
Software Change Size Measurement: An Exploratory
Systematic Mapping Study

Tuna	Hacaloglu1,2,	Neslihan	Küçükateş	Ömüral3,	Görkem	Kılınç	Soylu4,5,	Onur	Demirörs4		

1	École	de	Technologie	Supérieure,	1100,	rue	Notre-Dame	Ouest,	Montréal,	Québec,	H3C	1K3,	Canada	
2	Atilim	University,	İncek,	Gölbaşı,	Ankara,	06830,	Türkiye		
3	Middle	East	Technical	University,	Üniversiteler,	Çankaya,	Ankara,	06800,	Türkiye		
4Izmir	Institute	of	Technology,	Gülbahçe,	Urla,	İzmir,	35430,	Türkiye	
5	Izmir	University	of	Economics,	Sakarya	Caddesi	No:156,	Balçova,	İzmir,	35330,	Türkiye	
	
	

Abstract	
Change	in	software	projects	can	occur	through	various	channels.	Customers	may	request	modifications	
or	new	features;	appraisal	activities	such	as	reviews	or	 testing	may	uncover	 issues	that	necessitate	
adjustments,	or	products	may	need	to	adapt	to	changes	in	their	operating	environment.	Therefore,	it	is	
essential	to	assess	these	changes	explicitly	and	objectively	within	the	scope	of	software	engineering	
activities.	Specifically,	quantifying	change	by	measuring	its	size	is	crucial	for	successful	management,	
as	without	a	meaningful	metric,	it	is	impossible	to	accurately	assess	its	impact	on	the	project's	effort,	
schedule,	and	cost.	This	study	aims	to	explore	the	concept	of	change	in	software	engineering	literature,	
with	a	particular	emphasis	on	the	methods	used	to	measure	its	size.	The	study	reveals	that	the	current	
literature	on	this	topic	is	still	in	its	early	stages	and	the	measurement	and	estimation	of	changes	remain	
challenging	throughout	both	development	and	maintenance	phases.	According	to	the	reviewed	articles,	
size	 is	 primarily	 used	 for	 effort	 estimation.	 Various	 software	 artifacts	 from	 different	 stages	 of	 the	
Software	Development	Life	Cycle	(SDLC)	serve	as	input	for	change	measurement,	highlighting	the	need	
for	 a	 versatile	 size	measurement	 applicable	 across	 all	 SDLC	 phases.	Most	 of	 the	 reviewed	 articles	
interpret	change	in	the	context	of	maintenance	activities.	This	research	sets	a	benchmark	for	the	status	
of	 software	 size	measures	 for	 software	 change	 and	 highlights	 related	 problems	 to	 suggest	 further	
research	topics.	

Keywords		
1 Size	measurement,	software	change,	software	maintenance	

1. Introduction

The	 common	 goal	 of	 all	 software	 engineering	 activities	 is	 to	 produce	 high-quality	 software.	
Broadly	defined,	 software	quality	means	delivering	a	product	 that	meets	 requirements	while	
adhering	 to	 the	negotiated	 schedule	and	budget.	Although	software	 requirements	are	 ideally	
specified	early	in	the	development	process,	the	dynamic	nature	of	software	development	makes	
change	inevitable.	Welcoming	change	became	a	key	principle	in	the	Agile	Manifesto	in	2001[1].	
Since	then,	change	management	has	gained	significant	attention	and	is	now	a	well-recognized	
practice	in	the	software	development	community.	“Change”	in	the	software	engineering	domain	
can	be	interpreted	differently	according	to	the	point	at	which	it	occurs	during	two	major	phases	
of	software	life	cycle:	development	and	maintenance.		
Change	 can	 happen	 during	 development	 as	 customer	 "change	 requests"	 or	 from	 quality	

assurance	 activities	 like	 reviews	 or	 testing.	 If	 change	 occurs	 after	 deployment,	 it	 falls	 under	
maintenance	activities.	All	types	of	change	are	important	and	should	be	considered	in	project	

	

IWSM-Mensura,	September	30–04,	2024,	Montréal,	Canada	
	tuna.hacaloglu@etsmtl.ca	(T.	Hacaloglu);	neslihan.omural@metu.edu.tr	(N.	Küçükateş	Ömüral);		

gorkem.soylu@iue.edu.tr	(G.	Kılınç	Soylu);		onurdemirors@iyte.edu.tr	(O.	Demirörs)		
	 ©	2024	Copyright	for	this	paper	by	its	authors.	Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).		

	
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:@metu.edu.tr

management.	Measuring	the	magnitude	of	change	is	crucial.	Software	size,	an	important	input	
for	 software	 estimation,	 is	 among	 the	 most	 critical	 measurable	 attributes.	 Without	 an	
appropriate	size	measure,	planning,	estimating,	and	controlling	large-scale	projects	objectively	
become	highly	challenging	[2].	
Furthermore,	 size-based	 assessments	 provide	 managers	 with	 opportunities	 to	 manage,	

maintain,	 and	 improve	 projects,	 as	 well	 as	 to	 compare	 them	 to	 each	 other	 [3].	 Therefore,	
measuring	the	size	of	software	change	can	assist	 in	making	accurate	estimates	 to	control	 the	
impact	of	change,	thereby	preventing	project	schedule	and	budget	overruns.	The	measurement	
of	 software	size	and	 its	benefits	 in	estimating	software	development	 is	a	 topic	 that	has	been	
extensively	 researched.	 However,	 measuring	 the	 size	 of	 change	 remains	 debatable	 due	 to	
different	levels	of	abstraction	of	change	and	when	it	happens	in	the	software	development	life	
cycle.	This	study	aims	to	contribute	to	this	field	by	focusing	on	measuring	"software	change."	We	
conducted	an	exploratory	systematic	mapping	study	 to	delve	 into	 this	 topic.	We	analyzed	25	
studies	 based	 on	 objective	 size	 measure,	 measurement	 input,	 aim	 of	 measurement,	 type	 of	
assessment	 for	 estimations,	 estimation	 accuracy	metrics,	 domain	 and	 dataset	 types,	 type	 of	
SDLC,	challenges	mentioned,	and	the	year	the	study	was	conducted.	Key	findings	reveal	that	size	
is	commonly	used	to	measure	software	change,	primarily	for	effort	estimation.	Change	is	mostly	
related	to	maintenance	activities	 in	which	the	authors	highlight	the	lack	of	a	well-established	
estimation	 method	 for	 maintenance	 tasks.	 Various	 software	 artifacts	 (requirements,	 design	
documents,	source	code)	from	different	stages	of	the	software	development	life	cycle	(SDLC)	are	
used	 for	measuring	 change.	 Regression	 analysis	 is	 frequently	 employed	 to	 create	 prediction	
models.	 These	 studies	 frequently	 neglect	 crucial	 statistical	 tests,	 like	 assessing	 normal	
distribution,	necessary	for	dataset	suitability	in	regression	analysis.	This	violation	of	traditional	
statistical	 assumptions	 results	 in	 inaccurate	 regression	 analysis	 in	 software	 estimation,	
highlighting	 the	 need	 for	 further	 research	 to	 find	 solutions.	 Exciting	 research	 opportunities	
involve	investigating	size	measurement	techniques	for	changes	in	object-oriented	software,	web	
applications,	 and	 projects	 facing	 technological	 shifts,	 especially	 in	 Agile	 environments	 and	
during	 refactoring.	 Additionally,	 exploring	 the	 adaptability	 of	 size	measurement	methods	 in	
different	types	of	software	maintenance	shows	promise	for	further	study.		
The	rest	of	this	article	is	organized	as	follows:	section	2	presents	the	background,	section	3	

describes	the	research	methodology,	section	4	presents	the	research	results,	section	5	presents	
a	discussion	on	the	findings,	and	section	6	presents	the	conclusion	and	recommendations	for	
future	work.		
	

2. Background

Software	 measurement	 standards	 offer	 recommendations	 for	 measuring	 these	 changes.	
According	 to	 the	 COSMIC	 Functional	 Size	 Measurement	 (FSM)	 [11],	 a	 'functional	 change'	 in	
existing	software	means	adding	new	data	movements,	modifying	existing	ones,	or	deleting	them,	
including	associated	data	manipulation.	The	size	of	these	changes	is	calculated	by	adding	the	size	
of	 added,	 changed,	 and	 deleted	 data	movements.	 This	 size	 is	measured	 in	 COSMIC	 Function	
Points	 (CFP).	 In	 [6],	 the	 authors	 assessed	 the	 usage	 of	 the	 COSMIC	 FSM	 method	 for	 sizing	
software	changes.	They	achieved	an	effort	estimation	accuracy	of	10	to	20	percent	for	software	
changes	of	a	client’s	project	by	measuring	size	as	COSMIC	Function	Points	(CFP).	IFPUG	4.1	[12]	
calculates	the	enhancement	project	function	point	count	similarly	by	the	sum	of	function	points	
of	functions	to	be	added,	deleted,	and	changed	multiplied	by	a	value	adjustment	factor.	NESMA	
[13]	defines	an	enhancement	project	as	a	project	in	which	enhancements	are	carried	out	on	an	
existing	application.	The	functional	size	of	an	enhancement	project	is	determined	by	the	sum	of	
function	points	of	the	transactions	and/or	logical	files	to	be	added,	deleted,	and	changed.	NESMA	

has	published	a	guide	"FPA	for	software	enhancement"	[14]	that	describes	a	method	for	sizing	
enhancement	projects	which	 is	different	 from	the	method	 in	the	International	Standard.	This	
guideline	 considers	 the	 impact	 factor	 of	 the	 changes.	 During	 the	 calculation	 of	 size	 of	 an	
enhancement	 project,	 it	 proposes	 to	 multiply	 the	 function	 points	 of	 the	 data	 functions	 and	
transactional	 functions	 to	be	 changed	by	 their	 determined	 impact	 factors.	 In	 [7]	 the	 authors	
suggested	measuring	“changes”	where	pre-built	functionality	is	not	sufficient	for	the	customer	
requirements.	

3. Research Methodology

The	review	process	was	performed	according	to	the	guidelines	defined	by	Kitchenham	[4].	Our	
review	protocol	 includes	the	following	steps:	 identification	of	research	questions,	selection	of	
primary	studies,	the	definition	of	quality	assessment	criteria,	performing	a	quality	analysis,	data	
extraction,	and	monitoring	and	data	synthesis.	To	minimize	the	risk	of	misunderstandings	or	
bias,	we	performed	peer	 review	 in	both	quality	assessment	and	data	extraction	 steps.	 In	 the	
following,	we	present	the	description	of	the	steps	involved	in	more	details.	In	this	study,	our	goal	
is	to	investigate	literature	on	measuring	software	change	size.	To	achieve	this,	we've	formulated	
following	research	questions.	

• RQ1.	How	are	publications	distributed	over	the	years?	
• RQ2.	Which	size	measurement/estimation	methods	were	developed	or	suggested	

to	“measure	the	size	of	change	in	a	software”?	
o RQ2.1.	Which	software	artifacts	are	used	as	inputs	for	size	measurement?	
o RQ2.2.	What	is	the	aim	of	using	these	size	measurement	methods?	

• RQ3.	How	are	these	size	measurement	methods	validated?	
• RQ4.	What	are	the	challenges	reported	for	measuring	the	size	of	change?	

	
For	our	data	sources,	we	have	chosen	Web	of	Science	and	Scopus	for	conducting	our	searches.	

We	limited	our	search	to	articles	published	after	2000.	The	search	string	used	in	this	study	is	as	
follows:	
software	&	(size	OR	sizing	OR	effort	OR	measur*	OR	estimat*	OR	predict*)	&	(change	OR	reuse	
OR	maint*)	

Our	search	resulted	in	505	articles	after	eliminating	the	duplicates.	The	initial	set	of	505	
articles	were	examined	with	respect	to	the	inclusion	and	exclusion	criteria.	The	main	inclusion	
criterion	of	our	review	is	that	the	paper	describes	“research	on	measuring/estimating	the	size	
of	change	in	a	software”.	Studies	related	to	effort,	and	size/cost	factors	are	only	included	if	they	
are	related	to	size	measurement.	The	studies	must	be	in	the	software	engineering	domain	to	be	
included.	Books,	theses,	and	gray	literature	are	excluded	in	our	review	process.	Studies	that	are	
not	in	English	and	studies	for	which	the	full	text	is	not	available	are	also	excluded.		According	
to	 our	 research	 purpose,	 papers	 not	 directly	 related	 to	 measuring	 the	 size	 of	 change	 and	
overlapping	papers	describing	the	same	study	are	excluded.		

Furthermore,	 papers	 having	 missing	 information	 in	 the	 definition	 of	 the	 methods	 or	
validation	process	are	also	excluded.	The	examination	was	done	mainly	by	reading	the	title	and	
abstract	 and	 by	 fast	 reading	 the	 article	 when	 title	 and	 abstract	 did	 not	 provide	 enough	
information	for	deciding.		At	the	end	of	this	step	83	articles	were	selected.	We	have	also	done	
forward	 and	 backward	 snowballing	 to	 extend	 the	 main	 database	 search	 and	 capture	 any	
relevant	ones	not	returned	by	our	search,	we	have	performed	snowballing	[5]	for	10	randomly	
selected	papers	and	1	hand-picked	paper,	which	we	identified	as	the	most	relevant	article	to	
our	scope	with	a	high	number	of	citations.	In	the	forward	snowballing	step,	we	included	Google	
Scholar	for	finding	the	citing	articles	of	a	specific	article.	Thus,	at	the	end	of	snowballing,	we	
had	94	articles	in	our	list.	The	following	quality	assessment	criteria	are	designed	to	refine	our	
search	 results	 by	 eliminating	 out-of-scope,	 scientifically	 immature,	 incomplete,	 and	
unsatisfactory	studies.

QA1.	Is	there	a	clear	statement	that	the	study	proposes	or	uses	the	size	measurement	
for	the	project	change	management?	
QA2.	Can	it	be	inferred	from	the	study	that	the	size	measurement	method	is	newly	

proposed,	or	is	it	only	applied	as	already	available?	
QA3.	Are	the	limitations	and	assumptions	of	the	study	stated	explicitly?	

94	articles	were	examined	with	respect	to	the	above	listed	quality	assessment	criteria	and	the	
assessment	resulted	in	a	final	set	of	25	articles.	

4. Research Results

4.1. The distribution of publication across years

Answers	for	the	RQ1	are	presented	in	this	section.	The	distribution	of	the	primary	papers	by	
years	is	given	in	Figure	2.	As	can	be	seen	in	the	Figure	1,	there	is	no	clear	increase	or	decrease	
pattern	 in	 the	distribution	of	 studies	over	 the	years.	According	 to	 this	distribution,	 the	most	
publications	were	made	between	2011	and	2013.	
	
		
	
	
	
	
	
	
	

Figure 1: The distribution of the papers over years
	

4.2. Observed size measurement/ estimation practices

Regarding	 the	 RQ2	 and	 RQ3,	 all	 primary	 papers	 were	 deeply	 analyzed	 to	 evaluate	 the	 size	
measurement/estimation	methods	developed	or	suggested	to	“measure	the	size	of	change	in	a	
software”.	

4.2.1. Methods employed for software change size measurement

Regarding	 the	 RQ2,	 all	 primary	 papers	 were	 deeply	 analyzed	 to	 evaluate	 the	 size	
measurement/estimation	methods	developed	or	suggested	to	“measure	the	size	of	change	in	a	
software”.	Objective	size	measures	in	these	papers	are	listed	in	Table	1.	According	to	this	list,	
size	measures	“Function	Points	(FP)”	and	“Source	Line	of	Code	(SLOC)”	seem	to	dominate	this	
field;	9	of	the	papers	suggest	using	SLOC,	and	11	of	the	papers	suggest	sizing	as	FP.	In	function	
point	size	measurement	papers,	COSMIC	functional	size	measurement	is	suggested	more	than	
IFPUG	functional	size	measurement.	All	the	papers	except	[S19]	suggest	objective	size	measures,	
in	that	paper	“story	points”	were	suggested	for	measuring	change.		
	
	
	
	
	

Table	1	Objective	Size	Measures		
	

Objective	Size	Measure	 Article	

#	Functions	(edited,	forward,	backward)	 S6	
CC	(Class	&	Complexity)	 S11,	S25	
CISE	(Change	Impact	Size	Estimate)	 S18	
COSMIC	Function	Point	 S1,	S3,	S4,	S5,	S17,	S21,	S23	
IFPUG	Function	Point	 S14,	S15,	S20,	S22	

MS-MC	(#	Methods	per	Class)	 S8	
SLOC	(Source	Lines	of	Code)	 S2,	S7,	S8,	S10,	S12,	S13,	S16,	S24,	S25	
SNAP	(Software	Non-functional	Assessment	Process)	 S20	
SSM	(Structural	Size	Measure)	 S1	
	

4.2.2. Software artifact types used in software change size measurement

Considering	the	RQ2.1,	different	types	of	software	artifacts	were	used	as	input	for	sizing	in	these	
papers,	most	used	ones	were	requirement	documents,	design	documents	and	source	code	of	the	
software.		To	answer	the	RQ2.2,	the	aim	to	use	size	measurement	methods	in	each	paper	was	
analyzed.	The	results	are	presented	in	Table	2.	The	results	show	that	“effort	estimation”	is	the	
most	common	aim	for	measuring	size.	
	
Table	2	Size	Measurement	Aims	
	
Aim	of	Measuring	Size	 Article	

assuring	adaptive	maintenance	 S25	
assuring	business	relationship	with	suppliers	 S14	
change	impact	size	estimation	 S18	
cost	estimation	 S16	
effort	estimation	 S2,	S3,	S5,	S6,	S8,	S9,	S10,	S13,	S15,	

S17,	S19,	S20,	S22,	S23,	S24,	S25	
maintainability	measurement	 S3	
maintenance	type	prediction	 S12	
prioritizing	and	evaluating	CRs	 S1	

securing	software	quality	 S11	
size	measurement	 S7,	S21	
	
	

4.2.3. Methods Employed in Validating Measurements

These	 size	 measurement	 methods	 were	 validated	 by	 using	 different	 types	 of	 assessments.	
Regarding	the	RQ3,	the	type	of	assessments	in	these	papers	are	listed	in	Table	3.	Considering	the	
results,	“regression	analysis”	is	by	far	the	most	frequently	used	method.		
	
	

Table	3	Assessment	Types	
	

Type	of	the	assessment	 Article	

Bayesian	analysis	 S24	

Linear	discriminant	analysis	 S2	
Multivariate	linear	regression	analysis	 S16	
One-sided	Mann–Whitney	U	test	 S12	
Regression	analysis	 S4,	S6,	S7,	S8,	S9,	S10,	S13,	S15,	S17,	S20,	S23,	S25	
	
As	 presented	 in	 Table	 4,	 MMRE	 and	 PRED(N)	 are	 the	 most	 frequently	 used	 accuracy	

assessment	metrics	in	these	papers.	MMRE	is	"Mean	Magnitude	of	Relative	Error"	and	PRED	(N)	
represents	“the	percentage	of	observations	with	an	MRE	less	than	or	equal	to	N”.	In	the	paper	
[S16],	three	different	metrics	PRESS,	SPR	and	MdMRE	are	used.	PRESS	is	defined	as	the	sum	of	
the	 squared	prediction	 errors,	 SPR	 is	 defined	 as	 the	 sum	of	 the	 absolute	 value	 of	 the	PRESS	
residuals	and	MdMRE	represents	“Median	Magnitude	Relative	Error”.	
	

Table	4	Assessment	Accuracies	
	

Assessment	Accuracy	 Article	

Correlation	Coefficients	 S4,	S9,	S10,	S20,	S23	
				MdMRE	 S16	
MMRE	 S2,	S5,	S7,	S8,	S12,	S13,	S16,	S18,	S23,	S25	
PRED(N)	 S7,	S12,	S13,	S16,	S20,	S23	
PRESS	 S16	
p-value	 S6,	S20	
SPR	 S16	

	
The	results	showed	a	wide	variation	in	accuracy	in	these	evaluations.	MMRE	values	showed	

significant	 fluctuations,	 ranging	 from	 a	 low	 1.12%	 to	 a	 high	 115.42%.	 This	 highlights	 the	
differences	in	how	well	the	predictions	aligned	with	the	actual	outcomes	across	various	studies.	
Both	low	and	high	ends	of	the	interval	were	observed	in	paper	[S7],	in	which	two	approaches	are	
used	to	estimate	change	size	 in	packages	 throughout	 the	releases.	One	 is	based	on	structural	
properties	(SP)	whereas	the	other	one	is	based	on	historical	changes	(HC).	MMRE	values	for	SP	
models	exceeded	60%,	even	reaching	115%,	whereas	the	highest	MMRE	value	observed	with	HC	
models	 is	49.92%,	and	the	smallest	MMRE	value	 is	1.12%.	Based	on	the	observed	values,	 the	
authors	argue	that	HC	models	show	superior	performance	compared	to	SP	models.		
As	 seen	 in	 Table	 4,	 PRED(N)	 is	 the	 second	most	 used	 assessment	 type.	 Similarly	 to	MMRE,	
PRED(N)	 values	 vary	over	 a	wide	 range.	The	 lowest	 calculated	value	 is	 3.85%	 for	PRED(25)	
whereas	the	highest	value	100%	was	observed	for	PRED(20),	for	PRED(25)	and	for	PRED(30)	in	
different	papers.	In	[S7],	very	low	PRED(25)	values	were	observed	(4.35%,	12.50%,	3.85%	and	
9.52%).	 As	 discussed	 above,	 the	 paper	 examines	 two	 approaches	 to	 estimate	 change	 size	 in	
packages	throughout	the	releases.	The	method	based	on	structural	properties	(SP)	showed	low	
accuracy	and	this	was	reflected	by	the	low	PRED	and	high	MMRE	values.	The	highest	values	of	
PRED(N)	 were	 observed	 in	 paper	 [S20]	 which	 explores	 using	 Software	 Non-Functional	
Assessment	Process	(SNAP)	together	with	FP	for	effort	estimation.	The	authors	distinguished	
adding	new	functions	and	modifying	existing	functions	in	the	analysis.	PRED(25)	and	PRED(30)	
values	were	100%	when	using	the	FP	based	model	for	effort	estimation	for	adding	new	functions	

whereas	the	value	of	PRED(20)	was	81.818%.	PRED(20)	increased	to	100%	when	SNAP	analysis	
was	used	together	with	the	FP	based	model.			
The	PRED	values	of	 the	FP	based	model	were	 lower	 for	modifying	existing	 functions,	namely	
94.737%	 for	 PRED(20),	 PRED(25)	 and	 PRED(30).	 PRED(30)	 value	 for	 modifying	 existing	
functions	increased	to	100%	from	94.737%	when	the	authors	used	SNAP	analysis	together	with	
FP,	 however	 PRED(20)	 decreased	 to	 84.211%	 	 whereas	 PRED(25)	 remained	 the	 same.	 The	
authors	deduced	that	SNAP	is	not	an	effective	size	measure	for	adding	new	functions.	Using	both	
FPs	and	SNAP	improved	the	effort	estimates	for	adding	new	functions,	but	neither	improved	nor	
worsened	the	estimates	for	projects	modifying	existing	functions.	In	these	validations,	different	
types	of	domains	were	used;	all	the	used	domains	are	listed	in	Table	5.	The	results	show	that	
software	development	&	technology,	banking	&	commerce	and	business	&	management	are	the	
most	used	domains	for	validating	the	methods.	
	
Table	5	Domains	of	the	articles	
	

Domain	 Article	

Software	Development	and	Technology	 S2,	S6,	S7,	S8	
Online	Services	 S3,	S4	
Automotive	Software	 S11,	S18	
Banking	and	Commerce	 S1,	S14,	S22	
Defense	 S17	
Business	and	Management	 S15,	S16,	S19	
Telecommunication	Applications	 S23	
Language	and	Linguistics	 S17	
Not	specified	 S5,	S9,	S10,	S12,	S13,	S20,	S21,	S24	
	
The	 dataset	 for	 validation	 was	 also	 analyzed	 in	 these	 papers.	 Most	 of	 the	 papers	 used	

industrial	datasets,	as	seen	in	Table	6.	
	

Table	6	Datasets	of	the	articles	
	
Dataset	 Article	
Academia	 S9,	S12,	S13,	S18,	S21,	S25,	S20	
Industrial	 S1,	S2,	S3,	S4,	S5,	S6,	S7,	S8,	S10,	S11,	S13,	S15,	S16,	S17,	S19,	S21,	S22,	S23,					

S24,	S25	
	

4.2.4. Challenges mentioned in the articles

The	 articles	were	 examined	 considering	 researchers'	 identified	 challenges	 to	 pinpoint	 areas	
requiring	 further	 investigation	 in	 software	 change	 measurement	 studies.	 As	 a	 result,	 the	
difficulties	 listed	 in	 Table	 7	 were	 identified,	 and	 a	 detailed	 discussion	 regarding	 them	 was	
presented	in	the	"Discussion"	section.	
	
	
	
	

Table	7	Challenges	mentioned	in	the	articles	

Challenge	 Article	
Difficulty	and	lack	of	metrics	and	methods	for	estimating	effort	in	
maintenance	tasks	

S2,	S5,	S19,	S24	

Lack	of	historical	data	to	apply	analogy/expert-based	approaches	
for	effort	estimation	

S19	

Problems	with	functional	size	measurement	 S22,	S23,	S25	
Problems	with	LOC	for	maintenance	 S8	
Incomplete	artifacts	 S18	
	

5. Discussion

5.1. Size measurement of Software Change

It	is	noticeable	that	software	size	measurement	has	established	its	relevance	in	quantifying	the	
magnitude	of	the	change.	When	the	articles	are	further	analyzed,	it	is	observed	that	pure	size	
measurement	of	the	change	is	studied	in	only	three	articles	[S4],	[S7],	[S21].	On	the	other	hand,	
in	22	articles	change	size	measure	is	used	as	input	for	various	estimations,	including	effort	[S2],	
[S5],	[S6],	[S8],	[S9],	[S14],	[S15],	[S16],	[S17],	[S19],	[S20],	[S22],	[S23],	[S24],	[S25]	and	cost	
[S16]	and	for	the	aim	of	assuring	the	business	relationship	with	suppliers	[S14].	
Regarding	size	measure,	research	studies	can	be	broadly	divided	into	three	major	categories:	
measuring	 the	 requirements	 using	 functional	 size	 measurement	 (IFPUG	 and	 COSMIC),	
measuring	the	code	length	using	line	of	code	(LOC),	and	measuring	the	object-oriented	code	size	
using	the	number	of	methods	per	class	or	class	complexity.		
Accordingly,	the	input	software	artifacts	that	are	used	in	size	measurement	belong	to	different	
phases	 of	 SDLC:	 user	 stories,	 use	 cases,	 requirements	 in	 the	 requirement	 analysis	 phase;	
program	 code	 during	 the	 implementation	 phase;	 change	 specifications,	 and	 maintainability	
requirements	in	the	maintenance	phase.	These	artifacts	serve	as	key	indicators	of	the	occurrence	
of	software	changes	across	different	SDLC	phases	and	emphasize	the	significance	of	a	tailored	
method	for	size	measurement,	particularly	in	the	context	of	software	changes.	

5.2. Estimations with change size

Out	of	the	25	articles	reviewed,	13	of	them	explicitly	mention	the	use	of	regression	analysis	as	a	
method	for	developing	effort	estimation	models	with	software	change	size	as	an	independent	
variable.	However,	these	studies	appear	to	neglect	essential	prerequisite	statistical	tests,	such	as	
those	assessing	normal	distribution,	to	ascertain	the	suitability	of	their	datasets	for	regression	
analysis.	 This	 finding	 can	 indicate	 a	 misalignment	 among	 the	 software	 engineering	 dataset	
characteristics	and	conventional	statistical	data	analysis	practices.	Hence,	one	could	argue	that	
traditional	statistical	analysis	assumptions	are	potentially	being	violated,	and	regrettably,	there	
appears	 to	 be	 an	 incorrect	 application	 of	 regression	 analysis	 in	 the	 context	 of	 software	
estimation.	This	issue	poses	a	noteworthy	challenge,	calling	for	further	research	to	uncover	the	
underlying	causes	and	to	find	out	potential	remedies.	
Another	noteworthy	observation	is	the	omission	of	any	mention	in	the	articles	within	the	pool	

regarding	the	chosen	software	development	life	cycle	model	employed	in	the	projects.	Although	
this	 is	 a	 factor	 which	 seems	 to	 vary	 considerably	 for	 managing	 software	 changes,	 this	
information	is	absent	in	the	discussions.	Only	Scrum	[S1],	XP	[S19],	and	Rational	Unified	Process	
[S19]	 were	 the	 stated	 SDLC	 models.	 The	 importance	 of	 this	 situation	 becomes	 clear	 when	
comparing	 the	 traditional	 Waterfall	 model	 with	 the	 Agile	 approach.	 Within	 Agile	 software	
development,	a	fundamental	principle	is	the	execution	of	iterative	and	incremental	development,	

characterized	 by	 an	 open	 embrace	 of	 change.	 Conversely,	 in	 a	 traditional	model	 such	 as	 the	
Waterfall	Model,	the	commencement	of	a	particular	phase	is	contingent	upon	the	full	completion	
of	its	predecessor.	As	the	phases	are	frozen	upon	their	completion,	the	Waterfall	Model	exhibits	
a	limited	enthusiasm	for	accommodating	change.	Nevertheless,	as	it	is	practically	impossible	to	
avoid	change	in	the	landscape	of	project	management,	it	would	be	valuable	to	mention	the	SDLC	
models	employed	in	these	studies	to	appraise	the	efficacy	of	software	size	measurement	within	
various	SDLC	models	and	to	explore	how	the	chosen	SDLC	model	handles	software	changes.	This	
finding	 serves	 as	 an	 indication	 that	 further	 research	 is	 needed	 regarding	 software	 size	
measurement,	 specifically	 in	 the	 context	 of	 change	 management,	 across	 various	 software	
development	life	cycle	models.	

5.3. The Significance of Maintenance Phase in Change Size Measurement

Upon	 the	 analysis	 of	 all	 25	 articles,	 it	 is	 observed	 that	 the	 concept	 of	 software	 change	 is	
predominantly	addressed	within	the	framework	of	maintenance	activities	in	20	of	these	articles	
and	a	significant	portion	of	the	articles	used	size	measurement	for	estimation	purposes.		
Authors	frequently	emphasize	that	the	maintenance	phase	is	widely	recognized	as	the	most	

effort	demanding	and	costly	stage	within	the	software	development	life	cycle	[S4],	[S6],	[S12],	
[S19],	[S24].	In	[S6]	based	on	previous	research	results	by	[8].	The	authors	point	out	that	this	is	
a	 consequence	 of	 the	 substantial	 commitment	 of	 maintenance	 efforts,	 time,	 and	 resources	
essential	 for	 effectively	 resolving	 issues	during	 software	maintenance	activities	 and	 they	put	
forward	that	 inadequate	handling	of	these	endeavors	can	result	 in	a	decline	in	the	software's	
maintainability.	Regarding	this	point	of	view,	the	references	given	in	[S6]	are	quite	old	and	new	
research	 is	 required	 to	 draw	 more	 sound	 conclusions.	 The	 authors	 in	 [S6]	 identified	 high	
maintenance	 efforts	 by	 examining	 the	 distribution	 of	 all	 maintenance	 activities	 within	 the	
software	 project	 and	 concluded	 that	 these	 high-maintenance	 areas	 typically	 resulted	 in	
significant	 changes	 to	 the	 source	 code	 due	 to	 the	 correlation	 result	 obtained	 between	 high	
maintenance	effort	and	code	changes	with	high	complexity	metrics.	
In	 [S12]	 the	 authors	 investigated	 the	 impact	 of	 different	 Lines	 of	 Code	 (LOC)	metrics	 on	

maintenance	effort.	The	study's	findings	reveal	that	the	program	consumes	a	significant	portion,	
up	to	50%,	of	the	effort	during	corrective	maintenance.	The	study	highlights	the	practicality	of	
using	metrics	 related	 to	 LOC	 that	 are	 added,	modified,	 and	deleted	 as	 reliable	 indicators	 for	
software	maintenance	cost	estimation.	Effort	estimation	models	for	maintenance	tasks	could	be	
improved	by	treating	these	LOC	metrics	as	separate	parameters	rather	than	merely	adding	them	
together.	However,	we	must	emphasize	that	since	LOC	is	not	an	upfront	size	metric	to	be	utilized	
for	estimation	related	purposes,	there	should	be	further	research	to	make	estimations	when	a	
change	request	arrives.	
When	examining	articles	that	assert	a	higher	unit	cost	for	maintenance	effort	compared	to	

development	effort,	it	becomes	evident	that	the	claim	of	maintenance	being	more	costly	is	rooted	
in	prior	research	findings	in	the	literature.	Most	of	the	articles	in	the	dataset,	however,	do	not	
directly	compare	the	unit	cost	of	maintenance	with	development	to	substantiate	this	conclusion.	
The	 primary	 reason	 for	 this	 gap	 is	 the	 absence	 of	 a	 standardized	 unit	 of	 measurement	 for	
determining	maintenance	unit	costs.		
Another	challenging	category	synthesized	from	the	articles	in	the	pool	is	the	view	of	a	lack	of	

a	well-	established	estimation	method	for	maintenance	tasks	[S5],	[S19],	[S24].	In	addition,	in	
[S2]	the	authors	draw	attention	to	the	extreme	difficulty	of	estimating	the	software	maintenance	
accurately	and	reliably	both	in	academia	and	industry.	This	point	of	view	is	reinforced	in	[S24],	
where	the	authors	state	that	this	challenge	exists	due	to	the	lack	of	metrics	and	suitable	methods	
in	software	maintenance	effort	estimation.	On	the	other	hand,	authors	in	[S4]	state	that	cost	of	
maintenance	 is	more	 than	 development	 cost	 and	 point	 out	 that	 the	 computation	 of	 function	
points	in	a	maintenance	project	differs	from	that	in	a	development	project.	According	to	[S4]	in	

COSMIC-FFP,	new	developments	count	all	messages	in	a	sequence	diagram	as	function	points,	
while	 maintenance	 projects	 exclude	 messages	 to	 unchanged	 objects	 from	 the	 count.	 This	
distinction	is	essential	to	differentiate	between	future	maintenance	costs	and	past	development	
costs.	The	authors	in	[S4]	created	a	tool	to	calculate	COSMIC-FFP	function	points	from	source	
code	undergoing	maintenance.	They	conducted	regression	analysis	 to	assess	 the	relationship	
between	COSMIC-FFP	function	points	and	the	LOC	in	a	real	maintenance	project.	The	findings	
indicate	a	strong	correlation	between	COSMIC-FFP	function	point	values	and	LOC,	affirming	the	
effectiveness	of	COSMIC-FFP	as	a	reliable	measure	of	software	size	for	this	specific	maintenance	
project.	However,	as	 in	[S12],	utilization	of	COSMIC	by	taking	the	source	code	as	an	input	for	
measurement	is	not	an	upfront	size	metric	to	be	able	to	do	effort	estimation	and	more	studies	
are	required	to	perform	estimations	when	a	change	request	arrives.	
In	[S19],	while	supporting	the	view	of	high	effort	and	resource	demanding	characteristics	of	

software	 maintenance,	 the	 authors	 draw	 attention	 to	 the	 existence	 of	 fewer	 methods	 for	
maintenance	effort	estimation.	More	specifically,	the	lack	of	a	standardized	size	measurement	
method	 in	 software	maintenance	 projects	 appears	 as	 a	 challenge	within	 the	 context	 of	 agile	
software	development	with	the	inapplicability	of	frequent	effort	estimation	approaches	such	as	
poker	planning,	due	to	the	unavailability	of	historical	data	to	apply	such	analogy/	expert	opinion-
based	methods	 and	 yields	 unrealistic	 results	 [S19].	 The	 authors	 in	 [S19]	 proposed	 an	 effort	
estimation	model	where	they	define	the	maintenance	size	as	Adjusted	Story	Points	(ASP)	which	
is	 a	 combination	 of	 Value	 adjustment	 factors	 composed	 of	 documentation	 quality,	
structuredness,	 modularity,	 and	 reusability	 and	 story	 points.	 Nevertheless,	 the	 article	 lacks	
evidence	demonstrating	the	effectiveness	of	this	size	metric	in	estimating	effort.	It	criticizes	the	
use	of	analogy-based	estimation	in	agile	maintenance	projects	but	employs	another	subjective	
estimate,	namely	"story	points,"	to	define	the	size	of	maintenance	software.	

5.4. Criticism of Literature Regarding Change Size Measurement Methods

Available	 traditional	 size	 measurement	 methods	 are	 criticized	 in	 the	 articles	 of	 the	 pool	 in	
different	aspects	which	are	presented	in	the	details	in	the	following	paragraphs.	For	instance,	in	
[S23]	the	authors	criticize	that	available	size	measurement	methods	such	as	COSMIC	FSM	don’t	
consider	software	complexity	and	emphasize	the	need	for	an	effort	and	cost	estimation	model	
containing	not	only	the	size	but	also	the	complexity.	From	their	paper,	we	understand	that	the	
complexity	dimension	of	the	size	perhaps	be	considered	to	generate	sound	effort	estimations	for	
software	change.	In	[S22],	the	authors	oppose	the	utilization	of	function	points	for	estimating	
maintenance	tasks	of	Web	applications.	The	authors	in	[S22]	argue	that	even	though	functional	
size	measurement	is	said	to	be	technology	independent,	the	count	of	function	points	varies	based	
on	 the	database	 and	data	 communication	 systems	 in	use.	Web-based	 systems	 yield	different	
function-point	counts	compared	to	client/server	or	monolithic	mainframe	systems.	Relational	
databases	with	normalization	result	in	more	function	points	than	hierarchical	file	systems.	The	
choice	 of	 programming	 languages	 and	 technologies	 significantly	 influences	 the	 definition	 of	
inputs,	 outputs,	 interfaces,	 and	 databases.	 For	 instance,	 inputs	 and	 outputs	 in	 a	 web-based	
system	exhibit	notable	distinctions	when	compared	to	those	in	a	mainframe	online	system	or	a	
client/server	 system.	 	 Therefore,	 the	 idea	 of	 requiring	 size	 measurement	 for	 innovative	
architectures	also	applies	to	maintaining	new	generation	projects	[9].		
The	authors	 in	 [S8]	criticize	 the	utilization	of	LOC	during	 the	maintenance	process	due	 to	

difficulty	of	upfront	estimation	with	LOC.	The	authors	in	[S8]	point	to	the	fact	that	at	present,	the	
size	of	software	maintenance	is	determined	solely	by	the	LOC	that	undergoes	changes	during	the	
maintenance	 process.	 However,	 since	 the	 software	 is	 developed	 using	 an	 object-oriented	
language,	it	is	essential	to	consider	classes	and	methods	as	well	and	criticizes	utilizing	LOC	for	
predicting	maintenance	time	in	advance	and	proposed	to	utilize	design	class	diagrams	for	new	
software	maintenance	size	metrics	based	on	number	of	classes	and	methods	changed.	Another	

study	related	to	object-oriented	software	maintenance	conducted	by	the	authors	in	[S25]	who	
pointed	out	that	object-oriented	software	projects	need	adaptive	maintenance	and	pointed	out	
that	 the	 importance	 of	 considering	 “is-part-of,	 is-referred-by,	 and	 is-a”	 aspects	 of	 object-
orientation.	 Specific	 metrics	 are	 needed	 to	 quantify	 these	 factors;	 otherwise,	 the	 associated	
expenses,	 such	 as	 specialization	 costs,	 object	 reuse	 costs,	 development	 costs,	 reengineering	
costs,	maintenance	costs,	and	so	on,	cannot	be	easily	measured.	They	reported	based	on	previous	
studies	that	traditional	metrics	such	as	Halstead	measure,	LOC,	McCabe’s	Cyclomatic	Complexity	
are	not	considering	the	object-oriented	aspects.		In	their	study	they	found	that	during	adaptive	
maintenance,	local	attributes	tend	to	have	less	significance	as	they	usually	involve	the	addition	
of	only	a	 few	attributes.	 In	 contrast,	 inherited	attributes	are	crucial,	 as	 they	serve	 to	conceal	
internal	states	for	instances	of	subclasses.	
Considering	 [S8]	 and	 [S25],	 two	 potential	 avenues	 for	 future	 research	 emerge.	 One	 such	

direction	involves	conducting	further	studies	to	better	understand	the	measurement	of	change	
size	 in	 object-oriented	 software.	 The	 other	 direction	 can	 be	 related	 to	 focusing	more	 on	 the	
different	types	of	maintenance	related	to	sizing	software	change.	In	the	literature	maintenance	
can	 be	 classified	 into	 three	 major	 categories	 such	 as	 corrective,	 adaptive,	 and	 perfective	
maintenance	[10].	However,	in	our	pool	we	saw	that	only	a	few	articles	handled	software	size	
measurement	 for	 different	 types	 of	maintenance.	 This	 can	 be	 a	 future	 research	 direction	 to	
analyze	how	size	measurement	on	the	changes	appearing	different	types	of	maintenance	and	to	
identify	potential	 improvement	points.	All	 these	challenges	may	be	due	 to	 the	problems	 that	
arise	while	dealing	with	“change”	related	issues	during	the	development	or	maintenance	stage.	
In	[S1]	the	authors	draw	attention	to	the	lack	of	change	evaluation	process	and	show	this	fact	as	
the	 reason	 for	 unsatisfactory	 results	 of	 several	 agile	 projects.	 This	 is	 interesting	 since,	
“welcoming	change”	is	one	of	the	four	principles	of	Agile	Manifesto	[1]	and	constitutes	the	core	
of	 agile	 software	 development	 since	 2001.	 Therefore,	 the	 reasons	 behind	 the	 deficiency	 in	
change	evaluation	should	be	further	researched.			
In	[S5]	the	authors	pointed	out	that	even	though	software	projects	are	largely	dominated	by	

maintenance;	 there	 has	 been	 insufficient	 explanation	 of	 the	 fundamental	 size	 measurement	
technologies	used	for	estimation	thus	far.	The	authors	in	[S18]	highlighted	the	challenge	of	the	
change	acceptance	decision	for	requested	changes	in	the	software	development	phase	and	the	
fact	that	change	request	impact	assessment	is	based	on	incomplete	software	artifacts.	Authors	
in	 [S24]	 support	 this	 view	 by	 emphasizing	 that	 it	 is	 significantly	 more	 difficult	 to	 gather	
maintenance	 data	 because	 it	 needs	 more	 specific	 sizing	 criteria	 and	 because	 enterprises	
sometimes	 do	 not	 have	 a	 software	maintenance	 process	 that	 is	 as	 strict	 as	 its	 development	
equivalent	to	enforce	the	practice	of	data	gathering	and	analysis.	
The	lack	of	historical	data	is	also	shown	as	a	barrier	to	apply	analogy-based,	expert-opinion	

based	estimation	for	maintenance	projects	in	[S19].	Based	on	the	claim	of	the	authors	in	[S18],	
we	can	show	the	incomplete	artifacts	among	the	obstacles	in	measuring	and/	or	estimating	the	
change	because	we	anticipate	that	incomplete	artifacts	may	not	contain	enough	details	to	apply	
a	 size	 measurement	 method	 such	 as	 COSMIC	 FSM.	 Therefore,	 there	 should	 be	 a	 mature	
description	of	artifacts	to	be	an	input	for	size	measurement	and	historical	database	to	be	able	to	
make	comparisons.	This	situation	requires	further	investigation	with	case	studies.	
To	sum	up,	sizing	and/or	estimation	remain	a	challenge	with	the	scope	of	dealing	with	change,	

independent	of	development	or	maintenance	phase.	There	are	several	claims	in	the	articles,	but	
these	claims	are	not	much	evaluated	with	sound	validations.	There	is	a	need	for	a	more	in-depth	
exploration	 of	 the	 distinctive	 aspects	 of	 software	 change	 in	 various	 project	 types,	 such	 as	
complex	 web	 applications	 composed	 of	 numerous	 services	 and	 object-oriented	 software.	
Furthermore,	as	discerned	from	the	articles,	exploring	different	types	of	maintenance	could	be	
an	interesting	research	domain	for	advancing	our	understanding	of	software	sizing.	Finally,	the	
software	change	size	related	studies	comprise	20	years	of	continuous	work.	Even	though	there	

are	few	researchers	focusing	on	the	domain	within	this	year	range,	the	related	literature	is	not	
mature	yet.	

6. Conclusion and Future Work

In	this	study,	we	aimed	to	take	a	closer	look	at	the	change	concept	in	software	engineering	from	
the	size	measurement	perspective.	After	observing	25	articles,	main	findings	of	the	study	are	as	
follows:	in	majority	of	the	articles	change	is	interpreted	related	to	maintenance	activity.	In	most	
of	 the	 articles	 in	 the	 pool,	 size	 is	 used	 for	 the	 purpose	 of	 effort	 estimation.	 Most	 used	 size	
attributes	in	these	articles	are	functionality,	length	and	number	of	methods	and	class	complexity	
for	object-oriented	code.	Different	software	artifacts	such	as	requirements,	design	documents,	
source	code	from	different	stages	of	SDLC	are	used	as	input	for	measurement	of	change,	which	
shows	the	importance	and	need	of	a	size	measurement	of	change	that	would	be	applicable	in	
these	different	SDLC	phases.	Like	typical	software	estimation	studies,	regression	analysis	is	used	
to	 create	 prediction	 models	 in	 this	 domain	 the	 most.	 This	 study	 has	 identified	 promising	
directions	 for	 future	 research.	 These	 include	 investigating	 size	measurement	 techniques	 for	
assessing	 changes	 in	 object-oriented	 software,	 web	 applications,	 and	 emerging	 software	
projects,	particularly	when	technological	shifts	occur	in	Agile	projects	and	during	the	process	of	
refactoring.	 Furthermore,	 there	 is	 potential	 to	 explore	 the	 adaptability	 of	 size	measurement	
methodologies	in	various	software	maintenance	types.		
In	 conclusion,	 the	 measurement	 and	 estimation	 of	 software	 size	 changes	 during	 both	

development	and	maintenance	phases	continue	to	present	significant	challenges.	The	existing	
body	of	related	literature	is	still	in	its	nascent	stages,	demanding	further	research.	We	anticipate	
that	 this	 study	 will	 offer	 valuable	 insights	 and	 pave	 the	 way	 for	 future	 investigations.	 As	 a	
prospective	endeavor,	expanding	 the	review	with	more	databases	and	conducting	 interviews	
with	 industry	 practitioners	 to	 gather	 their	 feedback	 on	 this	 matter	 could	 provide	 valuable	
perspectives	and	contribute	to	the	ongoing	discourse.	
	

Acknowledgements

We	would	 like	 to	 thank	 the	 support	 of	 the	 Scientific	 and	 Technological	 Research	 Council	 of	
Turkey	(TUBITAK)	ARDEB	1001	[Project	number:	121E389]	program.	

References

[1]		https://agilemanifesto.org/iso/en/manifesto.html		
[2]			C.	Gencel	and	O.	Demirors,	“Functional	size	measurement	revisited,”	ACM	Trans.	Softw.	Eng.	

Methodol.,	vol.	17,	no.	3,	pp.	1–36,	2008.		
[3]	A.	Abran,	C.	Symons,	C.	Ebert,	F.	Vogelezang,	and	H.	Soubra,	“Measurement	of	software	size:	

Contributions	 of	 cosmic	 to	 estimation	 improvements,”	 in	 The	 International	 Training	
Symposium,	At	Marriott	Bristol,	United	Kingdom,	2016,	pp.	259–267.	

[4]	B.	Kitchenham	and	S.	Charters.	2007.	Guidelines	for	performing	systematic	literature	reviews	
in	software	engineering.	

[5]	C.	Wohlin.	2014.	“Guidelines	for	snowballing	in	systematic	literature	studies	and	a	replication	
in	software	engineering.”	

[6]	C.	Ebert	and	H.	Soubra,	“Functional	size	estimation	technologies	for	software	maintenance,”	
IEEE	Softw.,	vol.	31,	no.	6,	pp.	24–29,	2014.	

[7]	 N.	 Küçükateş	 Ömüral,	 O.	 Demirörs,	 “A	 Size	 Measurement	 Method	 for	 Enterprise	
Applications,”	in	Proceedings	of	the	Joint	Conference	of	the	31st	International	Workshop	

https://agilemanifesto.org/iso/en/manifesto.html

on	Software	Measurement	(IWSM)	and	 the	16th	 International	Conference	on	Software	
Process	and	Product	Measurement	(MENSURA),	2022.	

[8]	LJ	Arthur,	“Software	evolution:	The	Software	Maintenance	Challenge,”		Wiley-Interscience:	
New	York,	NY,	1988.	Yip	S,	Lam	T.	A	software	maintenance	survey.	Proc	APEC’94,	Dec	
1994;	70–79.		

[9]	T.	Hacaloğlu,	and	O.	Demirörs,	“An	exploratory	case	study	using	events	as	a	software	size	
measure,”	Information	Technology	and	Management,	2023,	1-20.	

[10]	D.	Galin,	“Software	quality	assurance:	from	theory	to	implementation,”		Pearson	education,	
2004.	

[11]	 ISO/IEC	 19761:	 2011,	 Software	 Engineering	 –	 COSMIC:	 A	 functional	 size	measurement	
method,	International	Organization	for	Standardization,	Geneva,	2011	

[12]	 ISO,	 I.	 (2003).	 IEC	 20926:	 Software	 Engineering-IFPUG	 4.1	 Unadjusted	 Functional	 Size	
Measurement	 Method-Counting	 Practices	 Manual.	International	 Organization	 for	
Standardization,	Geneva,	Switzerland.	

[13]	NESMA,	D.	(1997).	Counting	Guidelines	for	the	Application	of	Function	Point	Analysis.	
[14]	 Engelhart,	 J.,	 &	 Langbroek,	 P.	 (2009).	Function	 point	 analysis	 (FPA)	 for	 software	

enhancement.	Nesma.	
	
[S1]	 Hakim,	 H.,	 Sellami,	 A.,	 &	 Ben-Abdallah,	 H.	 (2020).	 An	 in-Depth	 Requirements	 Change	

Evaluation	Process	using	Functional	and	Structural	Size	Measures	in	the	Context	of	Agile	
Software	Development.	In	ICSOFT	(pp.	361-375).	

[S2]	Singh,	C.,	Sharma,	N.,	&	Kumar,	N.	(2019).	An	Efficient	Approach	for	Software	Maintenance	
Effort	Estimation	Using	Particle	Swarm	Optimization	Technique.	International	Journal	of	
Recent	Technology	and	Engineering	(IJRTE),	7(6C),	1-6.	

[S3]	 Almakadmeh,	 K.,	 Al-Sarayreh,	 K.	 T.,	 &	Meridji,	 K.	 (2018).	 A	Measurement	Model	 of	 The	
Functional	 Size	 Of	 Software	 Maintainability	 Requirements.	 Journal	 of	 Theoretical	 &	
Applied	Information	Technology,	96(12).	

[S4]	Lin,	C.	J.,	&	Yeh,	D.	M.	(2016,	December).	A	Software	Maintenance	Project	Size	Estimation	
Tool	Based	On	Cosmic	Full	Function	Point.	In	2016	International	Computer	Symposium	
(ICS)	(pp.	555-560).	IEEE.	

[S5]	 Ebert,	 C.,	 &	 Soubra,	 H.	 (2014).	 Functional	 size	 estimation	 technologies	 for	 software	
maintenance.	IEEE	Software,	31(6),	24-29.	

[S6]	Kula,	R.	G.,	Fushida,	K.,	Yoshida,	N.,	&	Iida,	H.	(2013).	Micro	process	analysis	of	maintenance	
effort:	an	open	source	software	case	study	using	metrics	based	on	program	slicing.	Journal	
of	Software:	Evolution	and	Process,	25(9),	935-955.	

[S7]	Elish,	M.	O.	(2013).	An	exploratory	study	of	package	metrics	as	change	size	 indicators	 in	
evolving	 object-oriented	 software.	 Computer	 systems	 science	 and	 engineering,	 28(4),	
251-257.	

[S8]	 Wirotyakun,	 A.,	 &	 Netisopakul,	 P.	 (2012,	 May).	 Improving	 software	 maintenance	 size	
metrics	A	case	study:	Automated	report	generation	system	for	particle	monitoring	in	Hard	
Disk	Drive	 Industry.	 In	2012	Ninth	International	Conference	on	Computer	Science	and	
Software	Engineering	(JCSSE)	(pp.	334-339).	IEEE.	

[S9]	Chua,	B.	B.,	&	Verner,	 J.	 (2011,	December).	Evaluating	Software	Maintenance	Effort:	The	
COME	Matrix.	 In	 International	 Conference	 on	 Advanced	 Software	 Engineering	 and	 Its	
Applications	(pp.	120-136).	Springer,	Berlin,	Heidelberg.	

[S10]	Nishizono,	K.,	Morisakl,	S.,	Vivanco,	R.,	&	Matsumoto,	K.	(2011,	September).	Source	code	
comprehension	 strategies	 and	 metrics	 to	 predict	 comprehension	 effort	 in	 software	
maintenance	and	evolution	tasks-an	empirical	study	with	industry	practitioners.	In	2011	
27th	IEEE	International	Conference	on	Software	Maintenance	(ICSM)	(pp.	473-481).	IEEE.	

[S11]	 Durisic,	 D.,	 Staron,	 M.,	 &	 Nilsson,	 M.	 (2011,	 June).	 Measuring	 the	 size	 of	 changes	 in	
automotive	software	systems	and	their	impact	on	product	quality.	In	Proceedings	of	the	
12th	International	Conference	on	Product	Focused	Software	Development	and	Process	
Improvement	(pp.	10-13).	

[S12]	Nguyen,	V.,	Boehm,	B.,	&	Danphitsanuphan,	P.	(2011).	A	controlled	experiment	in	assessing	
and	estimating	software	maintenance	tasks.	Information	and	software	technology,	53(6),	
682-691.	

[S13]	Nguyen,	V.	(2010,	September).	Improved	size	and	effort	estimation	models	for	software	
maintenance.	In	2010	IEEE	International	Conference	on	Software	Maintenance	(pp.	1-2).	
IEEE.	

[S14]	 Adamo,	 D.	 A.,	 Fabrizi,	 S.,	 &	 Vergati,	 M.	 G.	 (2007,	 March).	 A	 light	 functional	 dimension	
estimation	model	for	software	maintenance.	In	2007	IEEE	International	Conference	on	
Exploring	Quantifiable	IT	Yields	(pp.	73-78).	IEEE.	

[S15]	 Ahn,	 Y.,	 Suh,	 J.,	 Kim,	 S.,	 &	 Kim,	 H.	 (2003).	 The	 software	 maintenance	 project	 effort	
estimation	 model	 based	 on	 function	 points.	 Journal	 of	 Software	 maintenance	 and	
evolution:	Research	and	practice,	15(2),	71-85.	

[S16]	De	Lucia,	A.,	 Pompella,	 E.,	&	 Stefanucci,	 S.	 (2002,	 July).	 Effort	 estimation	 for	 corrective	
software	maintenance.	In	Proceedings	of	the	14th	international	conference	on	Software	
engineering	and	knowledge	engineering	(pp.	409-416).	

[S17]	Abran,	A.,	Silva,	I.,	&	Primera,	L.	(2002).	Field	studies	using	functional	size	measurement	in	
building	estimation	models	for	software	maintenance.	Journal	of	Software	Maintenance	
and	Evolution:	Research	and	Practice,	14(1),	31-64.	

[S18]	Asl,	M.	H.,	&	Kama,	N.	(2013,	June).	A	change	impact	size	estimation	approach	during	the	
software	development.	In	2013	22nd	Australian	software	engineering	conference	(pp.	68-
77).	IEEE.	

[S19]	Choudhari,	J.,	&	Suman,	U.	(2012).	Story	points	based	effort	estimation	model	for	software	
maintenance.	Procedia	Technology,	4,	761-765.	

[S20]	 Hira,	 A.,	 &	 Boehm,	 B.	 (2016,	 September).	 Using	 Software	 Non-Functional	 Assessment	
Process	to	Complement	Function	Points	for	Software	Maintenance.	In	Proceedings	of	the	
10th	 ACM/IEEE	 International	 Symposium	 on	 Empirical	 Software	 Engineering	 and	
Measurement	(pp.	1-6).	

[S21]	Haoues,	M.,	Sellami,	A.,	&	Ben-Abdallah,	H.	(2017).	Functional	change	impact	analysis	in	
use	 cases:	 An	 approach	 based	 on	 COSMIC	 functional	 size	 measurement.	 Science	 of	
Computer	Programming,	135,	88-104.	

[S22]	Sneed,	H.	M.,	&	Huang,	S.	(2007,	March).	Sizing	maintenance	tasks	for	web	applications.	In	
11th	European	Conference	on	Software	Maintenance	and	Reengineering	(CSMR'07)	(pp.	
171-180).	IEEE.	

[S23]	Tran-Cao,	D.,	&	Levesque,	G.	(2003,	September).	Maintenance	effort	and	cost	estimation	
using	 software	 functional	 sizes.	 In	 International	Workshop	on	Software	Measurement,	
Montreal,	Canada.	

[S24]	Kumar,	S.,	Chakraverti,	S.,	Agarwal,	S.	C.,	&	Chakraverti,	A.	K.	(2012).	Modified	COCOMO	
Model	 for	 Maintenance	 Cost	 Estimation	 of	 Real	 Time	 System	 Software.	 International	
Journal	of	Research	In	Engineering	&	Applied	Sciences,	2(3).	

[S25]	 Fioravanti,	 F.,	 &	 Nesi,	 P.	 (2001).	 Estimation	 and	 prediction	 metrics	 for	 adaptive	
maintenance	 effort	 of	 object-oriented	 systems.	 IEEE	 Transactions	 on	 software	
engineering,	27(12),	1062-1084.	

	

