build, or instantiate in
the prompt and there is a function called "create" in the list of functions provided to the LLM
whose description mentions that it creates an entity, then the LLM chooses this function over
other functions. This chosen function is subsequently executed by the metamodeling platform
for modifying the model instance in the same way as a user would use a mouse and keyboard.
In the next section, we discuss the prototypical implementation of these concepts as integration
into the MM-AR metamodeling platform [3].

4. Prototypical Implementation

As basis for the first prototypical implementation, we used the MM-AR metamodeling plat-
form [3]. It permits to define metamodels in JSON format for which it automatically creates
according model editors that let users interact with the models using mouse and keyboard
actions [6]. These actions are implemented as TypeScript functions on the client side of the
platform. Although one can design & view the models in 3D & augumented reality in MM-
AR, we will continue with 2D models. Nevertheless, the approach is also extensible to three
dimensions.

3



Gunakar Challa et al. CEUR Workshop Proceedings 1–5

As shown in Figure 1, the platform is implemented as Node.js2 web server running Aurelia23

and the JavaScript WebGL visualization framework THREE.js4. Furthermore, the platform relies
on a database server with PostgreSQL5, which is accessed via an API Server running as Node.js
application and express6.

As an extension to traditional UI interaction methods, the platform has been enhanced with
a prompt field that allows descriptive input. Upon the click of a button, the descriptive input
of the desired modeling task, along with the possible set of UI functions, their parameters and
corresponding descriptions, is sent to the OpenAI API using GPT 3.5 Turbo as the language
model. From the user’s point of view, only descriptive input is considered. The API then returns,
on the basis of the input of the user the most probable function name, as well as the required
parameters in a JSON format. This function is then called, and the according modeling actions
are executed on the model instance. The right side of Figure 1 shows exemplary prompt data
sent to the LLM (top) and received by the LLM (bottom).

5. Illustrative Scenarios

To illustrate the generic application of the new approach, two use case scenarios for (1) creating
instances of model elements and (2) renaming existing model elements in the BPMN and the
e3value modeling languages are presented below. Even though these two metamodels are
simplified, the underlying structure is already quite complex7.

Figure 2 shows the state of the model after sending a request with the prompt: “Create a
start event” for a BPMN diagram. Figure 3 shows that attributes of instances in a model can be
changed by textual input. In this example, a Boundary Element of an e3-value model is created
and named by stating: “Create a Boundary Element and name it as point”.

As we can see, the LLM correctly identified which function to invoke in both the cases and
has correctly extracted the parameter value out of the given prompt. This way compound
prompts can also be processed for executing multiple tasks sequentially. Thus, we can also build
and modify large and complex models using multiple simple prompts. We can observe that
this approach works on arbitrary metamodels and is in indeed platform independent. The only
requirement is that UI actions must be accessible via functions, where each function performs a
dedicated UI action and vice versa.

6. Conclusions and Limitations

In this paper, we introduced a light-weight approach for integrating LLMs directly into metamod-
eling platforms, which overcomes the difficulties of LLMs in understanding complex model data
by not relying on specific model information, but using UI interaction features as a proxy. In a

2https://github.com/nodejs/node
3https://github.com/aurelia/aurelia
4https://github.com/mrdoob/three.js
5https://www.postgresql.org/docs/
6https://github.com/expressjs/express
7An illustration of the two metamodels can be found on: https://doi.org/10.5281/zenodo.12920616

4

https://github.com/nodejs/node
https://github.com/aurelia/aurelia
https://github.com/mrdoob/three.js
https://www.postgresql.org/docs/
https://github.com/expressjs/express
https://doi.org/10.5281/zenodo.12920616


Gunakar Challa et al. CEUR Workshop Proceedings 1–5

Figure 2: Example of creating a start event with
a descriptive prompt in a BPMN diagram.

Figure 3: Example of creating a Boundary Element
named ‘point” in an e3-Value model with a
descriptive prompt.

first prototypical implementation, we were able to show that the approach works for basic model
actions, e.g., creating instances and renaming instances for two metamodels but is extensible to
all other UI actions as well. Also, it is metamodel-agnostic and platform-independent.

Nevertheless, this approach is not without some limitations. The prototypical implementation
is reliant upon the names instead of platform’s Universally Unique Identifiers (UUIDs) to
distinguish the different concepts. Consequently, it cannot be guaranteed that the correct
metamodel concept is being employed when names are used. We recommend future developers
and researchers to invest sufficient time in giving adequate contextual information to the LLM
through descriptions.

References

[1] H. Fill, P. Fettke, J. Köpke, Conceptual Modeling and Large Language Models: Impressions
From First Experiments With ChatGPT, Enterp. Model. Inf. Syst. Archit. Int. J. Concept.
Model. 18 (2023) 3. doi:10.18417/EMISA.18.3.

[2] F. Muff, H. Fill, Limitations of ChatGPT in Conceptual Modeling: Insights from Experiments
in Metamodeling, in: Modellierung 2024 - Workshop Proceedings, GI e.V., 2024, p. 8.
doi:10.18420/MODELLIERUNG2024-WS-008.

[3] F. Muff, H. Fill, Initial Concepts for Augmented and Virtual Reality-based Enterprise
Modeling, in: ER Demos and Posters 2021, volume 2958, CEUR-WS.org, 2021, pp. 49–54.
URL: https://ceur-ws.org/Vol-2958/paper9.pdf.

[4] H. Kourani, A. Berti, D. Schuster, W. M. P. van der Aalst, Process Modeling with
Large Language Models, in: BPMDS 2024, Springer, 2024, pp. 229–244. doi:10.1007/
978-3-031-61007-3\_18.

[5] N. Baumann, J. S. Diaz, J. Michael, L. Netz, H. Nqiri, J. Reimer, B. Rumpe, Combining
Retrieval-Augmented Generation and Few-Shot Learning for Model Synthesis of Uncommon
DSLs, in: Modellierung 2024 - Workshop Proceedings, GI e.V., 2024, p. 7. doi:10.18420/
MODELLIERUNG2024-WS-007.

[6] F. Muff, H. Fill, M2AR: A Web-based Modeling Environment for the Augmented Reality
Workflow Modeling Language, in: Proceedings of the MODELS Companion ’24, ACM, 2024.
doi:10.1145/3652620.3687779.

5

http://dx.doi.org/10.18417/EMISA.18.3
http://dx.doi.org/10.18420/MODELLIERUNG2024-WS-008
https://ceur-ws.org/Vol-2958/paper9.pdf
http://dx.doi.org/10.1007/978-3-031-61007-3_18
http://dx.doi.org/10.1007/978-3-031-61007-3_18
http://dx.doi.org/10.18420/MODELLIERUNG2024-WS-007
http://dx.doi.org/10.18420/MODELLIERUNG2024-WS-007
http://dx.doi.org/10.1145/3652620.3687779

	1 Introduction
	2 Related Work
	3 Concept of the Approach
	4 Prototypical Implementation
	5 Illustrative Scenarios
	6 Conclusions and Limitations

