
Technical Debt Measurement: An Exploratory Literature Review

Donatien Koulla Moulla
1, Ernest Mnkandla

1,

Hayatou Oumarou

2 and Thomas Fehlmann
3

1 University of South Africa, The Science Campus, Florida, 1710, South Africa
2 University of Maroua, Maroua, P.O. Box 46, Cameroon
3 Euro Project Office, Giblenstrasse 50, 8049 Zürich, Switzerland

Abstract
Measuring Technical Debt is important in guiding software development teams to make

informed decisions and prioritize refactoring initiatives. This study presents an exploratory

literature review of studies published between 2010 and 2023 to investigate the current state

of Technical Debt measurement research. Through a set of four research questions, this study

identifies the prevalent methodologies, metrics, and obstacles entailed in quantifying Technical

Debt. Specifically, this study focuses on what is proposed to be measured through Technical

Debt, the measurement solutions proposed for measuring Technical Debt, and how these

approaches categorize and evaluate various aspects of Technical Debt. By scrutinizing the

diverse approaches and challenges, this exploratory literature review identifies gaps (and

related issues) in Technical Debt measurement research and contributes to a nuanced

understanding of Technical Debt measurement practices, offering insights into enhancing

software sustainability and maintainability.

Keywords 1
Technical debt measurement, Technical debt quantification, Technical debt identification,

Defect density, Maintainability, Exploratory Literature Review.

1. Introduction and Background

The Technical Debt (TD) metaphor was first introduced by Ward Cunningham in 1992 [1] in the

following way: “Shipping first-time code is like going into debt. A little debt speeds development so

long as it is paid back promptly with a rewrite. Objects make the cost of this transaction tolerable. The

danger occurs when the debt is not repaid. Every minute spent on not-quite-right code counts as interest

on that debt. Entire engineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise”.

Since then, the definition and understanding of TD has evolved [2, 3, 4]. Technical debt has recently

gained traction in both industry and the research community. As software systems evolve and grow,

managing TD becomes important to ensure long-term sustainability and maintainability of the

codebase. However, for TD to be managed, it must be identified and measured [5].

Measuring TD is important for software organizations to understand the extent of the problem and

prioritize areas that require immediate attention. By quantifying TD, organizations can make informed
decisions about when and where to invest resources to address the accumulated debt [6, 7, 8]. Some

studies have highlighted the significant impact of TD on software quality, productivity, and overall

project success [9, 10].

Researchers have explored various approaches to quantify TD, and the widely adopted approach

involves leveraging code analysis tools that evaluate the quality of the codebase by employing

predefined metrics such as code complexity, code duplication, and coding style violations [11, 12]. An

alternative approach relies on subjective assessments provided by experienced developers, who can

provide insights into TD based on their understanding of the codebase and development process [13].

IWSM-Mensura, September 30 – October 04, 2024, Montréal, Canada
EMAIL: moulldk@unisa.ac.za; mnkane@unisa.ac.za; hayatououmarou@gmail.com; thomas.fehlmann@e-p-o.com

ORCID: [orcid.org/0000-0001-6594-8378]

©️ 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

The most common approach for measuring TD involves various approaches that focus on the

different aspects of TD quantification. These approaches include identifying smells, quantifying the

Return on Investment (ROI) of refactoring, comparing the ideal state with the current state of software

quality, and evaluating alternative development paths to reduce technical debt [14]. However, the lack

of consistency among existing tools at the approach and ruleset levels has made it challenging to

compare and evaluate these different measurement approaches effectively [15, 16]. To address this

issue, a conceptual model called the Technical Debt Quantification Model (TDQM) was developed,

which captures key concepts related to technical debt quantification and allows for comparisons and

evaluations between different approaches [17].

Except for the literature review of TD in requirements [12], there is a lack of comprehensive and

up-to-date reviews synthesizing state-of-the-art techniques and approaches for measuring technical

debt. This exploratory literature review examines the current state of research on technical debt

measurement. By understanding the extent and impact of technical debt, organizations can make

informed decisions about when and where to invest resources to address it.

The remainder of this paper is organized as follows. Section 2 presents the systematic literature

review method used in this study. Section 3 presents and discusses the results. Section 4 concludes the
paper with a summary of key findings and directions for future work.

2. Review Method

The following section describes the review method used for conducting this exploratory literature

review through a Systematic Literature Review (SLR), a rigorous and transparent method for

comprehensively analyzing existing research on a specific topic [18]. This study provides a

comprehensive overview of existing research on technical debt measurement and identifies research

gaps in existing studies, which are used to highlight future research directions. To ensure

methodological rigor and transparency, this study followed the SLR guidelines proposed in [18] and

adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

framework [19].

2.1. Research questions

To delve deeper into technical debt measurement, this exploratory literature review addresses the

research questions (RQs) presented in Table 1, along with their rationales.

Table 1
Research questions

ID Research questions Rationale

RQ1 Why, how, and what should be
measured about technical debt (TD)?

To know (identify) what the measurement
goals are.

RQ2 What are the existing measurement
solutions for measuring technical debt
(TD)?

To identify measurement solutions that are
available in the literature for measuring
technical debt.

RQ3 How do these approaches categorize
and evaluate various aspects of TD?

To classify the existing measurement solutions
based on various aspects of technical debt.

RQ4 What are the gaps (issues) identified
in TD measurement research?

To identify gaps where there are no
measurement solutions available yet, and
highlight future research directions

2.2. Search strategy

To identify relevant literature to this exploratory review, we conducted a comprehensive search

across five reputable digital libraries: Scopus, ScienceDirect, ACM Digital Library, IEEE Xplore, and

SpringerLink. The search encompassed peer-reviewed publications published between January 2010

and December 2023. The choice of 2010 as the starting point for the exploratory literature review on

technical debt measurement, instead of 1992 when the technical debt metaphor was introduced, is

primarily due to the significant increase in research activity around technical debt in the last decade.

This study focuses on this period to capture the most recent and relevant developments in the field.

Additionally, the selection of this time frame helps ensure that the review includes comprehensive and

up-to-date techniques and approaches, reflecting the current state of technical debt measurement

practices. These specific databases were chosen because of their extensive coverage of computer

science and engineering research, ensuring a high likelihood of capturing pertinent studies on technical

debt measurements within this domain.

The search string was based on the key terms identified in the RQs as well as the commonly used

terminology associated with TD and measurement. Initially, the main search terms were combined

using the Boolean operator “OR” to their corresponding related keywords. Subsequently, these main

terms were linked with one another using “AND” to ensure a focused and relevant set of results. Table

2 lists the complete search strings used in this study.

Table 2
Search string

Scope Search terms

Technical debt (“technical debt” OR “code debt” OR “design debt” OR “architecture
debt”)

AND Measurement (measurement OR metrics OR quantification OR evaluation OR siz*)
AND Limitation (limit* OR gap* OR issue* OR challenges OR weaknesses OR

strengths)
AND Classification (classif* OR categoriz* OR management OR maintainability OR

reusability OR testability)
AND Trends (“new approach” OR “emerging technique”)

Owing to potential variations in search engine syntax across different databases, we carefully

adapted our search strings to optimize retrieval across each database (Scopus, ScienceDirect, ACM

Digital Library, IEEE Xplore, and SpringerLink). The search focused on titles, abstracts, and keywords

to ensure relevant studies were captured. To manage the retrieval process, we conducted separate

searches on each database, followed by consolidation of the identified papers. Subsequently, we

employed EndNote reference management software to identify and remove duplicate studies, ensuring

streamlined and non-duplicate studies for further analysis.

2.3. Study selection

The selection aimed to identify relevant primary studies that addressed the measurement of technical

debt using the following inclusion criteria (IC) and exclusion criteria (EC):

Inclusion criteria:

• Studies written in English and published between January 2010 and December 2023.

• Studies published in peer-reviewed journals, conference proceedings, workshop

proceedings, and book chapters.

• Studies where full texts are available.

• Studies that propose, evaluate, or discuss techniques, metrics, or approaches for measuring

technical debt.

Exclusion criteria:

• Duplicate publications of the same study.

• Studies where full texts are not available.

• Studies titles and abstracts with a focus on non-technical debt aspects of software

development.

• Studies on TD but not on TD measurement.

• Studies on TD without a clear focus on measurement aspects

• Studies have focused solely on identifying TD (without measurement) or lacking details on

the measurement approach.

 A three-stage process was followed to select the studies for this review.

In the first stage, 808 primary studies were identified from the five digital libraries. Seventy (70)

studies were discarded as duplicate publications of the same study.

In the second stage, an initial screening of the search results (738 studies) was performed based on

titles and abstracts. Studies that full texts are not available were excluded (228 studies). Additionally,

480 studies that did not explicitly mention technical debt measurement or quantification techniques,

metrics, or approaches were excluded. After this stage, we obtained 30 full-text studies reviewed.

In the third stage, a full-text review of the remaining studies (30 remaining studies) was conducted.

During this phase, we applied the defined inclusion and exclusion criteria to ensure the relevance and

quality of the selected studies. The exclusion criteria were as follows:

• Studies on TD but not on TD measurement.

• Studies on TD without a clear focus on measurement aspects.

• Studies have focused solely on identifying TD (without measurement) or lacking details on

the measurement approach.

To ensure the reliability of the study selection process, two researchers independently performed

screening and full-text reviews. Any disagreements or conflicts were resolved by discussion and

consensus. After this phase, the 21 remaining studies were included in the review. The study selection

process, with the total number of studies retrieved and included in each phase, is shown in Figure 1.

Figure 1: PRISMA flow diagram of the literature selection process

2.4. Quality assessment

Quality assessment was used to assess the relevance and credibility of the selected studies. The

papers were selected from five well-known databases of papers reviewed by experts before their

publication. The quality of the included primary studies was assessed using a customized quality

Records identified (n=808):
ACM (n = 292)
IEEE Xplore (n = 161)
ScienceDirect (n = 72)
Scopus (n = 182)
SpringerLink (n = 101)

Records removed before screening:
Duplicate records removed

(n = 70)

Records screened
(n = 738)

Records excluded (n = 228):

• Full text not available

Reports assessed for
eligibility (n = 510)

Reports excluded (n = 480):

• Title and abstract focus on non-
technical debt aspects of software
development

Studies included in review
(n = 21)

Identification of studies via databases

Id
e
n

ti
fi

c
a
ti

o
n

S

c
re

e
n

in
g

In
c
lu

d
e
d

Full text studies reviewed (n
= 30)

Reports excluded (n = 9):

• Studies on TD but not on TD
measurement.

• Studies on TD without a clear focus
on measurement aspects

• Studies solely focused on identifying
TD (without measurement) or lacking
details on the measurement approach

checklist adapted from Kitchenham and Charters [18] that was the most appropriate for our research

questions.

The checklist consists of the following four quality criteria:

• QA1: Are the research aims clearly stated?

• QA2: Is the technical debt measurement approach clearly described?

• QA3: Are the findings clearly stated?

• QA4: Are the limitations of the study discussed?

Only studies that answered at least three of the above questions were selected. After this phase, all

the 21 studies met three of the above questions.

2.5. Data extraction and Synthesis

A data extraction form was developed to retrieve relevant information from the included primary

studies, addressing the RQs. It should be noted that not all the selected studies addressed all four RQs.

Data synthesis aimed to collate and summarize the results of the included primary studies. We identified

and grouped all relevant data to answer the RQs using a descriptive synthesis.

3. Results and Discussion

This section provides answers to the SLR research questions based on a synthesis of the selected

studies.

3.1. RQ1: Why, how, and what should be measured about technical debt
(TD)?

The scope of the RQ1 covers a triple question “why”, “how” and “what”. Why measuring TD

enables to understanding the reasons behind measuring technical debt helps in recognizing its

importance and the benefits it brings to software projects. How to Measure TD focuses on the

methodologies and approaches used to quantify and analyze TD. What Should be Measured about TD

identifies the specific aspects and metrics that need to be quantified to understand and manage technical

debt effectively.

The primary measurement goals identified in the selected studies are:

1. Sizing TD in terms of the effort required to reduce it to zero (S1, S3, S4, S5, S8, S19, S20, S21).

2. Assessing the impact of TD on software quality attributes such as functionality, performance,

maintainability, reliability, and security (S1, S2, S6, S9, S10, S17, S18).

3. Estimating the rework/refactoring efforts required to enhance evolvability and mitigate

accumulated TD (S3).

4. Evaluating the accuracy and usefulness of TD measurement tools (S11).

5. Comparing different TD identification techniques (S13).

Several approaches have been proposed for measuring (quantifying) TD. Existing approaches

measure TD in terms of what is proposed to be measured through TD in the following ways:

• Eight studies (S1, S3, S4, S5, S8, S19, S20, S21) base their quantification on the identification

of code, design, architectural smells, or defects.

• Seven studies (S3, S4, S5, S8, S19, S20, S21) have attempted to quantify the return on

investment (ROI) of refactoring activities to remove technical debt.

• Seven studies (S1, S2, S6, S9, S10, S17, S18) compare an ideal state with the current state of

the software in terms of quality attributes, such as maintainability and modularity.

• Seven studies (S3, S4, S5, S8, S19, S20, S21) compare alternative development paths with the

aim of reducing rework and quantifying the impacts of taking on technical debt versus not taking

it on.

In summary, the key measurements relate to sizing TD in terms of the required remediation effort,

assessing the impact on software quality attributes, estimating rework efforts for mitigating TD, and

evaluating the effectiveness of TD measurement approaches and tools.

3.2. RQ2: What are the existing measurement solutions for measuring
technical debt (TD)?

The selected studies proposed various measurement solutions, including:

• Code metrics (complexity, coupling, cohesion, size, duplication, etc.) (S1, S3, S6, S9, S10, S11,

S14, S16, S18).

• Modularity and design quality metrics (S3, S14).

• Defect proneness, change proneness, and maintenance effort metrics (S7, S9, S10, S15, S17).

• Static code analysis issues/violations (S2, S9, S19, and S20).

• Test coverage and quality metrics (S2, S9).

• Technical debt principal and interest calculations (S5, S7, S12, S15, S19, S20, and S21).

• Machine Learning models for TD identification and forecasting (S6, S9, and S10).

Table 3 presents the measurement solutions/metrics proposed for measuring Technical Debt (TD)

across the selected studies.

Table 3
TD measurements / metrics

Types of TD
measurement / metrics

TD Measurements / metrics

Code Metrics • Number of parameters, comments, expression statements,
variable declarations, name expressions, loop statements,
assignment statements, math operations, string literals,
number of literal (S1)

• Lines of code (LOC) (S1, S11, S16)

• Number of methods calls (coupling) (S1)

• Cyclomatic Complexity (CC) (S11, S16)

• S101 Fat, S101 XS (complexity measures) (S11)

• Coupling Between Object (CBO) (S6, S10)

• Weight Method Count (WMC) (S6, S10, S18)

• Depth of Inheritance Tree (DIT) (S6, S10, S16)

• Response for Class (RFC) (S6, S10)

• Lack of Cohesion in Methods (LCOM) (S6, S16, S18)

• Number of Static Invocations (NOSI) (S6)

• Duplicated Lines Density (S10)

• Comment Lines Density (S10)
Design/Architecture

Metrics
• Complexity Index (Path, Activity, Application level) (S3)

• Modularity Index (Path, Activity, Application level) (S3)

• Data Coupling Index (Path, Activity, Application level) (S3)

• Coupling metrics (MPC, MOA) (S14)

• Cohesion metric (LCOM) (S14)

• Polymorphism metric (NOP) (S14)

• Inheritance metric (DIT) (S14)

• Size metrics (CIS, SIZE1/LOC) (S14)
Static Analysis Metrics • Number of static code analysis issues/violations (S2)

• Sqale_index, Reliability_remediation_effort,
Security_remediation_effort, Total_principal (S9)

• Bugs, Code_smells, Vulnerabilities, Complexity,
Uncovered_lines, Duplicated_blocks (S9)

Quality Metrics • Reliability (measured by bug statistics) (S2)

• Testability (measured by test coverage) (S2)

• Extensibility (variation in estimations for similar user stories)
(S2)

• Exchangeability (measured by release effort over time) (S2)

• Defect Proneness (DP), Maximum Defects per 100 LOC
Touched (MaxDP), Extra Defect Proneness (EDP), Maximum
Extra Defects per 100 LOC (MaxEDP), Relative Extra Defect
Proneness (REDP), Average Relative Extra Defect Proneness
(AREDP), Violation Density (VD), Linkage, Refactoring_index
(S7, S15)

Effort/Cost Metrics • Efforts Deviation Index (S3)

• Repair Effort, Rework Fraction, Rebuild Value, Refactoring
Adjustment (S21)

• Maintenance Effort, Maintenance Fraction, Quality Factor
(S21)

• Refactoring cost, Investigation cost, Modification cost,
Workaround cost, Customer support cost, Patch cost,
Validation cost, Maintenance cost, Cost of delay,
Remediation cost, Non-remediation cost, Reengineering
cost, Contingent Cost, Implementation Cost, Cost per LOC
(S5)

• Rework, Revenue, NPV, ROI, Investment's expected net
value, Loss of Business (S5)

Machine Learning
Features

• Commits_count, Code_churn_avg, Contributors_count,
Contributors_experience, Hunks_count,
Issue_tracker_issues, Max_nested_blocks, Total_methods,
Total_variables, Total_refactorings (S10)

Other Metrics • Development velocity (S2)

• LOC maintained between versions (estimate of future
maintenance load) (S7)

• Afferent Couplings (AC), Efferent Couplings (EC), Number of
children, Code duplication, Documentation related measures
(S16)

• Modularity violations, Grime, Code smells, ASA issues, Size,
Defect-proneness, Change-proneness (S17)

• Abstractness (Abstr), Average Line of Code per Method
(ALCM), Distance from Main Sequence (DMS), Weighted
Method Count (WMC), Average Method Weight (AMW),
Changing Classes (CC), Number of Called Classes (FANOUT),
Access to Foreign Data (ATFD), Locality of Attribute Accesses
(LAA), Tight Class Cohesion (TCC) (S18)

As shown in Table 3, the measurement solutions/metrics proposed across the selected studies

covered a wide range of aspects, including code metrics, design/architecture metrics, static analysis

metrics, quality metrics, effort/cost metrics, machine learning features, and other metrics related to

defect proneness, change proneness, and maintainability.

3.3. RQ3: How do these approaches categorize and evaluate various aspects
of TD?

The selected studies categorize and evaluate various aspects of TD in the following ways:

• Based on the type of TD: code debt, design debt, architectural debt, documentation debt, test

debt, etc. (S3, S4, S10, S12, S18, S19, and S20).

• Based on architectural levels: path, activity, and application levels (S3).

• Based on quality characteristics/attributes affected: reliability, security, maintainability,

portability, etc. (S4, S13, S19, and S20).

• Based on severity/priority of issues (S1, S19, S20).

• Based on financial cost/effort estimations (S5, S19, S20, and S21).

In summary, the approaches categorize and evaluate TD based on numerous factors, including the

types of TD (code, design, architectural, etc.), architectural levels affected, quality characteristics

impacted, severity or priority of issues, and financial implications or effort estimations. By considering

these different categories and evaluation perspectives, this study aims to provide an understanding of

TD, its manifestations, its impact on various aspects of software quality, and the potential costs and

efforts required for its remediation.

3.4. RQ4: What are the gaps (issues) identified in TD measurement research?

From the analysis of selected studies, gaps (and related issues) in TD measurement research were

identified by the researchers themselves:

• Lack of validation on real-world projects (S3).

• Measuring other types of debt beyond code debt (documentation debt, test debt, architectural

debt, etc.) (S4, S10).

• Integrating developers’ opinions with code characteristics to improve TD severity identification

(S1).

• Holistic approaches combining financial and technical factors (S14).

• Interpretable thresholds in metric-based approaches (S14).

• Quantifying interest costs, risks/liabilities, and opportunity costs of TD (S19 and S20).

• Generalizability and application to complex systems (S21).

• Need for effective tooling and methodologies for managing TD across the software development

lifecycle (S10).

These gaps and issues highlight the need for further research and improvements in TD measurement,

including validation on real-world projects, comprehensive coverage of different TD types, integration

of developer perspectives, holistic approaches, interpretable thresholds, consideration of TD costs and

risks, generalizability to complex systems, effective tooling and methodologies, direct TD

quantification, and accounting for non-functional requirements.

Addressing these gaps and issues can contribute to more accurate, practical, and comprehensive TD

measurement approaches, thereby enabling better management and decision-making processes related

to TD in software development projects.

3.5. Discussion

This study presents several key findings. Firstly, the study identified a variety of measurement goals

such as sizing TD, assessing its impact on software quality attributes, estimating rework efforts for TD

mitigation, and evaluating the effectiveness of TD measurement tools. The research highlights the

prevalent methodologies, including code metrics, design/architecture metrics, static analysis metrics,

quality metrics, effort/cost metrics, and machine learning features for identifying and forecasting TD.

3.5.1. Implications for Researchers

The findings indicate significant research gaps and areas for further exploration. Researchers are

encouraged to focus on:

1. Validation in Real-World Projects: There is a need for more empirical validation of TD

measurement tools and methodologies in real-world software development projects to enhance

their practical applicability.

2. Comprehensive Coverage of TD Types: Future research should expand beyond code debt to

include other types such as documentation debt, test debt, and architectural debt. This holistic approach

will provide a more accurate picture of TD and its implications.

3. Integration of Developer Perspectives: Incorporating insights from developers regarding the

severity and impact of TD can improve the accuracy and relevance of measurement tools.

4. Holistic Approaches Combining Financial and Technical Factors: Developing measurement

approaches that consider both financial and technical aspects of TD can offer more comprehensive

management strategies.

5. Interpretable Thresholds in Metric-Based Approaches: Establishing clear and interpretable

thresholds for various TD metrics will facilitate better decision-making processes for software teams.

3.5.2. Implications for Practitioners

Practitioners can benefit from the study’s insights by:

1. Adopting Diverse Measurement Solutions: Utilizing a combination of code metrics,

design/architecture metrics, static analysis metrics, and machine learning models can provide a

multifaceted understanding of TD, aiding in more effective management and reduction

strategies.

2. Focusing on High-Impact Areas: By identifying and prioritizing areas with high TD,

practitioners can allocate resources more efficiently, addressing the most critical issues that affect

software quality and maintainability.

3. Continuous Monitoring and Refinement: Implementing continuous TD measurement and

monitoring processes will help in early detection and mitigation of TD, thereby reducing long-term

costs and improving software sustainability.

3.5.3. High-Level Concepts and Lessons Learned

From the synthesis of over a decade of research, several high-level concepts and lessons emerge:

1. The Complexity of TD Measurement: The measurement of TD is inherently complex, involving

multiple dimensions such as code quality, design, architecture, and financial implications. This

complexity necessitates sophisticated and integrated measurement approaches.

2. The Importance of Contextual Factors: The impact of TD varies significantly depending on the
context of the software project, including factors like project size, complexity, and team expertise.

Tailoring TD measurement approaches to specific project contexts can enhance their effectiveness.

3. Need for Standardization and Tool Integration: There is a pressing need for standardization in

TD measurement approaches and better integration of tools to facilitate more consistent and reliable

measurements across different projects and organizations.

4. Continuous Evolution of Measurement Techniques: As software development practices evolve,

so too must the techniques and tools for measuring TD. Keeping abreast of emerging trends and

incorporating new methodologies will be crucial for maintaining effective TD management practices.

In summary, addressing these insights and integrating them into both research and practice can

significantly enhance the management of TD, contributing to the long-term sustainability and quality

of software systems.

4. Threat to Validity

This exploratory literature review aimed to provide a comprehensive overview of state-of-the-art in

technical debt measurement research. However, there are potential threats to validity that should be

acknowledged:

• While the search string was carefully constructed to capture relevant studies, it is possible that

some relevant publications may have been missed because of the use of different terminologies

or the presence of relevant studies in sources not included in the selected digital libraries. This

review focused exclusively on studies published between January 2010 and December 2023.

Consequently, relevant earlier works or very recent publications may have been unintentionally

excluded.

• Although the study selection process followed well-defined inclusion and exclusion criteria and

was conducted independently by two researchers, there is an inherent risk of bias in the

selection and interpretation of studies.

• The quality assessment of the included studies was based on a customized checklist adapted
from established guidelines. However, the assessment process may have introduced bias

because of the subjective interpretation of quality criteria.

• The included studies exhibited substantial heterogeneity in terms of research methodologies,

measurement approaches, and evaluation contexts. This diversity may introduce challenges in

synthesizing and comparing findings across studies.

Despite these potential threats, we used rigorous and systematic methods to conduct the literature

review, including following established guidelines involving multiple researchers in the study selection

and data extraction processes. Additionally, we have transparently acknowledged the limitations and

potential threats to validity, which can inform the interpretation and applicability of the findings.

5. Conclusion and Future Work
5.1. Summary of findings

The quantification and measurement of TD are important for software development teams and

organizations. By understanding the extent and impact of technical debt, organizations can make

informed decisions about when and where to invest resources to address it. A number of technical debt

issues have been investigated by researchers over the years, but relatively few have focused on technical

debt measurements/metrics. This 2010-2023 SLR in studies proposing TD measurements followed the

guidelines proposed by Kitchenham and Charters [18] and adhered to the PRISMA framework [19]. 21

studies included in the review were selected from the Scopus, ScienceDirect, ACM Digital Library,

IEEE Xplore, and SpringerLink digital libraries to address our research questions using specified

inclusion and exclusion criteria, and then analyzed to answer the research questions.

The key findings are as follows:

• RQ1: Why, how, and what should be measured about technical debt (TD)?

The primary measurement goals identified were:
1) sizing TD in terms of required remediation effort,

2) assessing the impact of TD on software quality attributes,

3) estimating rework efforts for TD mitigation,

4) evaluating the effectiveness of TD measurement approaches and tools.

• RQ2: What are the existing measurement solutions for measuring TD?

A wide range of measurement solutions has been proposed, including code metrics (complexity,

coupling, cohesion, etc.), design and architecture metrics, static analysis metrics, quality metrics,

effort/cost metrics, machine learning features, and metrics related to defect proneness, change

proneness, and maintainability.

• RQ3: How do these approaches categorize and evaluate various aspects of TD?

The approaches categorized and evaluated TD based on factors such as the types of TD (code,

design, architectural, etc.), architectural levels affected, quality characteristics impacted, severity or

priority of issues, and financial implications or effort estimations.

• RQ4: What are the gaps (issues) identified in TD measurement research?

The key gaps identified included the lack of real-world validation, limited coverage of non-code

debt types, need for holistic approaches integrating technical and financial factors, lack of interpretable

thresholds, quantification of TD costs and risks, generalizability to complex systems, and the need for

effective tooling and methodologies.

In summary, this review identified a diversity of measurement solutions and categorization

approaches for technical debt while also highlighting significant gaps and areas for further research and

improvement in this field. The findings provide a nuanced understanding of the current state of technical

debt measurement research and offer insights into enhancing software sustainability and maintainability

through effective technical debt management practices.

5.2. Future Work

The findings from this exploratory literature review highlight promising directions for future

research on technical debt measurements. There is a need for more comprehensive measurement

approaches that can effectively quantify and consolidate distinct types of technical debt such as design

debt, architectural debt, documentation debt, and test debt. Further research could also explore the

identification and measurement of technical debt, which can be derived from software functional

requirements not yet implemented, as well as from system non-functional requirements not

implemented and that can be implemented in software functions distributed across a software

environment.

Acknowledgment

We are grateful to anonymous reviewers.

References

[1] W. Cunningham, The WyCash Portfolio Management System, in: Proceedings of the 7th

International Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA, Association for Computing Machinery, New York, NY, USA, 1992, pp.

29–30. doi:10.1145/157709.157715

[2] I. Gat, (Ed.), Special Issue: Technical Debt, Cutter IT J., vol. 23, no. 10, 2010.

[3] M. Fowler, Technical Debt, blog, 2019. URL: http:// martinfowler.com/bliki/TechnicalDebt.html.

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, Technical debt: From metaphor to theory and practice,

IEEE software, 29(6) (2012) 18–21. doi:10.1109/MS.2012.167

[5] N. Rios, M.G.d. Mendonça Neto, and O.R. Spínola, A tertiary study on technical debt: Types,

management strategies, research trends, and base information for practitioners, Information and

Software Technology, 102 (2018) 117–145.
[6] Y. Guo, and C. Seaman, A portfolio approach to technical debt management, in: Proceedings of

the 2nd Workshop on Managing Technical Debt, Association for Computing Machinery, New

York, NY, USA, 2011, pp. 31–34. doi:10.1145/1985362.1985370.

[7] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, F. A. Fontana, A systematic literature review on

Technical Debt prioritization: Strategies, processes, factors, and tools, Journal of Systems and

Software, 171 (2011) 1–16. doi:10.1016/j.jss.2020.110827.

[8] C. Seaman, Y. Guo, Chapter 2 - Measuring and Monitoring Technical Debt, in: Marvin V.

Zelkowitz (Ed.), Advances in Computers, Elsevier, 82 (2011), pp. 25–46. doi:10.1016/B978-0-12-

385512-1.00002-5.

[9] G. Freitas, J. H. Bernardo, G. SizíLio, D. A. Da Costa, and U. Kulesza, Analyzing the Impact of

CI Sub-practices on Continuous Code Quality in Open-Source Projects: An Empirical Study, in

Proceedings of the 37th Brazilian Symposium on Software Engineering (SBES '23), Campo

Grande, Brazil, 2023, pp. 1–10, 2023. doi:10.1145/3613372.3613403.

[10] F. A. Fontana, R. Roveda, S. Vittori, A. Metelli, S. Saldarini, and F. Mazzei, On evaluating the

impact of the refactoring of architectural problems on software quality, in: Proceedings of the

Scientific Workshop Proceedings of XP2016 (XP '16 Workshops), Edinburgh Scotland, United

Kingdom, 2016, pp. 1–8. doi:10.1145/2962695.2962716.

[11] N. Zazworka, A. Vetro’, C. Izurieta, et al., Comparing four approaches for technical debt

identification, Software Quality Journal, 22 (3) (2014) 403–426. doi:10.1007/s11219-013-9200-8

[12] A. Melo, R. Fagundes, V. Lenarduzzi, W. B. Santos, Identification and measurement of

Requirements Technical Debt in software development: A systematic literature review, Journal of

Systems and Software, 194 (2022) 1–21. doi:10.1016/j.jss.2022.111483.

[13] P. Boris, C. Castellanos, D. Correal, et al., Technical debt payment and prevention through the

lenses of software architects, Information and Software Technology, 140 (2021) 1–16.

doi:10.1016/j.infsof.2021.106692.

[14] U. Vora, Measuring the Technical Debt, in: Proceedings of the 17th Annual System of Systems

Engineering Conference (SOSE), Rochester, NY, USA, 2022, pp. 185–189, doi:
10.1109/SOSE55472.2022.9812632.

[15] M. Mathioudaki, D. Tsoukalas, M. Siavvas, and D. Kehagias, Comparing Univariate and

Multivariate Time Series Models for Technical Debt Forecasting, in: Proceedings of

Computational Science and Its Applications – ICCSA 2022 Workshops, Malaga, Spain, 2022, pp.

62–78. doi:10.1007/978-3-031-10542-5_5.

[16] M. Mathioudaki, D. Tsoukalas, M. Siavvas, and D. Kehagias, Technical Debt Forecasting Based

on Deep Learning Techniques, in: Proceedings of Computational Science and Its Applications –

ICCSA 2022 Workshops, Cagliari, Italy, 2021, pp. 306–322. doi:10.1007/978-3-030-87007-2_22.

[17] J. Perera, Modelling the Quantification of Technical Debt, in: Companion Proceedings of the 2022

ACM SIGPLAN International Conference on Systems, Programming, Languages, and

Applications: Software for Humanity (SPLASH Companion 2022), Auckland, New Zealand,

2022, pp. 50–53. doi:10.1145/3563768.3565553.

[18] B. A. Kitchenham, and S. Charters, Guidelines for performing systematic literature review in

software engineering, Technical Report, Keele University, 2007.

[19] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow et al., The

PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ., 2021.

doi:10.1136/bmj.n71.

Appendix – selected primary studies.

This appendix contains the supporting documentation for our article. The list of the 21 selected

primary studies to perform the SLR is presented in Table 1.

Table 1
Selected primary studies

Study

ID
Authors Title Source

S1

Dongjin Yu et al.

Identifying the severity

of technical debt issues based

on semantic and structural

information

Software Quality Journal

S2

Markus Finke et al.

How to introduce TD

Management into a Software

Development Process – A

Practical Approach

ACM/IEEE International

Conference on Technical Debt

(TechDebt)

S3

Urjaswala Vora

Measuring the Technical

Debt

Annual System of Systems

Engineering Conference (SOSE)

S4

Luka P. et al.

The Gap between the

Admitted and the Measured
Applied Sciences

Technical Debt: An Empirical

Study

S5

Judith Perera

Modelling the

Quantification of Technical

Debt

Companion Proceedings of the

2022 ACM SIGPLAN International

Conference on Systems,

Programming, Languages, and

Applications: Software for Humanity

(SPLASH Companion 2022)

S6

Lerina AVERSANO

Forecasting technical debt

evolution in software systems:

an empirical study

Frontiers of Computer Science

S7

Elvira-Maria

Arvanitou et al.

Quantifying TD Interest:

Are we Getting Closer, or Not

Even That?

Euromicro Conference on

Software Engineering and Advanced

Applications (SEAA)

S8

Ana Melo et al.

Identification and

Measurement of Technical

Debt Requirements in

Software Development: a

Systematic Literature Review

Journal of Systems and Software

S9

Dimitrios Tsoukalas

et al.

A Clustering Approach

Towards Cross-Project

Technical Debt Forecasting

SN Computer Science

S10

Dimitrios Tsoukalas

et al.

Machine Learning for

Technical Debt Identification

IEEE Transactions on Software

Engineering

S11

Jason Lefever et al.

On the Lack of Consensus

Among Technical Debt

Detection Tools

IEEE/ACM 43rd International

Conference on Software Engineering:

Software Engineering in Practice

(ICSE-SEIP)

S12

Paris Avgeriou et al.

An Overview and

Comparison of Technical Debt

Measurement Tools

IEEE Software

S13

Peter S. et al.

Comparing

Maintainability Index, SIG

Method, and SQALE for

Technical Debt Identification

Annual ACM Symposium on

Applied Computing (SAC '20)

S14

Makrina Viola Kosti

et al.

Technical Debt Principal

Assessment through Structural

Metrics

Euromicro Conference on

Software Engineering and Advanced

Applications (SEAA)

S15
Davide Falessi

and5Andreas Reichel

Towards an Open-Source

Tool for Measuring and

Visualizing the Interest of

Technical Debt

International Workshop on

Managing Technical Debt (MTD)

S16
Clauirton A. Siebra et

al.

Applying Metrics to

Identify and Monitor

Technical Debt Items during

Software Evolution

IEEE International Symposium on

Software Reliability Engineering

Workshops

S17 Nico Zazworka et al.

Comparing four

approaches for technical debt

identification

Software Quality Journal

S18
Francesca Arcelli

Fontana et al.

Investigating the Impact of

Code Smells Debt on Quality

Code Evaluation

International Workshop on

Managing Technical Debt (MTD)

S19

Bill Curtis et al.

Estimating the Size, Cost,

and Types of Technical Debt

International Workshop on

Managing Technical Debt (MTD)

S20 Bill Curtis et al.

Estimating the Principal of

an Application’s Technical

Debt

IEEE Software

S21

Ariadi Nugroho et al.

An Empirical Model of

Technical Debt and Interest

Proceedings of the 2nd Workshop

on Managing Technical Debt (MTD

'11)

	1. Introduction and Background
	2. Review Method
	2.1. Research questions
	2.2. Search strategy
	2.3. Study selection
	2.4. Quality assessment
	2.5. Data extraction and Synthesis

	3. Results and Discussion
	3.1. RQ1: Why, how, and what should be measured about technical debt (TD)?
	3.2. RQ2: What are the existing measurement solutions for measuring technical debt (TD)?
	3.3. RQ3: How do these approaches categorize and evaluate various aspects of TD?
	3.4. RQ4: What are the gaps (issues) identified in TD measurement research?
	3.5. Discussion
	3.5.1. Implications for Researchers
	3.5.2. Implications for Practitioners
	3.5.3. High-Level Concepts and Lessons Learned

	4. Threat to Validity
	5. Conclusion and Future Work
	5.1. Summary of findings
	5.2. Future Work

	Acknowledgment
	References
	Appendix – selected primary studies.

