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Abstract
When responding to any question from the user or an API, a conversational search or question answering sys-
tem should ideally be able to attach an appropriate confidence score to its output. While such systems are often
overconfident, there are also situations where the system responds correctly yet lacks enough confidence. Un-
derconfident responses cannot be relied upon, and therefore may not be utilised by the user or downstream
tasks. Ideally, we want to know when systems are underconfident as well as when they are overconfident, and
want to suppress both phenomena in a balanced manner. Furthermore, in this scenario, we want an evaluation
measure that is guaranteed to (a) penalise a lowered confidence for a correct response; and also (b) penalise a
raised confidence for an incorrect response. In light of this, we propose HMR (Harmonic Mean of Rewards) and
demonstrate its advantages over existing calibration measures for our purpose by means of examples, axioms,
and theorems.
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1. Introduction

Large language models (LLMs) hallucinate [1], often with confidence. The system’s confidence about
its own response may be given as an accompanying confidence score, or may be expressed in natural
language (e.g., “Yes I am certain.” [2, Figure 9]). The former is particularly useful if the system
response is going to be utilised for some downstream tasks: we can decide how much the upstream
pieces of information can be relied upon based on the scores. Even if the system does not return a
separate score that represents its internal confidence, a postprocessing step may be applied, where the
input contains the system’s natural language response and the output is an estimated confidence score;
the estimator may well be another LLM.

While overconfidence (i.e., the system returns an inaccurate response with high confidence) is a major
problem, the other side of the coin is underconfidence (i.e., the system returns an accurate response but
lacks confidence). If the system is underconfident, the user or the downstream tasks may not be able
to utilise the correct response. Furthermore, we argue that we should be able to make a distinction
between overconfidence and underconfidence when evaluating a system like this, because remedying
the two phenomena may require different approaches, and we do not necessarily want one of them
suppressed at the expense of the other. Rather, we may want the system to balance the two. In this
scenario, we want an evaluation measure that is guaranteed to (a) penalise a lowered confidence for a
correct response; and (b) penalise a raised confidence for an incorrect response.

Calibration [3] is the task of aligning confidence scores to the actual response accuracy. However,
traditional measures used in calibration tasks only quantify how much the confidence scores deviate
from the accuracy; they do not distinguish between overconfidence and underconfidence. We therefore
propose a very simple and intuitive evaluation measure called HMR (Harmonic Mean of Rewards)
and demonstrate its advantages over existing calibration measures for the purpose discussed above
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by means of examples, axioms, and theorems. More specifically, we show that while HMR possesses
Properties (a) and (b) mentioned above, none of the existing calibration measures do.

2. Prior Art

In calibration tasks, the Expected Calibration Error (ECE) is probably the most widely used evaluation
measure. ECE is defined in Pakdaman Naeini et al. [3], along with the Maximum Calibration Error
(MCE). The premise is that we are given a set of instances, where each instance is associated with a
binary gold label (i.e., correct or not) as well as a confidence score. In the context of a classification task
with 𝑀(≥ 2) classes (i.e., selecting a correct class or answer from 𝑀 choices) , the confidence score
may be the top probability (i.e., highest probability representing the most likely class/answer) of the set
of 𝑀 estimated correctness probabilities. To compute ECE or MCE, the 𝑁 instances are first sorted
by confidence scores, and are then partitioned into 𝐵 bins for a given 𝐵, with the 𝑏-th bin containing
𝑛𝑏 instances (𝑏 = 1, . . . , 𝐵). For a given system that returned 𝑁 responses along with confidence
scores, let 𝑎𝑏 denote the accuracy (i.e., fraction of correct responses) for Bin 𝑏,; let �̄�𝑏 denote the average
confidence score for Bin 𝑏. Then ECE and MCE are given by:

ECE =

𝐵∑︁
𝑏=1

𝑛𝑏

𝑁
|�̄�𝑏 − 𝑎𝑏| , MCE = max

𝑏
|�̄�𝑏 − 𝑎𝑏| . (1)

Note that instance binning is a necessity for the introduction of the notion of binwise accuracy.
Two simple binning methods are commonly used in the literature: equal width binning (where the

[0, 1] range is partitioned into 𝐵 bins of equal width) [4, 5, 6, 7, 8, 9, 10] and uniform mass binning (𝑛𝑏 is
the same for all bins) [11, 12, 13, 14]. Kumar et al. [15] discuss a theoretical advantage of uniform mass
binning over equal width binning. Hereafter, we shall focus on uniform mass binning for convenience,
but our findings on ECE and MCE do not depend on this choice.

One of the weaknesses of ECE and MCE is that they rely on the parameter 𝐵. Hence, we also discuss
existing binning-free calibration measures.

Consider a classification task with 𝑀(≥ 2) classes with 𝑁 instances to classify; let GOLD𝑚
𝑗 = 1

if Class 𝑚 is the true class for the 𝑗-th instance, and 0 otherwise. For a classifier that returns 𝑀
probabilities (𝑝1𝑗 , . . . , 𝑝

𝑀
𝑗 ) s.t.

∑︀𝑀
𝑚=1 𝑝

𝑚
𝑗 = 1 for each instance, the Brier score [16, 5, 17, 18] may be

applied:

BR =
1

𝑁

𝑁∑︁
𝑗=1

𝑀∑︁
𝑚=1

(𝑝𝑚𝑗 − GOLD𝑚
𝑗 )2 . (2)

Brier proposed this measure in 1950 for verifying weather forecasts. To ensure a [0, 1] range, we shall
consider Normalised BR (NBR), which divides the sum in Eq. 2 by 𝑁𝑀 instead of 𝑁 . However, BR is
known to reflect classification errors as well as calibration errors [19].

In 2021, Gupta et al. [19] proposed a binning-free measure called KS, inspired by the Kolmogorov-
Smirnov test for equality of two distributions [20]. Given 𝑁 confidence scores (e.g., top probabilities), let
(𝑝1, . . . , 𝑝𝑁 ) be these scores after an ascending sort, and let GOLD𝑗 = 1 if the instance that corresponds
to the 𝑗-th score in the sorted list is correct, and 0 otherwise. Then,

cp𝑗 =
1

𝑁

𝑗∑︁
𝑘=1

𝑝𝑘 , cGOLD𝑗 =
1

𝑁

𝑗∑︁
𝑘=1

GOLD𝑘 , (3)

KS = max
𝑗

|cp𝑗 − cGOLD𝑗 | . (4)

Recall that, in classification tasks with 𝑀 classes, a system response may be associated with 𝑀
probabilities rather than one confidence score; in principle, measures like ECE/MCE and KS may be
applied to non-top probabilities as well. Some studies have in fact incorporated non-top probabilities in
calibration evaluation [21, 19, 12]. However, in the present study, our interest lies elsewhere: we want



to evaluate overconfidence and underconfidence when each instance is associated with a binary gold
label and one confidence score.

Also in 2021, Minderer et al. [22, Section 5] empirically compared ECE with BR (along with negative
log-likelihood) in the context of image classification. However, as their interest also lay in traditional
calibration, the distinction between overconfidence and underconfidence was not discussed.

3. Proposed Evaluation Measures

We propose a very simple and interpretable binning-free evaluation approach that first quantifies
overconfidence and underconfidence separately. For a given system, let 𝐼− and 𝐼+ denote the sets of
instances for which the system’s choices are considered incorrect and correct, respectively (|𝐼−|+|𝐼+| =
𝑁 ). Let 𝑝(𝑖) denote the system’s confidence for Instance 𝑖. Then, for each 𝑖 ∈ 𝐼− (the system is incorrect),
𝑝(𝑖) should be as close to 0 as possible; whereas for 𝑖 ∈ 𝐼+ (the system is correct), 𝑝(𝑖) should be as close
to 1 as possible. Hence, we first define the Rewards for suppressing overconfidence and underconfidence
separately as follows.

𝑂 =
∑︁
𝑖∈𝐼−

𝑝(𝑖) , 𝑈 =
∑︁
𝑖∈𝐼+

(1− 𝑝(𝑖)) , (5)

𝑅𝑂 =

{︃
1 if 𝐼− = ∅ ,

1−𝑂/|𝐼−| otherwise .
(6)

𝑅𝑈 =

{︃
1 if 𝐼+ = ∅ ,

1− 𝑈/|𝐼+| otherwise .
(7)

Note, for example, that when 𝐼− = ∅ (i.e., all 𝑁 system responses are correct), there is no way for the
system to be overconfident for any of the instances and therefore 𝑅𝑂 = 1 (i.e., perfection).

As we want systems to balance the above two rather than to sacrifice one for the sake of the other,
let us consider the Harmonic Mean [23]:

HMR =

{︃
0 if 𝑅𝑂 = 𝑅𝑈 = 0 ,

2 R𝑂 R𝑈/(R𝑂 + R𝑈 ) otherwise .
(8)

Note its advantage over the arithmetic mean. For example, consider two situations, R𝑂 = R𝑈 = 0.5
and R𝑂 = 0.9, R𝑈 = 0.1: the arithmetic means of R𝑂 and R𝑈 are the same, but HMR = 0.500 for the
former and HMR = 0.180 for the latter.1

Despite its simplicity, our measure is clearly advantageous over existing calibration measures for the
purpose of penalising overconfidence and underconfidence separately, as we shall demonstrate below.

4. How the Measures Work (or Not)

In this section, we demonstrate how the proposed and existing measures can actually be computed, to
clarify how (or whether) they work. The examples will also help us prove our theorems presented in
Section 5 that generalise our observations.

4.1. Example 1

Table 1 shows an example with 𝑀 = 3 classes and 𝑁 = 9 instances,2 where top probabilities for correct
and incorrect cases are shown in blue and red, respectively. Systems Y, Z, W are obtained by perturbing
(i.e., hurting) System X as follows:

1Following the approach of the F-measure [24, 25], HMR can easily be generalised as (𝛽2+1)𝑅𝑂𝑅𝑈
𝛽2𝑅𝑂+𝑅𝑈

, where 𝛽(≥ 0) is a
parameter that means “undergeneralisation” is 𝛽 times as important as overgeneralisation.”

2Note that, with the exception of (N)BR, the measures discussed in this paper can be applied to situations where 𝑀(≥ 2)
varies across instances, for example, when the number of answer candidates within a system varies depending on the
question: we can still take one probability per instance (e.g., top probability) for the evaluation.



Table 1
First example of perturbing system confidence scores when the system (X) has 𝑀 = 3 answer candidates for
each of the 𝑁 = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 7/9 = 0.778. The underlines indicate the perturbations.

Instance (𝑗) 1 2 3 4 5 6 7 8 9

True class 1 1 3 3 2 1 1 3 1

𝑝1𝑗 0.4 0.4 0.4 0.2 0.6 0.6 0.8 0.1 0.8
X 𝑝2𝑗 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1

𝑝3𝑗 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1

𝑝1𝑗 0.4 0.4 0.4 0.2 0.6 0.6 0.7 0.1 0.8
Y 𝑝2𝑗 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1

𝑝3𝑗 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1

𝑝1𝑗 0.4 0.4 0.6 0.2 0.6 0.6 0.8 0.1 0.8
Z 𝑝2𝑗 0.3 0.3 0.1 0.2 0.2 0.2 0.1 0.1 0.1

𝑝3𝑗 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1

𝑝1𝑗 0.4 0.4 0.6 0.2 0.6 0.6 0.7 0.1 0.8
W 𝑝2𝑗 0.3 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.1

𝑝3𝑗 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1

Table 2
Summary of results for the first example. Intuitive results are indicated in bold; counterintuitive results are
indicated by underlines.

X Y Z W

HMR↑ 0.557 0.551 0.489 0.485
ECE↓ 0.178 0.189 0.156 0.167
MCE↓ 0.267 0.267 0.200 0.233
NBR↓ 0.130 0.133 0.135 0.138
KS↓ 0.178 0.189 0.156 0.167

Y Pick one top probability that represents a correct case, and lower it while keeping it the top probability,
thereby injecting underconfidence;

Z Pick one top probability that represents an incorrect case, and raise it, thereby injecting overconfidence;

W Apply both of the above perturbations.

Note that the above perturbations do not affect the top-probability-based accuracy which is 7/9 = 0.778
for this example. The perturbed probabilities are underlined in Table 1.

For our task where we are concerned with underconfidence and overconfidence of system responses,
we would like to be able to say that Y, Z, and W all underperform X. However, for this example, only HMR
and NBR satisfy this requirement, as shown in Table 2. Here, the results that we want (intuitive results)
are shown in bold, and the counterintuitive ones are underlined. Note that HMR is a reward measure
(i.e., higher means better), while the others quantify errors (i.e., lower means better), as indicated by the
arrows. Below, we demonstrate how some of the numbers in Table 2 are obtained in order to clarify
how the measures work (or not). We shall leave the discussion of NBR to the Appendix, in which we
provide a different example where NBR gives counterintuitive scores for Y, Z, and W. Recall that, unlike
the other measures, NBR relies on the probability for every class for each instance.

4.1.1. HMR for Example 1

For System X in Table 1, 𝑂 = 0.4 + 0.6 = 1.0, 𝑈 = 2 * (1− 0.4) + 2 * (1− 0.6) + 3 * (1− 0.8) = 2.6
(Eq. 5). Since |𝐼−| = 2, |𝐼+| = 7, 𝑅𝑂 = 1− 1.0/2 = 0.500 (Eq. 6) and 𝑅𝑈 = 1− 2.6/7 = 0.629 (Eq. 7).



Table 3
Computing the KS scores from the top probabilities shown in Table 1 for X and Z. The 𝛿𝑗 column
represents |cp𝑗 − cGOLD𝑗 | in Eq. 4; the maximum 𝛿𝑗 across the rows is the KS score by definition, as
indicated in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively.
The underlined probability indicates where Z differs from X.

X Z

𝑗 𝑝𝑗 cp𝑗 GOLD𝑗 cGOLD𝑗 𝛿𝑗 𝑝𝑗 cp𝑗 GOLD𝑗 cGOLD𝑗 𝛿𝑗

1 0.4 0.044 1 0.111 0.067 0.4 0.044 1 0.111 0.067
2 0.4 0.089 1 0.222 0.133 0.4 0.089 1 0.222 0.133
3 0.4 0.133 0 0.222 0.089 0.6 0.156 0 0.222 0.067
4 0.6 0.200 1 0.333 0.133 0.6 0.222 1 0.333 0.111
5 0.6 0.267 0 0.333 0.067 0.6 0.289 0 0.333 0.044
6 0.6 0.333 1 0.444 0.111 0.6 0.356 1 0.444 0.089
7 0.8 0.422 1 0.556 0.133 0.8 0.444 1 0.556 0.111
8 0.8 0.511 1 0.667 0.156 0.8 0.533 1 0.667 0.133
9 0.8 0.600 1 0.778 0.178 0.8 0.622 1 0.778 0.156

Hence X is more overconfident than underconfident; note that this observation is not possible with the
other measures. Finally, HMR(𝑋) = 0.557 (Eq. 8).

Similarly, for System W, 𝑂 = 1.2 (same as Z), and 𝑈 = 2.7 (same as Y); 𝑅𝑂 = 0.400 (worse than
X in terms of overconfidence), and 𝑅𝑈 = 0.614 (worse than X in terms of underconfidence). Hence
HMR(𝑊 ) = 0.485 (worse than X overall).

4.1.2. ECE and MCE for Example 1

The instances in Table 1 are already sorted by top probability and binned for computing ECE (and MCE):
we have 𝐵 = 3 bins, each containing three instances. The binwise accuracies (𝑎𝑏) are (2/3, 2/3, 3/3)
for all systems. For X, the average confidences (�̄�𝑏) are clearly (0.400, 0.600, 0.800); on the other hand,
for Z which has an overconfidence injected in Bin 1, the average confidences are (0.467, 0.600, 0.800).
Hence, the binwise absolute differences (|�̄�𝑏 − 𝑎𝑏| in Eq. 1) are (0.267, 0.067, 0.200) for X, and
(0.200, 0.067, 0.200) for Z. Thus, even though Z is more confident than X about the third instance
(and they are both incorrect), ECE(𝑋) = 0.178, ECE(𝑍) = 0.156,MCE(𝑋) = 0.267,MCE(𝑍) = 0.200.
That is, both ECE and MCE say that Z is better.

The above flaw arises as follows. For X, note that 𝑎1 = 2/3 > �̄�1 = 0.400: that is, for Bin 1, X is
underconfident on average. Hence the absolute difference |�̄�1 − 𝑎1| = 0.267 actually quantifies how
underconfident X is for Bin 1. Now, the perturbation introduced in Z raises �̄�1 (as Z is more confident
than X about the third instance), and therefore Z is considered to be “less underconfident” than X for
Bin 1. From this discussion, it is clear that binwise averaging of confidences is not a good idea for
the purpose of evaluating both overconfidence and underconfidence while trying to separate them, as
averaging confounds both phenomena.

Note also that in Table 2, MCE fails to detect the perturbation introduced in Y for Bin 3. This is
because, although the average confidence �̄�3 is lowered from 0.800 to (0.7 + 2 * 0.8)/3 = 0.767 and
hence the absolute difference |�̄�3 − 𝑎3| = |�̄�3 − 1| is raised from 0.200 to 0.233, this new value is still
smaller than the unchanged absolute difference for Bin 1: |�̄�1 − 𝑎1| = 0.267. In other words, when Y
is obtained from X by perturbing Bin 3, MCE keeps looking at Bin 1 and ignores the change. Thus,
although MCE was proposed to consider extreme cases, binwise averaging of confidences prior to
applying the max operator (Eq. 1) can hide what is happening to individual instances.

4.1.3. KS for Example 1

Table 3 shows how KS scores are computed for Systems X and Z shown in Table 1 according to Eq. 4.
Note that KS also requires instance sorting, and recall that Table 1 already provides the instances sorted



Table 4
Second example of perturbing system confidence scores when the system (X) has 𝑀 = 3 answer candidates for
each of the 𝑁 = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 5/9 = 0.556. The underlines indicate the perturbations.

Instance (𝑗) 1 2 3 4 5 6 7 8 9

True class 1 1 3 3 2 1 1 3 1

𝑝1𝑗 0.5 0.3 0.5 0.2 0.6 0.6 0.7 0.2 0.7
X 𝑝2𝑗 0.3 0.5 0.3 0.2 0.2 0.2 0.2 0.7 0.2

𝑝3𝑗 0.2 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1

𝑝1𝑗 0.4 0.3 0.5 0.2 0.6 0.6 0.7 0.2 0.7
Y 𝑝2𝑗 0.3 0.5 0.3 0.2 0.2 0.2 0.2 0.7 0.2

𝑝3𝑗 0.3 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1

𝑝1𝑗 0.5 0.3 0.6 0.2 0.6 0.6 0.7 0.2 0.7
Z 𝑝2𝑗 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.7 0.2

𝑝3𝑗 0.2 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1

𝑝1𝑗 0.4 0.3 0.6 0.20 0.6 0.6 0.7 0.2 0.7
W 𝑝2𝑗 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.7 0.2

𝑝3𝑗 0.3 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1

Table 5
Summary of results for the second example. Intuitive results are indicated in bold; counterintuitive results are
indicated by underlines.

X Y Z W

HMR↑ 0.504 0.498 0.486 0.480
ECE↓ 0.089 0.078 0.100 0.089
MCE↓ 0.167 0.133 0.200 0.167
NBR↓ 0.196 0.201 0.198 0.204
KS↓ 0.078 0.067 0.089 0.078

by top probabilities. It can be verified that, even though Z is overconfident about the third instance
(𝑗 = 3) compared to X (where both systems are incorrect), KS says that Z is better.

The above flaw arises as follows. In Table 3, note that cp2 = 0.089 < cGOLD2 = 0.222 for both
systems: the former is much smaller, even though KS requires the cp distribution to align with the cGOLD
distribution. In other words, at 𝑗 = 2, the systems are on the side of underestimation so far. Therefore, if
we raise 𝑝3 (from 0.4 to 0.6), this brings the cp distribution “closer” to the cGOLD distribution: it can be
verified that, while cGOLD3 = 0.222, cp3 = 0.133 for X and cp3 = 0.156. Hence the counterintuitive
result.

4.2. Example 2

In our first example (Tables 1-2), ECE and KS managed to say that Y (perturbed by injecting underconfi-
dence for a correct case) is worse than X. Our second example, presented in Tables 4-5 (𝑀 = 3, 𝑁 = 9,
with Y, Z, W perturbed as described earlier), shows that ECE and KS fail to do so; The same goes for
MCE. From Table 4, it can be observed that the top probability of X for the first instance (𝑗 = 1) has
been lowered from 0.5 to 0.4 in order to obtain Y, even though both X and Y are correct for this instance.
Below, we examine why ECE, MCE, and KS say that Y is better.

4.2.1. ECE and MCE for Example 2

From Table 4, the binwise accuracies (𝑎𝑏) are (1/3, 2/3, 2/3); the average confidences (�̄�𝑏) are
(0.500, 0.600, 0.700) for X, and (0.467, 0.600, 0.700) for Y due to the injection of underconfi-



Table 6
Computing the KS scores from the top probabilities shown in Table 4 for X and Y. The 𝛿𝑗 column
represents |cp𝑗 − cGOLD𝑗 | in Eq. 4; the maximum 𝛿𝑗 across the rows is the KS score by definition, as
indicated in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively.
The underlined probability indicates where Y differs from X.

X Y
𝑗 𝑝𝑗 cp𝑗 GOLD𝑗 cGOLD𝑗 𝛿𝑗 𝑝𝑗 cp𝑗 GOLD𝑗 cGOLD𝑗 𝛿𝑗

1 0.5 0.056 1 0.111 0.056 0.4 0.044 1 0.111 0.067
2 0.5 0.111 0 0.111 0.000 0.5 0.100 0 0.111 0.011
3 0.5 0.167 0 0.111 0.056 0.5 0.156 0 0.111 0.044
4 0.6 0.233 1 0.222 0.011 0.6 0.222 1 0.222 0.000
5 0.6 0.300 0 0.222 0.078 0.6 0.289 0 0.222 0.067
6 0.6 0.367 1 0.333 0.033 0.6 0.356 1 0.333 0.022
7 0.7 0.444 1 0.444 0.000 0.7 0.433 1 0.444 0.011
8 0.7 0.522 0 0.444 0.078 0.7 0.511 0 0.444 0.067
9 0.7 0.600 1 0.556 0.044 0.7 0.589 1 0.556 0.033

dence. Hence the binwise absolute differences (|�̄�𝑏 − 𝑎𝑏|) are (0.167, 0.067, 0.033) for X, and
(0.133, 0.067, 0.700) for Y. Therefore, from Eq. 1, MCE (which reflects only Bin 1) and ECE are smaller
(i.e., “better”) for Y.

The above flaw arises as follows. Note that 𝑎1 = 1/3 < �̄�1 = 0.500 for X; hence the absolute
difference for Bin 1 actually quantifies overconfidence. Therefore, Y, which is less confident in Bin 1
due to the perturbation, is considered to be “less overconfident” than X. Again, it is clear that binwise
averaging is not a good idea in our context.

4.2.2. KS for Example 2

Table 6 shows how KS scores are computed for X and Y shown in Table 4 according to Eq. 4. The left
side of the table shows that, for System X, cp𝑗 diverges most from cGOLD𝑗 at 𝑗 = 8 and this is what
determines the KS score: KS(𝑋) = 0.078. Now, note that cp8 = 0.522 > cGOLD8 = 0.444: That is, X
is on the side of overestimation at 𝑗 = 8. Therefore, if we want to reduce the difference between cp8
and cGOLD8, we could (for example) consider lowering cp𝑗 for every 𝑗, by just lowering 𝑝1: this is
exactly what the perturbation injected in Y represents. As can be seen on the right side of Table 6, we
have “successfully” reduced the difference between cp8 and cGOLD8: now the maximum difference is
observed not only at 𝑗 = 8 but also at 𝑗 = 1 and 𝑗 = 5, and KS(𝑌 ) = 0.067. Thus, just like ECE and
MCE, KS says that Y is better than X, which is counterintuitive.

5. Axioms and Theorems

The examples discussed in Section 4 demonstrated how the measures are actually computed, and how
ECE, MCE, and KS can be counterintuitive for our purpose. (As mentioned earlier, counterintuitive
cases for NBR are provided in the Appendix.) However, examples are examples: this section clarifies
the advantages of HMR in terms of axioms that it satisfies, to generalise our previous observations.

5.1. Axioms

All three axioms presented below start with the following common prerequisite. Consider a sequence
of binary correctness labels for 𝑁 instances; the label for Instance 𝑖 is denoted by GOLD(𝑖). Under this
setting, consider System 𝑋 that returns a sequence ⟨𝑝1, . . . , 𝑝𝑁 ⟩ of confidence scores (i.e., probabilities)
for the same 𝑁 instances, where the scores have been sorted in ascending order (just for computing
ECE, MCE, and KS). Let 𝑖𝑗 denote the 𝑗-th instance in the sorted list; then the corresponding sequence
of the correctness labels can be denoted as ⟨GOLD(𝑖1), . . . ,GOLD(𝑖𝑁 )⟩.



Table 7
Summary of whether each measure satisfies the three axioms or not.

Axiom-U Axiom-O Axiom-UO
(X→Y) (X→Z) (X→W)

HMR↑ YES YES YES
ECE↓ NO NO NO
MCE↓ NO NO NO
NBR↓ NO NO NO
KS↓ NO NO NO

Axiom-U: Consider System Y, obtained by perturbing the confidence score sequence of System X as
follows. Suppose that for one particular instance 𝑖𝑗 s.t. GOLD(𝑖𝑗) = 1 (i.e., X is correct about the 𝑗-th
instance), we managed to replace 𝑝𝑗 with 𝑞𝑗(< 𝑝𝑗) without affecting the prediction outcome (i.e., Y is
still correct about this instance). Since the confidence is now lower for this correct case and nothing
else has changed, Y should not be considered superior to X.

Axiom-O: Consider System Z, obtained by perturbing the confidence score sequence of System X as
follows. Suppose that for one particular instance 𝑖𝑗′ s.t. GOLD(𝑖𝑗′) = 0 (i.e., X is incorrect about the
𝑗′-th instance), we managed to replace 𝑝𝑗′ with 𝑞𝑗′(> 𝑝𝑗′) without affecting the prediction outcome
(i.e., Z is still incorrect about this instance). Since the confidence is now higher for this incorrect case
and nothing else has changed, Z should not be considered superior to 𝑋 .

Axiom-UO: Consider System W, obtained by applying both of the perturbations mentioned above.
Compared to X, the confidence for the correct case is lower and the confidence for the incorrect case
is higher and nothing else has changed. In this situation, W should be considered strictly inferior to X.

Note that Axiom-U (Axiom-O) tolerates evaluation measures that cannot tell the difference between
X and Y (X and Z); on the other hand, Axiom-UO requires measures to say that W is strictly worse
than X.

Table 7 provides a summary of whether each measure satisfies the three axioms or not. Below, we
provide the proofs.

5.2. HMR Satisfies All Three Axioms

Theorem U-HMR HMR satisfies Axiom-U.

Proof: The perturbation described in Axiom-U does not affect 𝑂 (Eq. 5) and hence does not affect 𝑅𝑂

either (Eq. 6): for brevity, let 𝑐 = 𝑅𝑂 denote the unaffected reward. On the other hand, the perturbation
increases 𝑈 (Eq. 5) and hence decreases 𝑅𝑈 (Eq. 7): that is, if we let 𝑎 and 𝑏 denote the 𝑅𝑈 for X and the
𝑅𝑈 for Y, respectively, then 𝑎 > 𝑏(≥ 0). From Eq. 8, HMR(𝑋) = 2𝑐𝑎/(𝑐+ 𝑎) since 𝑎 > 0. We need to
show that Δ = HMR(𝑋)− HMR(𝑌 ) ≥ 0.

Suppose that 𝑐 = 0, i.e., 𝑂 = |𝐼−| (Eq. 6), that is, both X and Y are 100% confident for every
incorrect case. Then HMR(𝑋) = 0/𝑎 = 0. If 𝑏 > 0, HMR(𝑌 ) = 2𝑐𝑏/(𝑐+ 𝑏) = 0/𝑏 = 0; if 𝑏 = 0, then
𝑐 = 𝑏 = 0 so HMR(𝑌 ) = 0 (Eq. 8). Either way, Δ = 0− 0 = 0.

Otherwise (i.e., if 𝑐 > 0), Δ = 2𝑐𝑎/(𝑐+ 𝑎)− 2𝑐𝑏/(𝑐+ 𝑏) = 2𝑐2(𝑎− 𝑏)/(𝑐+ 𝑎)(𝑐+ 𝑏) > 0.

Theorem O-HMR HMR satisfies Axiom-O.

Proof: The perturbation described in Axiom-O does not affect 𝑈 (Eq. 5) and hence does not affect 𝑅𝑈

either (Eq. 7): for brevity, let 𝑐 = 𝑅𝑈 denote the unaffected reward. On the other hand, the perturbation
increases 𝑂 (Eq. 5) and hence decreases 𝑅𝑂 (Eq. 6): that is, if we let 𝑎 and 𝑏 denote the 𝑅𝑂 for X and the
𝑅𝑂 for Z, respectively, then 𝑎 > 𝑏(≥ 0). Since 𝑎 > 0, HMR(𝑋) = 2𝑎𝑐/(𝑎+ 𝑐). We need to show that
Δ′ = HMR(𝑋)− HMR(𝑍) ≥ 0.

Suppose that 𝑐 = 0, i.e., 𝑈 = |𝐼+| (Eq. 7), that is, both X and Z are 0% confident for every correct
case. Then HMR(𝑋) = 0/𝑎 = 0. If 𝑏 > 0, HMR(𝑍) = 2𝑏𝑐/(𝑏+ 𝑐) = 0/𝑏 = 0; if 𝑏 = 0, then 𝑏 = 𝑐 = 0
so HMR(𝑍) = 0 (Eq. 8). Either way, Δ′ = 0− 0 = 0.



Table 8
Counterexamples that show that these measures do not satisfy the axioms. Examples 1 and 2 are given in
Tables 1 and 4, respectively. Example 3 is provided in the Appendix as NBR relies on the probability for every
class unlike the other measures.

Axiom-U Axiom-O Axiom-UO
(X→Y) (X→Z) (X→W)

ECE ↓ Example 2 Example 1 Example 1
MCE↓ Example 2 Example 1 Example 1
NBR↓ Example 3 Example 3 Example 3
KS↓ Example 2 Example 1 Example 1

Otherwise (i.e., if 𝑐 > 0), Δ′ = 2𝑎𝑐/(𝑎+ 𝑐)− 2𝑏𝑐/(𝑏+ 𝑐) = 2𝑐2(𝑎− 𝑏)/(𝑎+ 𝑐)(𝑏+ 𝑐) > 0.

Theorem UO-HMR HMR satisfies Axiom-UO.

Proof: Based on the proofs of Theorems U-HMR and O-HMR, it is clear that the two perturbations
described in Axiom-UO decrease both 𝑅𝑈 (due to the 𝑗-th instance) and 𝑅𝑂 (due to the 𝑗′-th instance).
Hence the harmonic mean (Eq. 8) also decreases; that is, HMR(𝑋)− HMR(𝑊 ) ≥ 0. Moreover, from
the proofs of U-HMR and O-HMR, it follows that the equality can hold only when both X and W are
100% confident for every incorrect case and 0% confident for every correct case. However, we know
that this is not possible: if X is 100% confident for every incorrect case, it is not possible to further
inject overconfidence; if X is 0% confident for every correct case, it is not possible to further inject
underconfidence. Hence, HMR(𝑋) > HMR(𝑊 ) holds: W is strictly inferior to X.

5.3. ECE, MCE, NBR, and KS Satisfy None of the Axioms

To prove that none of ECE, MCE, NBR, and KS satisfy any of the axioms, providing one actual coun-
terexample for each situation suffices. Table 8 provides the counterexamples necessary: we discussed
Examples 1 and 2 in Section 4; Example 3 is discussed in the Appendix.

6. Conclusions and Future Work

For the purpose of penalising both overconfidence and underconfidence in system responses while
balancing the two, we proposed a simple and intuitive evaluation measure called HMR. We proved that
HMR satisfies our axioms (i.e., penalising a lowered confidence for a correct response, penalising a
raised confidence for an incorrect response, and penalising a system that reflects both perturbations),
and that existing calibration measures do not. Hence, while we do not claim that HMR should replace
existing calibration measures in all calibration tasks, we do recommend its use in tasks where our
axioms make sense.

We designed HMR primarily for conversational search systems where each response is either correct
or not and has a confidence score; the score could represent a top probability (or more generally, the 𝑛-th
highest probability) among the probabilities for 𝑀 different response candidates; the candidates may
be generated by the system itself or given to the system from outside, as in multiple choice questions.
However, HMR can be used in any task where the system response has a binary gold label and one
confidence score. As the present study is limited to axiomatic discussions with toy data, we plan to
utilise HMR with real data in a shared task in our future work.
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Table 9
Third example of perturbing system confidence scores when the system (X) has 𝑀 = 6 answer candidates for
each of the 𝑁 = 3 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 1/3 = 0.333. The underlines indicate the perturbations.

Instance (𝑗) 1 2 3 Instance (𝑗) 1 2 3

True class 3 2 1 True class 3 2 1

𝑝1𝑗 0.3 0.4 0.6 𝑝1𝑗 0.3 0.4 0.5
𝑝2𝑗 0.4 0.3 0.4 𝑝2𝑗 0.4 0.3 0.1

X 𝑝3𝑗 0.1 0.1 0 Y 𝑝3𝑗 0.1 0.1 0.1
𝑝4𝑗 0.1 0.1 0 𝑝4𝑗 0.1 0.1 0.1
𝑝5𝑗 0.1 0.1 0 𝑝5𝑗 0.1 0.1 0.1
𝑝6𝑗 0 0 0 𝑝6𝑗 0 0 0.1

𝑝1𝑗 0.3 0.5 0.6 𝑝1𝑗 0.3 0.5 0.5
𝑝2𝑗 0.4 0.4 0.4 𝑝2𝑗 0.4 0.4 0.1

Z 𝑝3𝑗 0.1 0.1 0 W 𝑝3𝑗 0.1 0.1 0.1
𝑝4𝑗 0.1 0 0 𝑝4𝑗 0.1 0 0.1
𝑝5𝑗 0.1 0 0 𝑝5𝑗 0.1 0 0.1
𝑝6𝑗 0 0 0 𝑝6𝑗 0 0 0.1

Table 10
Summary of results for the third example. Intuitive results are indicated in bold; counterintuitive results are
indicated by underlines. As there are only three instances, ECE and MCE (which require instance binning) are
omitted.

X Y Z W

HMR↑ 0.600 0.545 0.574 0.524
NBR↓ 0.116 0.114 0.112 0.111
KS↓ 0.200 0.200 0.200 0.200

APPENDIX: Counterexamples for NBR

This section discusses our third example, which demonstrates that NBR can be counterintuitive when
the perturbations described in Section 4.1 are applied to System X in order to obtain Y, Z, and W.

Table 9 presents our third example with 𝑀 = 6, 𝑁 = 3; Table 10 shows the HMR, NBR, and KS
scores computed from Table 9. ECE and MCE are omitted here, as these measures require instance
binning and binwise averaging of confidences but we only have three instances.

For X, the sum of squared errors (Eq. 2) for the third instance (𝑗 = 3) is (0.6− 1)2 + 0.42 = 0.32.
In contrast, for Y, the corresponding value is (0.5 − 1)2 + 5 * 0.12 = 0.30; this is why NBR rates
Y higher than X. Meanwhile, for X, the sum of squared errors for the second instance (𝑗 = 2) is
0.42 + 0.32 + 3 * 0.12 = 0.68. In contrast, for Z, the corresponding value is 0.52 + 0.42 + 0.12 = 0.62;
this is why NBR rates Z higher than X. Finally, NBR also rates W higher than X, as W reflects both of
the above changes in sum of squared errors.

As a final remark, note that KS completely fails to detect the perturbations in Table 10.
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