
Predicting Software Size and Effort from Code Using
Natural Language Processing
Samet Tenekeci1,*, Hüseyin Ünlü1,*, Emre Dikenelli1, Uğurcan Selçuk1, Görkem Kılınç
Soylu2 and Onur Demirörs1

1İzmir Institute of Technology, Gülbahçe, İzmir, 35430, Türkiye
2İzmir University of Economics, Balçova, İzmir, 35330, Türkiye

Abstract
Software Size Measurement (SSM) holds a crucial role in software project management by facilitating the
acquisition of software size, which serves as the primary input for development effort and schedule estimation.
However, many small and medium-sized companies encounter challenges in conducting objective SSM and
Software Effort Estimation (SEE) due to resource constraints and a lack of expert workforce. This often leads to
inaccurate estimates and projects exceeding planned time and budget. Hence, organizations need to perform
objective SSM and SEE with minimal resources and without relying on an expert workforce. In this research,
we introduce two exploratory case studies aimed at predicting the functional size (COSMIC and Event-based
size) and effort of software projects from the code using a deep-learning-based NLP model: CodeBERT. For this
purpose, we collected and annotated two datasets consisting of 4800 Python and 1100 C# functions. Then, we
trained a classification model to predict COSMIC data movements (entry, exit, read, write) and four regression
models to predict Event-based size (interaction, communication, process) and effort. Despite utilizing a relatively
small dataset for model training, we achieved promising results with an 84.5% accuracy for the COSMIC size,
0.13 normalized mean absolute error (NMAE) for the Event-based size, and 0.18 NMAE for the effort. These
findings are particularly insightful as they demonstrate the practical utility of language models in SSM and SEE.

Keywords
Software size measurement, Effort estimation, Artificial intelligence, Natural language processing

1. Introduction

A software project achieves success when it meets customer expectations within the agreed-upon
timeframe and budget [1]. Therefore, accurate estimation of effort is crucial in project management for
predicting schedules and costs. In this context, Software Size Measurement (SSM) plays a pivotal role
in software project management by providing a fundamental input for effort and schedule estimation,
offering a significant business advantage [2, 3]. Therefore, reliable SSM is of great importance.

SSM methodologies can be broadly categorized into formal methods and expert opinions [4]. One
such standardized formal method is Functional Size Measurement (FSM) [5], which presents an objective
approach to measurement, enhancing model estimation, internal processes, and benchmarking [6, 7, 8].
Additionally, FSM facilitates tracking project scope changes, negotiating agreements between suppliers
and acquirers, and improving organizational processes by standardizing performance and quality metrics
[9].

COSMIC, recognized as a second-generation FSM method and an ISO standard, stands out as one
of the most widely adopted FSM approaches [10, 11]. The measurement process revolves around
calculating data movements, including Entry (E), Exit (X), Read (R), and Write (W). While COSMIC
FSM has demonstrated success in traditional monolithic architectures, the transition from monolith
architectures to more distributed and service-oriented architectures has prompted the exploration of
new size measurement methods compatible with these innovative software structures. One such method

IWSM-MENSURA, September 30 – October 4, 2024, Montréal, Canada
*Corresponding author.
$ samettenekeci@iyte.edu.tr (S. Tenekeci); huseyinunlu@iyte.edu.tr (H. Ünlü); emredikenelli@iyte.edu.tr (E. Dikenelli);
ugurcanselcuk@iyte.edu.tr (U. Selçuk); gorkem.soylu@iue.edu.tr (G. Kılınç Soylu); onurdemirors@iyte.edu.tr (O. Demirörs)
� 0000-0001-8875-4111 (S. Tenekeci); 0000-0001-9906-6066 (H. Ünlü); 0000-0002-7047-0556 (G. Kılınç Soylu);
0000-0001-6601-3937 (O. Demirörs)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:samettenekeci@iyte.edu.tr
mailto:huseyinunlu@iyte.edu.tr
mailto:emredikenelli@iyte.edu.tr
mailto:ugurcanselcuk@iyte.edu.tr
mailto:gorkem.soylu@iue.edu.tr
mailto:onurdemirors@iyte.edu.tr
https://orcid.org/0000-0001-8875-4111
https://orcid.org/0000-0001-9906-6066
https://orcid.org/0000-0002-7047-0556
https://orcid.org/0000-0001-6601-3937
https://creativecommons.org/licenses/by/4.0


is event-based size measurement, which proposes counting events such as process, communication,
and interaction events [12, 13, 14].

While literature showcases successful applications of FSM-based prediction methods in agile or-
ganizations [7, 15, 16], challenges persist [17, 18]. Notably, despite evidence of effectiveness, agile
organizations generally underutilize FSM-based prediction methods [19, 20, 21]. This issue is par-
ticularly prominent in many small and medium-sized software companies where limited resources
and a shortage of expert workforce hinder the proper execution of objective SSM and Software Effort
Estimation (SEE). Even as organizations struggle to implement established size measurement methods
like COSMIC, it is evident that integrating innovative methods such as event-based size measurement
into their processes will pose even greater challenges. Consequently, project estimates are often rushed,
superficial, and inadequate, leading to projects exceeding planned timelines and budgets. Hence, there
is a need to conduct objective SSM and SEE with minimal resources and without relying solely on
expert manual workforce [21].

In recent years, advancements in deep learning and natural language processing (NLP) have led
to many new developments in software engineering (SE), similar to trends in other fields. In SE,
traditional models based on n-grams, Support Vector Machine (SVM), Gaussian Naive Bayes, Part-of-
Speech (PoS) tagging, or Named Entity Recognition (NER) are being replaced by neural network-based
Language Model Models (LLMs) [22, 23]. These LLMs have three main strengths: state-of-the-art
Transformer architectures with masking and attention mechanisms, context awareness, and transfer
learning capabilities. This allows LLMs to be easily run on different downstream tasks, providing
accurate results even with limited labeled data. Through minor modifications and simple fine-tuning,
LLMs can achieve human-level performance in various SE tasks like SSM [24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34], SEE [24, 35, 36, 37, 38, 39], requirement extraction and classification [40, 41, 42, 43, 44, 45, 46, 47].
However, there is not much research on using these models for tasks like size measurement and effort
estimation from code.

In this research, we perform two exploratory case studies [48] to predict software projects’ functional
size and effort from the code using a transformer-based, pre-trained language model: CodeBERT [49].
In Case Study 1, we train CodeBERT with a set of functions derived from the CodeSearchNet corpus
[50] and the related COSMIC size. In Case Study 2, we train CodeBERT with a set of functions from
a real-life game project and its related event-based size and effort. We achieve promising prediction
results in both studies. In Case Study 1, we predict the COSMIC size with 84.5% accuracy. In Case
Study 2, we predict the event-based size and effort with 0.13 and 0.18 normalized mean absolute error
(NMAE), respectively. These results show the applicability of using NLP models for predicting the size
and effort from the code.

The remainder of this paper is structured as follows. Section 2 gives the background. Section 3
summarizes the related work. Section 4 explains the research method. Section 5 gives the results and
discusses our findings. Section 6 discusses the validity threats. Lastly, Section 7 concludes the paper.

2. Background

In this section, we briefly mention important background, including the size measurement methods and
large language models used in this study.

2.1. COSMIC Functional Size Measurement Method

COSMIC Functional Size Measurement Method is based on counting the Data Movements (DM) [10].
Following this purpose, the method suggests identifying first the Functional User Requirements (FUR),
then decomposing FURs into the Functional Processes (FP), and after that, measuring each functional
process by identifying its DMs. These DMs are defined as the flow of data groups belonging to a single
Object of Interest (OOI). In other words, a flow of data group can be defined as DM if it is related to a
single OOI. DMs can appear in four forms: Entry (E), Exit (X), Read (R), and Write (W). An Entry moves
a data group from a functional user into the functional process. An Exit moves a data group from a



functional process to the functional user. A Write moves a data group from inside a functional process
to the persistent storage area. A Read moves a data group from persistent storage into the functional
process. Each data movement is counted as 1 COSMIC Function Point (CFP). The size of the software is
the sum of data movements accumulated over all functional processes.

2.2. Event-based Size Measurement Method

The Event-based Size Measurement method categorizes the events into three: (1) Process Event, (2)
Communication Event, and (3) Interaction Event [12, 13, 14]. Process Event covers the calculations
required during the flow and the events that result from decision-making. It mainly covers back-end
layer events. Communication Event covers events that occur as a result of publishing, subscribing,
and messaging. It mainly covers back-end communication events between microservices. Interaction
Event covers events that occur as a result of triggers made by the user to the system during the flow
and any output from the system to the user. It mainly covers the front-end layer events. The method
suggests modeling the project requirements using the event-driven process modeling techniques and
then counting the number of events that occur. As a measurement unit, the method proposes the “Event
Points” concept. As a result of measurement, the size of a specific requirement can be defined as the
total number of events (Event Points) it has. Consequently, the size of a project is the total of the size of
its requirements.

2.3. BERT and CodeBERT

BERT (Bidirectional Encoder Representations from Transformers) [51] is a pre-trained, masked language
model based on Transformer architecture and self-attention mechanism. It is pre-trained on a large
corpus of book and Wiki texts to understand the context and meaning of words and sentences in natural
language. BERT achieves state-of-the-art performance in many downstream NLP tasks, such as text
classification, named entity recognition, and sentiment analysis. Moreover, through transfer learning
and fine-tuning, it can be adapted to various tasks in different domains including software engineering.

CodeBERT [49] extends BERT by adding programming language (PL) understanding to its natural
language (NL) capabilities. It is a bimodal pre-trained model for PL and NL that learns general-purpose
representations to support downstream NL-PL applications such as natural language code search and
code documentation generation. CodeBERT uses the same Transformer-based neural architecture as
BERT. CodeBERT utilizes a hybrid objective function that combines masked language modeling (MLM)
with replaced token detection (RTD) to train the model on both bimodal NL-PL pairs and unimodal
code data.

3. Related Work

Measuring the functional size of software from requirements or code has great importance in software
engineering. Traditional techniques are often prone to error and require significant time and effort.
Thus, the focus of the recent studies shifts towards automating this process. This section briefly reviews
the existing work on different approaches to automate SSM and SEE.

In [31], the authors present the results of a structured survey that is designed to explore opportunities,
challenges, and obstacles associated with deriving functional size automatically from the software
project code. Among the FSM methods evaluated, COSMIC was the most frequently preferred by experts.
The survey also revealed that experts have mixed opinions about the importance of automated size
measurement from the source code. While 42% of participants found it important, their expectations
from it included increased reliability, speed, and decision-making support, and the majority were neutral
or skeptical. One of the key concerns stated by the participants was accuracy.

[52] introduces a tool named COSMIC Solver, which automates FSM of Java Business Applications
(JBA) by extracting textual representations of UML sequence diagrams from execution traces of a JBA and
tagging them using AspectJ. The automation accuracy of the tool is calculated to be 77%. [53] introduces



the COSMIC APP to automate the measurement process to approximate the COSMIC functional size of
a project. The tool utilizes the sequence diagram of the software after reverse engineering it from the
given code using a third-party tool. The accuracy rate in predicting the functional size achieved by the
COSMIC APP is 87.8%. [54] automates COSMIC FSM for Java Web applications using the Spring Web
MVC framework. Using the CFP4J library, Spring MVC methods are mapped to COSMIC components.
The method achieves 97.6% accuracy.

To address the limitations arising from rule-based learning, researchers and practitioners have turned
to Artificial Intelligence (AI) techniques, specifically Neural Networks (NN), to enhance size prediction.
AI techniques have been extensively adopted to enhance various aspects of software development
processes and have shown notable success in recent years. Deep learning models, in particular, have
been effectively employed for FSM from early software artifacts such as analysis and design models.

In [26], the authors present a method to predict COSMIC functional size from text representing use-
case names. The method is based on the DEEP-COSMIC-UC model, which is a multi-layer convolutional
neural network that is pre-trained with different word embeddings. The normalized mean absolute error
(NMAE) of the model for prediction of functional size is calculated as 0.39. [32] uses a model named
RE-BERT for COSMIC-based functional size classification in agile software development. RE-BERT is
trained with a generic BERT model over requirement engineering domain texts to be used for COSMIC
functional size classifications. The highest prediction accuracy reached is 78.97%. [29] utilizes NLP
and pattern matching to predict the size of a functional requirement. The accuracy of prediction ranges
between 70% and 95%. [34] modifies an existing FSM automation tool for IoT by integrating NLP with
it. Two learning models, Naive Bayes and neural networks, were used in the study, and the accuracy was
reported to be 53% and 82.3%, respectively. In [27], the authors built three functional size models using
Support Vector Regression (SVR), Random Forest (RF), and Neural Network (NN) approaches to predict
software functional size by Function Point Analysis (FPA). The achieved coefficient of determination
values, R2, are given for the three models as 0.982, 0.949, and 0.972. [33] presents a case study to
predict functional size from the requirements by using NLP. The authors fine-tuned BERT and BERT_SE
with a set of user stories and their respective functional sizes. In total size prediction, they achieved
72.8% and 74.4% accuracy with BERT and BERT_SE, while in data movement-based size prediction,
they achieved 87.5% and 88.1% average accuracy, respectively.

With the rapid advancement in AI, numerous models have begun to explore their application in SE,
including size prediction. Although a substantial effort has been made to use NLP techniques for SSM,
to our knowledge, directly predicting functional size from code remains unexplored.

4. Research Method

We follow the case study research method proposed by [46] in both case studies. Yin suggests that a
typical case study design involves the following steps.

4.1. Case Study Design

In this research, our primary goal is to explore how deep learning-based NLP methods are successful in
predicting the size and effort of software projects from the code. More specifically, we aim to evaluate
the success of the CodeBERT model in predicting COSMIC functional size, Event-based size, and effort
from the code. For this aim, we derive the following research questions:

• RQ1: How successful is NLP-based COSMIC functional size prediction from the code?
• RQ2: How successful is NLP-based Event-based size prediction from the code?
• RQ3: How successful is NLP-based effort prediction from the code?

4.1.1. Case Selection Criteria

As the first step of this study, we aim to prepare datasets for model training. For this purpose, we define
the following case selection criteria:



• Criterion 1: The case should include the code of the projects.
• Criterion 2: The code should be measurable by COSMIC size.
• Criterion 3: The code should be measurable by Event-based size.
• Criterion 4: The code’s size and effort unit should be at the smallest level, such as function level.
• Criterion 5: The code should include documentation or comments at the smallest level to provide

ease of measurability.

To meet all the defined criteria, we perform two exploratory case studies. In Case Study 1 (Criteria
1, 2, 5), we aim to answer RQ1. In Case Study 2 (Criteria 1, 3, 4, 5), we aim to answer RQ2 and RQ3.
Hence, the conduction of these two case studies differs.

4.1.2. Data Collection Procedures

We use CodeSearchNet corpus [50] to construct the dataset for Case Study 1. The initial dataset
comprises 2 million (comment, code) pairs from open-source libraries. Concretely, a comment is a
top-level function or method comment (e.g., docstrings in Python), and code is an entire function or
method. The dataset contains Python, Javascript, Ruby, Go, Java, and PHP code. Although we use only
Python codes (457K instances), the other languages can be easily included in the experiments.

We use a game development project named “Green Balance” to construct the dataset for Case Study
2. Green Balance is a city building and management simulation developed by a professional software
company in 1 year using C# programming language and Unity game engine. The dataset constructed
based on Green Balance includes 1100 C# functions in 97 namespaces.

4.2. Conduction of the Case Studies

The conduction of the case study consists of three stages: (i) preparing the datasets, (ii) training the
models using the datasets, and (iii) evaluating the trained models.

4.2.1. Preparing the Datasets

In Case Study 1, we use a rule-based data labeling algorithm to assign categorical class labels to Python
codes based on their docstring texts. After the labeling, the docstrings and comments are removed
from the code. This process is referred to as “dedoc” for the remainder of this article. The dedoc step
is essential for the model to learn solely from the code (i.e., unimodal approach) during training. The
class labels include the COSMIC data movements, which are 0 (W), 1 (R), 2 (X), and 3 (E). Using the
automated labeling algorithm, we obtain 1100 instances for each class. Additionally, we create a disjoint
dataset of 400 manually labeled code samples (i.e., 100 samples from each class) to test the performance
of the trained model.

In the process of filtering the data, there are significant differences in labeling criteria. For example,
while labeling for the “Write” COSMIC function is based solely on the presence of the word “write,”
more comprehensive sets of words have been used for the “Entry” and “Read” functions. This strategy
has been adopted to maintain a balanced data distribution, which is at least 1100 data points in each
class. The descriptive statistics of the dataset are given in Table 1, and a sample dataset is presented in
Table 2.

In Case Study 2, we manually measure the size and effort of each C# function and annotate them with
the corresponding event-based size (interaction, communication, process) and effort values. The size
and effort values are continuous numbers in this case. The effort values denote the workforce needed
in person-hour to implement the corresponding function. All values are measured at the function level
and grouped by namespace for evaluation. The descriptive statistics of the dataset are given in Table 3,
and a sample dataset is presented in Table 4.



Algorithm 1 Automated Labeling Algorithm

1: if the word "write" appears in the docstring then
2: assign the label 0 (W).
3: end if
4: if the words "read" and "data", "read" and "from", "read" and "file", "read" and "database", "data" and

"from" and "file", or "data" and "from" and "database" appear in the docstring then
5: assign the label 1 (R).
6: end if
7: if the word "send" or "sends" appears in the docstring then
8: assign the label 2 (X).
9: end if

10: if the words "get" and "from" or "gets" and "from" or "message" and "from" appear in the docstring
then

11: assign the label 3 (E).
12: end if

Table 1
Descriptive statistics of the dataset for Case Study 1

Training set Test set (Automatic) Test set (Manual)

Number of samples 3520 880 400
Min number of words 4 5 5
Max number of words 118 90 1453
Mean number of words 27.1 26.6 50.8
Std number of words 15.7 15.4 98.4

Table 2
Sample dataset for Case Study 1

Code Docstring Data Movement

def _schema_to_json_file_object(self ,
schema_list , file_obj):

json.dump(schema_list , file_obj , indent
=2, sort_keys=True)

Helper function for
schema_to_json that
takes a schema list and
file object and writes the
schema list to the file object
with json.dump

0 (W)

def read_json(filename , mode=’r’):
with open(filename , mode) as filey:

data = json.load(filey)
return data

Read_json reads in a json file
and returns the data struc-
ture as dict.

1 (R)

def _send_coroutine ():
with PoolExecutor () as executor:

while True:
msg = yield
future = executor.submit(msg.send)
future.add_done_callback(

_exception_handler)

Creates a running coroutine
to receive message instances
and send them in a futures
executor.

2 (X)

def mouse_move(self , event):
if (self.ui.tabWidget.currentIndex () ==

TabWidget.NORMAL_MODE):
self.posX = event.xdata
self.posY = event.ydata
self.graphic_target(self.posX , self.

posY)

The following gets back co-
ordinates of the mouse on
the canvas.

3 (E)



Table 3
Descriptive statistics of the dataset for Case Study 2

Interaction Communication Process Total Effort

Minimum 0 0 4 5 0.19
Maximum 86 17 286 372 30.55
Mean 5.36 0.21 54.71 60.28 4.21
Median 0 0 34 37 2.40
Std 14.49 1.74 58.84 68.21 4.75
Total 520 20 5307 5847 408.17

Table 4
Sample dataset for Case Study 2

Code i c p Total Effort

public void AddAllResDebug () {
rawResource.increaseYCoin (10000);
rawResource.increaseYp (10000);
rawResource.increaseCement (10000);
rawResource.increaseWire (10000);
rawResource.increaseChemical (10000);
rawResource.increaseMechanicalPart (10000);
rawResource.increaseFood (500);
seedResource.increaseRegularSeedAmount (10);
seedResource.increasePremiumSeedAmount (10);

}

2 0 9 11 0.10

public IEnumerator CheckToken () {
var uwr = new UnityWebRequest(APIURI +

APICONTROLLERAUTHMANAGEMENT + "CheckToken", "GET");
uwr.SetRequestHeader("Content -Type", "application/json");
uwr.SetRequestHeader("Authorization", "Bearer" + bearerToken);
uwr.downloadHandler = new DownloadHandlerBuffer ();
yield return uwr.SendWebRequest ();
if (uwr.responseCode != 200) { // not valid

isBearerTokenValid = false;
yield return false;

}
else { // valid

isBearerTokenValid = true;
yield return true;

}
}

0 1 9 10 1.00

4.2.2. Training the Models

The original CodeBERT model has 12 hidden RoBERTa layers with 768 hidden states, 12 attention
heads, and one classification head at the end. When training our models, we keep the reference
architecture as is, except for the last layer, which is modified depending on the type of our tasks (see
Figure 1). Case Study 1 has a multiclass classification task, while Case Study 2 has a set of regression
tasks. Accordingly, we modify the objective function in the last layer. In both cases, the input is an
array of codes (i.e., methods). The only target in Case Study 1 is the class labels, while there are four
different targets (interaction, communication, process, and effort) in Case Study 2. Thus, we train four
different regression models for Case Study 2. In both cases, we set the maximum input length as 512
tokens and truncate the longer codes. We keep the default optimizer as AdamW. However, we use
different hyperparameters for each case, taking into account the task type and dataset features. We
use 𝑙𝑟 = 2𝑒 − 5, 𝑒𝑝𝑠 = 1𝑒 − 8, 𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 64, and 𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 = 4 (cross-entropy
loss) in Case Study 1. On the other hand, we use 𝑙𝑟 = [1𝑒 − 4, 2𝑒 − 5], 𝑒𝑝𝑠 = 1𝑒 − 8, 𝑒𝑝𝑜𝑐ℎ𝑠 = 4,
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 16, and 𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 = 1 (mean-square error loss) in Case Study 2.



Data Annotation

Data AnnotationCodeSearchNet
Corpus (Python)

Data Annotation

Green Balance
Game Project (C#)

DEDOC
Auto-labeled

Training set (80%)

Input for testingDEDOC
Auto-labeled Test

set (20%)

Input for testingDEDOC
Manually labeled

Test set (400
methods)

Data Split

Data Split

Auto-labeled
Dataset (4400

methods)

Data Split

Data Split

Manually labeled
Dataset (1100

methods)

interaction

communication

process

effort
Manually labeled

Training set (80%)

Manually labeled
Test set (20%)

CodeBERT
Classification

Model

Input for
finetuning

Training set without
docstrings and

comments

Fine-tuned
Classification

Model

Class Labels (Data
Movement Predictions) for
Manually Labeled Test set

Class Labels (Data
Movement Predictions) for

Auto Labeled Test set

Test set without
docstrings and

comments

Test set without
docstrings and

comments

CodeBERT Regression Model

CodeBERT Regression Model

CodeBERT Regression Model

CodeBERT Regression Model

Fine-tuned Regression Model (i)

Fine-tuned Regression Model (c)

Fine-tuned Regression Model (p)

Fine-tuned Regression Model (eff)

Size predictions (i)

Size predictions (c)

Size predictions (p)

Effort predictions

Inputs for testing

Figure 1: Model training workflows (Top: Case Study 1, Bottom: Case Study 2)

4.2.3. Evaluation

We perform an 80/20 train/test split with 5-fold cross-validation in both case studies. We use various
metrics for performance evaluation (see Table 5). In Case Study 1, we evaluate the performance in terms
of predicting the data movement type on both automatically labeled and manually labeled test sets. We
take accuracy (ACC) as the main performance comparison metric. We also investigate the precision,
recall, F1-score, and the confusion matrix.

Table 5
Definitions of evaluation metrics

Regression Metrics Classification Metrics

𝑀𝐴𝐸 = 1
𝑛

∑︀𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖| 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑀𝑆𝐸 = 1
𝑛

∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)

2 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

𝑀𝑀𝑅𝐸 = 1
𝑛

∑︀𝑛
𝑖=1

|𝑦𝑖−𝑦𝑖|
𝑦𝑖

𝐹1 = 2 · Precision·Recall
Precision+Recall

𝑁𝑀𝐴𝐸 =
∑︀𝑛

𝑖=1 |𝑦𝑖−𝑦𝑖|
1
𝑛

∑︀𝑛
𝑖=1 𝑦𝑖

𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

In Case Study 2, we evaluate the model performance in terms of predicting the size and effort at the
namespace level. We take mean-absolute error (MAE) and normalized mean-absolute error (NMAE) as
the main performance comparison metrics. We also investigate the mean magnitude of relative error
(MMRE) and PRED(30) for effort estimations. Moreover, we conduct a linear regression analysis based
on total event size and a multiple linear regression analysis based on interaction, communication, and
process events. Then, we evaluate CodeBERT’s performance against these baselines.



5. Results and Discussions

This section summarizes and discusses the results of two exploratory case studies answering our three
research questions.

5.1. Answering RQ1

In Case Study 1, we predict the COSMIC size of automatically labeled and manually labeled codes in
terms of data movements (W, R, X, E). Since the task is a multiclass classification problem, we evaluate
the performance of the model with precision, recall, F1-score, and accuracy metrics (see Table 6). We
also plot the confusion matrices to investigate the misclassified data movements.

Table 6
Performance evaluation for Case Study 1

Automatically Labeled Test Set Manually Labeled Test Set

precision recall F1-score precision recall F1-score

W 0.7725 0.7409 0.7564 0.8800 0.8800 0.8800
R 0.7162 0.7227 0.7195 0.8065 0.7500 0.7772
X 0.7824 0.7682 0.7752 0.8796 0.9500 0.9135
E 0.6753 0.7091 0.6918 0.8081 0.8000 0.8040

Accuracy − − 0.7352 − − 0.8450
Macro Avg 0.7366 0.7352 0.7357 0.8435 0.8450 0.8437
Weighted Avg 0.7366 0.7352 0.7357 0.8435 0.8450 0.8437

W R X E
Predicted

W
R

X
E

Ac
tu

al

163 24 18 15

30 159 4 27

12 6 169 33

6 33 25 156

Automatically Labeled

20

40

60

80

100

120

140

160

W R X E
Predicted

W
R

X
E

Ac
tu

al

88 10 1 1

7 75 5 13

0 0 95 5

5 8 7 80

Manually Labeled

0

20

40

60

80

Figure 2: Confusion matrices for Case Study 1

Our classification model achieves 73.5% and 84.5% accuracies on automatically and manually labeled
test sets, respectively. Accordingly, we can say that the model predictions improve significantly when
the labeling is more reliable. On the other hand, no significant difference is observed between precision
and recall. Confusion matrices in Figure 2 show that the model tends to misclassify W as R, R as W
or E, X as E, and E as R. This may be related to that we are disregarding the possibility of functions
involving multiple data movements (i.e., multiple labels) in this case study. While this assumption may
be debated, it becomes reasonable when considering the Single Responsibility Principle (SRP) [55].

5.2. Answering RQ2

In the size prediction phase of Case Study 2, we predict interaction, communication, and process events.
As the dataset includes zero values, we evaluate the success of the predictions using MAE and NMAE
metrics (see Table 7).



Table 7
Performance evaluation for Case Study 2 - Size prediction results

MAE NMAE

Interaction 5.91 1.10
Communication 0.37 1.80
Process 5.12 0.09
Total Event 7.98 0.13

According to Hastings and Sajeev [56], predictions with an MMRE of less than 0.20 can be considered
predictive, while an MMRE between 0.20 and 0.50 is acceptable, and an MMRE greater than 0.50 is
unacceptable. Applying these thresholds to NMAE values, we find that error rates for interaction
and communication events fall into the unacceptable category, whereas predictions for process events
remain predictive. This is likely because interaction and communication events occur infrequently,
considering the nature of the game projects. Essentially, there are many instances of zero values, leading
to an imbalance in data distribution and a high standard deviation for these events in the dataset.
However, the overall impact of interaction and communication events on the total number of events
seems minimal, given the closeness of the total event NMAE to the process event NMAE.

5.3. Answering RQ3

In the effort prediction phase of Case Study 2, we first perform linear regression based on the total
event size and multiple linear regression based on interaction, communication, and process events.
Then, we evaluate the success of CodeBERT compared to regression-based results (see Table 8).

Table 8
Performance evaluation for Case Study 2 - Effort prediction results

Linear Regression Multiple Linear Regression CodeBERT

MAE 2.66 2.31 0.76
NMAE 0.63 0.55 0.18
MMRE 1.72 1.59 0.21
PRED(30) 0.19 0.24 0.69

The MMRE = 0.21 obtained for effort estimation is just above the predictive threshold and is
acceptable. This result is very promising as it shows that CodeBERT can estimate effort without using
any size measures. On the other hand, the regression-based approaches fall behind CodeBERT, yielding
unacceptable predictions. It is worth noting here that an event-based approach may not be suitable for
measuring the size of game projects. The event-based size measurement method [12, 13, 14] is primarily
intended for use in innovative software architectures such as microservices. However, since measuring
a game project using the COSMIC sizing method is not feasible, events in the game project have been
counted within the scope of Case Study 2. Consequently, there continues to be a need for methods to
measure the size of game projects, considering the building blocks of game projects.

5.4. Comparing Our Results with Related Work

We compare our results with three studies [52, 53, 54] with 77%, 87.8%, and 97.6% accuracy. They all
attempt to predict the functional size from code. The key point here is that all three of these studies
require an intermediate mapping step to generate UML sequence diagrams or mapping rules and perform
rule-based measurements based on the pre-defined rules. For example, [52] uses Javaagent and AspectJ
pointcuts, which are only available in Java Business Applications, to generate textual representations of
sequence diagrams. Similarly, [53] uses a reverse engineering tool called SequenceDiagram, which is
only available in IntelliJ IDEA, to generate sequence diagrams from Java code. [54] uses the controller



annotations in the Spring MVC framework to create mapping rules. Therefore, these methods rely
heavily on specific programming languages, tools, or frameworks, greatly restricting their ability to
generalize.

On the other hand, our method performs measurement directly from the source code using NLP.
Although we use a rule-based labeling algorithm in Case Study 1, our predictive model is based on
deep learning. Such an approach is known to be more flexible and generalizable. To the best of our
knowledge, this is the first study in the literature that predicts the size and effort from code using NLP.
Moreover, our model demonstrates high performance in the prediction of data movements, achieving
accuracy rates of 73.5% and 84.5%. In terms of error rates, only [52] reported an MMRE = 0.21 (as an
average of 8 applications). We achieved a better NMAE = 0.13 and the same MMRE = 0.21 in Case
Study 2.

6. Threats to Validity

In this section, we discuss two potential validity threats: (1) reliability of the ground truth and (2) dataset
size. The reliability of the measurements plays an essential role in the success of the trained models, as
the ground-truth labels provided to the model should be accurate. In Case Study 1, given the fact that
measurements assigned by a rule-based labeling algorithm may not be as reliable as measurements made
by an expert, it is arguable to use an automatic labeler to annotate the dataset. However, considering the
need for large amounts of labeled data in model training, such automated labeling solutions can be very
useful, especially when it is empowered with quality control workflows [57]. Two expert measurers
with at least three years of COSMIC experience manually measured 100 samples in each class to validate
the quality of automatically generated labels. Then, the performance of the model trained with the
automatically labeled dataset is tested on the manually labeled dataset. The test results revealed that our
model predicted manual measurements with 84.5% accuracy. This result indicates promising outcomes
from the exploratory Case Study we conducted. In Case Study 2, this threat did not arise since all
measurements were conducted by an expert who developed the game and verified by an expert who
developed the event-based measurement method. As the second validity threat, our datasets’ size can
be argued to be a small input for training the models. However, in this exploratory case study, we
aimed to explore the applicability of predicting the size and effort from the code using NLP models. We
obtained promising results by training the models with such a limited dataset. Therefore, this study
showed us the applicability of NLP models in predicting the size and effort from the code. We believe
that the precision of the prediction will be improved by increasing the size of the training dataset.

7. Conclusion

SSM plays a vital role in software project management, serving as a fundamental input for estimating
effort and schedules. However, many small and medium-sized software companies face challenges in
prioritizing objective SSM and SEE due to resource constraints and a shortage of expert personnel. As a
result, they often end up with inadequate estimates, leading to projects exceeding planned timelines and
budgets. Therefore, it is imperative for organizations to conduct objective SSM and SEE with minimal
resources and without relying solely on expert workforce involvement.

In this study, we conduct two exploratory case studies to investigate the applicability of using
CodeBERT to predict the size and effort of software projects using the code as input. Despite utilizing
limited datasets, our main objective is to assess the applicability of these models. Achieving an 84.5%
accuracy for the COSMIC size, 0.13 NMAE for the Event-based size, and 0.18 NMAE for the effort
estimation, we proved that NLP models can be useful in SSM and SEE. Moreover, we revealed some
possible open research areas:

• In this study, we use relatively small datasets to train the models. Therefore, training the models
with larger datasets can achieve more accurate size predictions.



• In Case Study 1, we use a rule-based labeling algorithm to measure the COSMIC size. We believe
that the accuracy of the model could be improved by using a dataset measured by experts to
provide a more reliable input for training the model.

• In Case Study 1, we only use the dataset from the Python language. The study can be expanded
to include datasets from different programming languages to broaden the scope of the research
dataset.

• In Case Study 2, we trained the model by labeling the code within a specific scope of the project.
The remaining code can also be included, allowing for training the model with a larger dataset.

• There continues to be a need for software size measurement methods specific to game software.

Supplementary Material

The source code and datasets are available at https://github.com/smtnkc/codebert-ssm

References

[1] The Standish Group, CHAOS 2020 Beyond Infinity, Technical Report, 2020.
[2] A. Abran, Software project estimation: the fundamentals for providing high quality information

to decision makers, John Wiley & Sons, 2015.
[3] M. Salmanoğlu, K. Öztürk, S. Bağrıyanık, E. Ungan, O. Demirörs, Benefits and challenges of

measuring software size: early results in a large organization, in: 25th International Workshop
on Software Measurement and 10th International Conference on Software Process and Product
Measurement, IWSM-Mensura, 2015.

[4] M. Jørgensen, B. Boehm, S. Rifkin, Software development effort estimation: Formal models or
expert judgment?, IEEE software 26 (2009) 14–19.

[5] M. Usman, E. Mendes, F. Weidt, R. Britto, Effort estimation in agile software development: a
systematic literature review, in: Proceedings of the 10th international conference on predictive
models in software engineering, 2014, pp. 82–91.

[6] L. Buglione, S. Trudel, Guideline for sizing agile projects with COSMIC, Proceedings of the
IWSM/MetriKon/Mensura (2010).

[7] C. Commeyne, A. Abran, R. Djouab, Effort estimation with story points and COSMIC function
points-an industry case study, Software Measurement News 21 (2016) 25–36.

[8] A. Abran, J.-M. Desharnais, M. Zarour, O. Demirörs, Productivity-based software estimation
models and process improvement: an empirical study, Int. J. Adv. Softw 8 (2015) 103–114.

[9] B. Ozkan, O. Turetken, O. Demirors, Software functional size: For cost estimation and more,
in: Software Process Improvement: 15th European Conference, EuroSPI 2008, Dublin, Ireland,
September 3-5, 2008. Proceedings 15, Springer, 2008, pp. 59–69.

[10] COSMIC Measurement Manual v5.0, The Common Software Measurement International Consor-
tium, 2021. Available at https://cosmic-sizing.org/measurement-manual/.

[11] A. Abran, Automating functional size measurement–a survey, in: UKSMA/COSMIC Conference
2011-22nd Annual conference on Metrics and Estimating: hosted in collaboration with COSMIC,
2011.

[12] T. Hacaloğlu, Event Points: A Software Size Measurement Model, Ph.D. thesis, Middle East
Technical University, 2021.

[13] T. Hacaloglu, O. Demirors, An exploratory case study using events as a software size measure,
Information Technology and Management 24 (2023) 293–312.

[14] H. Ünlü, T. Hacaloğlu, N. K. Ömüral, N. Çalişkanel, O. Leblebici, O. Demirörs, An exploratory
case study on effort estimation in microservices, in: 2023 49th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), IEEE, 2023, pp. 215–218.

[15] E. Ungan, N. Cizmeli, O. Demirörs, Comparison of functional size based estimation and story

https://github.com/smtnkc/codebert-ssm
https://cosmic-sizing.org/measurement-manual/


points, based on effort estimation effectiveness in scrum projects, in: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE, 2014, pp. 77–80.

[16] M. Salmanoglu, T. Hacaloglu, O. Demirors, Effort estimation for agile software development:
Comparative case studies using COSMIC functional size measurement and story points, in:
Proceedings of the 27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, 2017, pp. 41–49.

[17] H. Huijgens, R. v. Solingen, A replicated study on correlating agile team velocity measured in
function and story points, in: Proceedings of the 5th International Workshop on Emerging Trends
in Software Metrics, 2014, pp. 30–36.

[18] T. Hacaloglu, O. Demirors, Measureability of functional size in agile software projects: Multiple
case studies with COSMIC FSM, in: 2019 45th Euromicro conference on software engineering and
advanced applications (SEAA), Ieee, 2019, pp. 204–211.

[19] H. Ünlü, B. Bilgin, O. Demirörs, A survey on organizational choices for microservice-based
software architectures, Turkish Journal of Electrical Engineering and Computer Sciences 30 (2022)
1187–1203.

[20] H. Ünlü, D. E. Kennouche, G. K. Soylu, O. Demirörs, Microservice-based projects in agile world: A
structured interview, Information and Software Technology 165 (2024) 107334.

[21] T. Hacaloğlu, H. Ünlü, A. Yıldız, O. Demirörs, Software size measurement: Bridging research and
practice, IEEE Software 41 (2024) 49–58.

[22] F. Dalpiaz, A. Ferrari, X. Franch, C. Palomares, Natural language processing for requirements
engineering: The best is yet to come, IEEE Software 35 (2018) 115–119.

[23] J. von der Mosel, A. Trautsch, S. Herbold, On the validity of pre-trained transformers for nat-
ural language processing in the software engineering domain, IEEE Transactions on Software
Engineering 49 (2023) 1487–1507.

[24] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, T. Menzies, A deep learning model for
estimating story points, IEEE Transactions on Software Engineering 45 (2019) 637–656.

[25] I. Hussain, L. Kosseim, O. Ormandjieva, Approximation of COSMIC functional size to support
early effort estimation in agile, Data & Knowledge Engineering 85 (2013) 2–14.

[26] M. Ochodek, S. Kopczyńska, M. Staron, Deep learning model for end-to-end approximation of
COSMIC functional size based on use-case names, Information and Software Technology 123
(2020) 106310.

[27] L. Lavazza, A. Locoro, G. Liu, R. Meli, Estimating software functional size via machine learning,
ACM Transactions on Software Engineering and Methodology 32 (2023) 1–27.

[28] G. Sikka, A. Kaur, M. Uddin, Estimating function points: Using machine learning and regression
models, in: 2010 2nd International Conference on Education Technology and Computer, volume 3,
IEEE, 2010, pp. V3–52.

[29] E. Ungan, C. Hammond, A. Abran, Automated COSMIC measurement and requirement quality
improvement through scopemaster® tool., in: IWSM-Mensura, 2018, pp. 1–13.

[30] H. Soubra, Y. Abufrikha, A. Abran, et al., Towards universal COSMIC size measurement automa-
tion., in: IWSM-Mensura, 2020.

[31] H. Huijgens, M. Bruntink, A. Van Deursen, T. Van Der Storm, F. Vogelezang, An exploratory study
on functional size measurement based on code, in: Proceedings of the international conference on
software and systems process, 2016, pp. 56–65.

[32] Y. S. Molla, S. T. Yimer, E. Alemneh, COSMIC-functional size classification of agile software
development: Deep learning approach, in: 2023 International Conference on Information and
Communication Technology for Development for Africa (ICT4DA), IEEE, 2023, pp. 155–159.

[33] H. Ünlü, S. Tenekeci, C. Çiftçi, I. B. Oral, T. Atalay, T. Hacaloğlu, O. Demirörs, Predicting software
functional size using natural language processing: An exploratory case study, in: 50th Euromicro
Conference Series on Software Engineering and Advanced Applications (SEAA), 2024.

[34] S. Salem, H. Soubra, Using nlp for functional size measurement of iot devices, in: 2023 Eleventh
International Conference on Intelligent Computing and Information Systems (ICICIS), IEEE, 2023,
pp. 321–327.



[35] E. M. D. B. Fávero, D. Casanova, A. R. Pimentel, Se3m: A model for software effort estimation
using pre-trained embedding models, Information and Software Technology 147 (2022) 106886.

[36] C. V. Dave, A. Patel, U. Keshri, An efficient framework for cost and effort estimation of scrum
projects, International Journal for Research in Applied Science and Engineering Technology 9
(2021) 1478–1487.

[37] Monika, O. P. Sangwan, Software effort estimation using machine learning techniques, in: 2017
7th International Conference on Cloud Computing, Data Science & Engineering - Confluence,
2017, pp. 92–98.

[38] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, M. Ali, Software effort estimation accuracy prediction
of machine learning techniques: A systematic performance evaluation, Software: Practice and
experience 52 (2022) 39–65.

[39] P. Sharma, J. Singh, Systematic literature review on software effort estimation using machine
learning approaches, in: 2017 International Conference on Next Generation Computing and
Information Systems (ICNGCIS), IEEE, 2017, pp. 43–47.

[40] E. M. D. B. Fávero, D. Casanova, Bert_se: A pre-trained language representation model for software
engineering, arXiv preprint arXiv:2112.00699 (2021).

[41] M. Qin, Lattice lstm model for function point based software cost measurement, in: 2019 IEEE 8th
Joint International Information Technology and Artificial Intelligence Conference (ITAIC), IEEE,
2019, pp. 731–735.

[42] M. Qin, L. Shen, D. Zhang, L. Zhao, Deep learning model for function point based software cost
estimation-an industry case study, in: 2019 International Conference on Intelligent Computing,
Automation and Systems (ICICAS), IEEE, 2019, pp. 768–772.

[43] A. F. de Araújo, R. M. Marcacini, Re-bert: automatic extraction of software requirements from
app reviews using bert language model, in: Proceedings of the 36th annual ACM symposium on
applied computing, 2021, pp. 1321–1327.

[44] K. Kaur, P. Kaur, Improving bert model for requirements classification by bidirectional lstm-cnn
deep model, Computers and Electrical Engineering 108 (2023) 108699.

[45] X. Luo, Y. Xue, Z. Xing, J. Sun, Prcbert: Prompt learning for requirement classification using
bert-based pretrained language models, in: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–13.

[46] F. Yucalar, Developing an advanced software requirements classification model using bert: An
empirical evaluation study on newly generated turkish data, Applied Sciences 13 (2023) 11127.

[47] D. Kici, G. Malik, M. Cevik, D. Parikh, A. Basar, A bert-based transfer learning approach to text
classification on software requirements specifications., in: Canadian Conference on AI, volume 1,
2021, p. 04207.

[48] R. K. Yin, Case study research and applications, volume 6, Sage Thousand Oaks, CA, 2018.
[49] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., Codebert:

A pre-trained model for programming and natural languages, arXiv preprint arXiv:2002.08155
(2020).

[50] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, M. Brockschmidt, Codesearchnet challenge: Evaluat-
ing the state of semantic code search, arXiv preprint arXiv:1909.09436 (2019).

[51] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers
for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[52] A. Tarhan, M. A. SAĞ, COSMIC solver: A tool for functional sizing of java business applications,
Balkan Journal of Electrical and Computer Engineering 6 (2018) 1–8.

[53] Ö. Özen, B. Özsoy, B. Aktılav, E. C. Güleç, O. Demirörs, Automated estimation of functional size
from code, in: 2020 Turkish National Software Engineering Symposium (UYMS), IEEE, 2020, pp.
1–7.

[54] A. Sahab, S. Trudel, COSMIC functional size automation of java web applications using the spring
mvc framework., in: IWSM-Mensura, 2020.

[55] R. C. Martin, Agile software development: principles, patterns, and practices, Prentice Hall PTR,
2003.



[56] T. Hastings, A. Sajeev, A vector-based approach to software size measurement and effort estimation,
IEEE Transactions on Software Engineering 27 (2001) 337–350.

[57] F. Hvilshøj, The Full Guide to Automated Data Annotation, 2024. Available at https://encord.com/
blog/automated-data-annotation-guide/.

https://encord.com/blog/automated-data-annotation-guide/
https://encord.com/blog/automated-data-annotation-guide/

	1 Introduction
	2 Background
	2.1 COSMIC Functional Size Measurement Method
	2.2 Event-based Size Measurement Method
	2.3 BERT and CodeBERT

	3 Related Work
	4 Research Method
	4.1 Case Study Design
	4.1.1 Case Selection Criteria
	4.1.2 Data Collection Procedures

	4.2 Conduction of the Case Studies
	4.2.1 Preparing the Datasets
	4.2.2 Training the Models
	4.2.3 Evaluation


	5 Results and Discussions
	5.1 Answering RQ1
	5.2 Answering RQ2
	5.3 Answering RQ3
	5.4 Comparing Our Results with Related Work

	6 Threats to Validity
	7 Conclusion

