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Abstract
Secure multi-party computation (MPC) facilitates privacy-preserving computation between multiple parties without leaking private

information. While most secure deep learning techniques utilize MPC operations to achieve feasible privacy-preserving machine

learning on downstream tasks, the overhead of the computation and communication still hampers their practical application. This work

proposes a low-latency secret-sharing-based MPC design that reduces unnecessary communication rounds during the execution of

MPC protocols. We also present a method for improving the computation of commonly used nonlinear functions in deep learning by

integrating multivariate multiplication and coalescing different packets into one to maximize network utilization. Our experimental

results indicate that our method is effective in a variety of settings, with a speedup in communication latency of 10 ∼ 20%.
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1. Introduction
Secure multi-party computation (MPC) [1, 2] enables par-

ties to compute securely over their private data without

revealing the data to each other. Secure MPC offers privacy-

preserving property, which makes it suitable for most

privacy-sensitive domains, such as medical research and

finance. Upon the development of deep learning techniques,

the ability to capture important information from large

datasets of neural models raises concerns regarding the

surveillance of individuals [3]. In this case, the prospects of

secure MPC demonstrate its application to secure machine

learning and deep learning. While MPC-based deep learn-

ing frameworks have achieved significant performance in

general scenarios, most works suffer from the limitations

caused by 1. network communication due to the nature of ex-

changing intermediate information during MPC execution,

2. excessive computation introduced by complex MPC pro-

tocols. Since the computation of MPC protocols is largely

determined by their sophisticated design, optimizing the pro-

tocol itself would seem to be difficult and infeasible. Thus,

some studies [4] are concerned with improving the com-

munication stage of MPC protocols to make them more

practical. In this paper, we present an approach to reduce

the communication latency of the MPC protocol through

optimized multivariate multiplication.

In general, privacy-preserving deep learning frameworks

usually adopt secret-sharing-based techniques to avoid ex-

tensive computational overheads [5, 6, 7, 8]. Consequently,

secret-sharing-based methods require multiple exchanges

of intermediate results to achieve collaborative MPC opera-

tions. As these MPC techniques are based on linear compu-

tations, such as addition and multiplication, modern deep

learning techniques that inherently rely on linear algebra

benefit significantly from them. Considering the heavy de-

pendency on linear operations, our research aims to reduce

unnecessary communication rounds following [9] during

the execution of MPC protocols.

Our main contributions are as follows:
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• We propose a low-latency secret-sharing-based

method for computing multivariate multiplications

and univariate polynomials using network commu-

nication that is efficient and reduces unnecessary

communication rounds on the fly.

• We improve the computation of nonlinear functions

by integrating the proposed multivariate multiplica-

tion and coalescing different packets into one single

packet to maximize network utilization.

• We conducted experiments to evaluate the effec-

tiveness of our method in the context of models

with varying sizes, networks with different latency

and bandwidth, the accuracy of downstream clas-

sification tasks, and the number of participants in-

volved. The results indicate an overall improvement

of 10 ∼ 20% in communication latency.

2. Background

2.1. Arithmetic Secret Sharing Based
Scheme

Our setup is primarily focused on arithmetic operations, so

we represent all inputs and intermediate results in terms

of linear secret sharing between 𝑛 parties, especially in the

context of additive secret-sharing schemes.

Apart from the general (𝑛, 𝑡)-Shamir secret sharing

scheme [10], which relies on the degree-𝑡 polynomials over

𝑛 parties, we adopt the simple arithmetic secret sharing

scheme based on (𝑛, 0)-Shamir secret sharing. In other

words, we share a scalar value 𝑥 ∈ Z/𝑄Z across 𝑛 parties

𝒫 , where Z/𝑄Z denotes a ring with 𝑄 elements, follow-

ing the notations of [5]. The sharing of 𝑥 is defined as

[𝑥] = {[𝑥]𝑝}𝑝∈𝒫 , where [𝑥]𝑝 is the party 𝑝’s share of 𝑥.

The ground-truth value 𝑥 could be reconstructed from the

sum of the shares of each party, i.e. 𝑥 =
∑︀

𝑝∈𝒫 [𝑥]𝑝.

When parties wish to share a value 𝑥, they generate a

pseudorandom zero-share that sums to 0. The party that pos-

sesses the value adds 𝑥 to their share in secret. To represent

floating-point numbers, we adopt a fixed-point encoding

to encode any floating-point number 𝑥𝐹 into a fixed-point

representation, 𝑥. Alternatively, we consider that each 𝑥 is

the result of multiplying a floating-point number 𝑥𝐹 by a

scaling factor 𝐵 = 2𝐿 and rounding to the nearest integer,

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:leonard.keilin@gmail.com
mailto:yasirglani@gmail.com
mailto:luop@tsinghua.edu.cn
https://orcid.org/0009-0002-5376-7881
https://orcid.org/0000-0003-0060-4771
https://orcid.org/0000-0001-6171-3811
https://creativecommons.org/licenses/by/4.0/deed.en


i.e. 𝑥 = ⌊𝐵𝑥𝐹 ⌉. Here 𝐿 is the precision of the fixed-point

encoding. To decode a ground-truth floating-point value

𝑥𝐹 from 𝑥, we compute as follows: 𝑥𝐹 ≈ 𝑥/𝐵.

2.2. Arithmetic Secret Sharing Based MPC
It is noteworthy that arithmetic secret shares are homomor-

phic and can be used to implement secure MPC, especially

in the context of linear computation in most cases.

Addition. The sum of two secret shared values [𝑥] and

[𝑦] could be directly computed as [𝑧] = [𝑥] + [𝑦], where

each party 𝑝 ∈ 𝒫 computes [𝑧]𝑝 = [𝑥]𝑝 + [𝑦]𝑝 without

multi-party communications.

Multiplication. Two secret shared values [𝑥] and [𝑦] are

multiplied using a random Beaver triple [11] generated by

the Trusted Third Party (TTP): a triplet ([𝑎], [𝑏], [𝑎𝑏]). It

should be noted that the Beaver triple could be shared in

advance by each party. The parties first calculate [𝜖] =
[𝑥]− [𝑎] and [𝛿] = [𝑦]− [𝑏]. In this way, the [𝜖] and [𝛿] are

then revealed to all parties (denoted as Reveal(·)) without

compromising information since the ground-truth values

𝑎, 𝑏 remain unknown to each party except for the TTP. The

final results could be computed as [𝑥𝑦] = [𝑐]+ 𝜖[𝑏]+ [𝑎]𝛿+
𝜖𝛿. Algorithm 1 illustrates the multiplication using Beaver

triples.

Linear functions. It is possible to implement functions

that consist of linear operations by combining additions and

multiplications. Common operations in deep learning, such

as element-wise product and convolution, are allowed in a

linear paradigm.

Nonlinear functions. Due to the inherent infeasibility

of nonlinear functions in the standard arithmetic secret-

sharing scheme, most works use approximation methods

to simulate the outcome of nonlinear functions. In particu-

lar, Taylor Expansion, Newton-Rhapson, and Householder

methods are commonly used to approximate nonlinear func-

tions using only linear operations. All reciprocal functions,

exponential functions, loss functions, kernel functions, and

other useful functions in deep learning are calculated this

way, for example.

Algorithm 1 Beaver Multiplication Mul([𝑥], [𝑦])

Input: Secret-shared inputs [𝑥], [𝑦], Beaver triple

([𝑎], [𝑏], [𝑎𝑏]).
Output: [𝑥𝑦].

1: ◁ Compute masked values

2: [𝜖]← [𝑥− 𝑎] = [𝑥]− [𝑎]
3: [𝛿]← [𝑦 − 𝑏] = [𝑦]− [𝑏]
4: ◁ Reveal 𝜖 and 𝛿 through one-round communications

5: 𝜖← Reveal([𝜖])
6: 𝛿 ← Reveal([𝛿])
7: return 𝜖𝛿 + 𝜖[𝑏] + [𝑎]𝛿 + [𝑎𝑏]

2.3. Notations
This section summarizes the notations used throughout this

work. We denote [𝑥] as a secret sharing of 𝑥. Reveal([𝑥])
means that the ground-truth value 𝑥 is revealed to every

party involved in the computation through one-round com-

munications. Since most linear operations are also appli-

cable to element-wise operations and matrix operations, 𝑥
can also represent a vector, matrix, or even a tensor if there

is no confusion and ambiguity.

3. Related Work
To achieve communication-efficient MPC, various ap-

proaches have been developed to optimize the communica-

tion rounds and the throughput of communication. Ishai

and Kushilevitz [12] proposes a new representation of poly-

nomials for round-efficient secure computation, dividing

high-degree polynomials into multiple low-degree polyno-

mials that are easy to solve. Mohassel and Franklin [13]

performs operations directly on polynomials, such as poly-

nomial multiplication and division. Dachman-Soled et al.

[14] improves the evaluation of multivariate polynomials

with different variables being held as private inputs by each

party. Then, Lu et al. [4] proposes an efficient method for

evaluating high-degree polynomials with arbitrary num-

bers of variables. While the current research has focused on

improving the calculation of polynomials, our study aims

to develop a communication-efficient and effective MPC

system for use in modern deep learning frameworks by

leveraging arithmetic tuples computation from Krips et al.

[9]. This system is not confined to only computing polyno-

mials within finite rings, as seen in previous studies.

In recent years, several deep learning frameworks that

preserve privacy have emerged to enable the secure in-

ference of neural network models. Wagh et al. [8] imple-

ments a maliciously secure 3-party MPC protocol from Se-

cureNN [15] and ABY
3

[16]. Knott et al. [5] provides flexi-

ble machine-learning APIs with a rich set of functions for

secure deep learning. Li et al. [7] presents a fast and perfor-

mant MPC Transformer inference framework designed to be

privacy-preserving. Our low-latency linear MPC implemen-

tation is built on top of Knott et al.’s CrypTen framework

and provides a significant improvement in communication

latency.

4. Methodology

4.1. Multivariate Multiplication
Since Beaver triples illustrate how to multiply two variables

with pre-shared triplets, a classic multiplication between

multiple variables, such as [𝑥𝑦𝑧], requires several rounds

of binary multiplication, i.e. Mul(Mul([𝑥], [𝑦]), [𝑧]). This

naive implementation, however, introduces additional com-

munication rounds during the on-the-fly Reveal process.

In general, a 𝑛-ary multiplication requires 𝑛− 1 rounds of

communication.

To reduce the communication rounds involved in the

multivariate multiplications, the basic binary Beaver triple

is extended into a general 𝑛-ary Beaver triple. This results

in only one round of communication required throughout

the entire process.

Assume the 𝑛 inputs could be represented as {[𝑥𝑖]}𝑛𝑖=1.

The precomputation and preshared information required by

the extended protocol is {𝒜𝑖}𝑛𝑖=1. Here 𝒜1 := {[𝑎𝑗 ]}𝑛𝑗=1

is defined as the set of 𝑛 auxiliary shared values used to

blind the the inputs {[𝑥𝑖]}𝑛𝑖=1, which is also similar to the

Beaver’s idea. Then 𝒜𝑖(𝑖 ≥ 2) is defined as the set of



shared degree-𝑖 cross-terms consisting of the variables in

𝒜1. For example, 𝒜2 could be defined as 𝒜2 := {[𝑎𝑖𝑎𝑗 ] |
𝑖 ̸= 𝑗 ∧ 1 ≤ 𝑖, 𝑗 ≤ 𝑛}, and 𝒜3 := {[𝑎𝑖𝑎𝑗𝑎𝑘] | 𝑖 ̸= 𝑗 ̸=
𝑘 ∧ 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛}, and so on. Similar to the construction

of [𝜖] and [𝛿] in Section 2.2, we define the difference between

the inputs and the masks as [𝛿𝑖] := [𝑥𝑖]− [𝑎𝑖]. The secret-

shared [𝛿𝑖] is then made public across all parties without

leakage to the ground-truth value of both [𝑥𝑖] and [𝑎𝑖]. The

improvement of our method originates from the following

equation:

𝑛∏︁
𝑖=1

𝑥𝑖 =

𝑛∏︁
𝑖=1

(𝛿𝑖 + 𝑎𝑖)

=
∏︁

𝛿𝑖 +
∑︁
𝑖

𝛿𝑖

∏︀
𝑎𝑚

𝑎𝑖
+

∑︁
𝑖,𝑗,𝑖 ̸=𝑗

𝛿𝑖𝛿𝑗

∏︀
𝑎𝑚

𝑎𝑖𝑎𝑗

+ · · ·+
∏︁

𝑎𝑖.

(1)

Here we informally use the fractional representation, such

as

∏︀
𝑎𝑚

𝑎𝑖
, to denote the products of all the terms except

for certain ones. Note that this fractional form does not

involve any actual division. Also, each secret-shared term

of [
∏︀

𝑎𝑚

𝑎𝑖...𝑎𝑗
] could be found in the auxiliary sets {𝒜𝑖}𝑛𝑖=1,

which is preshared across all parties.

Adaptation of Equation 1 in secret-sharing scheme is as

follows:

[

𝑛∏︁
𝑖=1

𝑥𝑖] =
∏︁

𝛿𝑖 +
∑︁
𝑖

𝛿𝑖[

∏︀
𝑎𝑚

𝑎𝑖
] +

∑︁
𝑖,𝑗,𝑖 ̸=𝑗

𝛿𝑖𝛿𝑗 [

∏︀
𝑎𝑚

𝑎𝑖𝑎𝑗
]

+ · · ·+ [
∏︁

𝑎𝑖].

(2)

Since Equation 2 is linear to the secret-sharing terms, all

communications could be conducted in parallel, i.e. in a

single round of communications. In this case, we could

simply reveal all the secret-sharing terms in {𝒜𝑖}𝑛𝑖=1 and

compute the sharing of final results in constant complexity.

The protocol is formally described in Algorithm 2.

Algorithm 2 Multivariate Beaver Multiplication of 𝑛 inputs

Mul([𝑥1], [𝑥2], . . . , [𝑥𝑛])

Input: Secret-shared inputs {[𝑥𝑖]}𝑛𝑖=1, auxiliary sets

{𝒜𝑖}𝑛𝑖=1.

Output: [
∏︀

𝑥𝑖].
1: ◁ Compute masked values

2: for 𝑖 ∈ [1, 𝑛] do
3: [𝛿𝑖]← [𝑥𝑖 − 𝑎𝑖] = [𝑥𝑖]− [𝑎𝑖]
4: end for
5: ◁ Reveal 𝛿𝑖 through one-round communications

6: parallel for 𝑖 ∈ [1, 𝑛] do
7: 𝛿𝑖 ← Reveal([𝛿𝑖])
8: end parallel for
9: ◁ Compute results using preshared {𝒜𝑖}𝑛𝑖=1

10: return
∏︀

𝛿𝑖 +
∑︀

𝑖 𝛿𝑖[
∏︀

𝑎𝑚

𝑎𝑖
] +

∑︀
𝑖,𝑗,𝑖 ̸=𝑗 𝛿𝑖𝛿𝑗 [

∏︀
𝑎𝑚

𝑎𝑖𝑎𝑗
] +

· · ·+ [
∏︀

𝑎𝑖]

The total rounds of communications are indeed reduced

from𝑛−1 to constant 1when a regular𝑛-ary multiplication

is performed, but the overall size of communication data

increases from linear to exponential. In a naïve implemen-

tation, the data size of 𝑛-ary multiplication is only 3(𝑛− 1)
for a total transmission of 𝑛− 1 Beaver triples. As opposed

to a multivariate implementation, it is 2𝑛 − 1 to transmit

the auxiliary sets {𝒜𝑖}𝑛𝑖=1. Therefore, in practice, there is a

trade-off between communication latency and throughput.

4.2. Univariate Polynomials
The formal form of univariate polynomials is defined as

𝑃 (𝑥) =
∑︀𝑛

𝑖=0 𝑏𝑖𝑥
𝑖
, where 𝑏𝑖 refers to the coefficients of

the degree-𝑖 term. The use of univariate polynomials en-

ables efficient evaluation and manipulation of polynomial

expressions. According to Damgård et al. [17], we can com-

pute all required [𝑥𝑖] in parallel using multivariate multipli-

cations, then multiply them with corresponding plaintext

coefficients. Despite its benefits, this trick has the disadvan-

tage of exponentially increasing the size of transmitted data,

which becomes unbearable when the exponent exceeds 5.

This method can be implemented in practice by comput-

ing a tuple of base terms and then multiplying the tuple by

a certain term iteratively, as in the exponentiating by squar-

ing method or the fast modulo algorithm. In other words,

a tuple 𝑔 = (1, 𝑥, . . . , 𝑥𝑚−1) of size ‖𝑔‖ = 𝑚 could be

multiplied by 𝑥‖𝑔‖
repeatedly to iterate all the 𝑥𝑖

terms. The

overview of the implementation of univariate polynomials

is described in Algorithm 3. Note that 𝑏𝑠:𝑒 is the subvector

of 𝑏 from position 𝑠 to 𝑒.

Algorithm 3 Univariate Polynomial Poly([𝑥], 𝑏)

Input: Secret-shared input [𝑥], coefficients 𝑏 =
(𝑏0, 𝑏1, . . . , 𝑏𝑛), base terms size ‖𝑔‖.

Output:
∑︀𝑛

𝑖=0 𝑏𝑖[𝑥
𝑖].

1: ◁ Construct base terms

2: parallel for 𝑖 ∈ [1, ‖𝑔‖] do
3: [𝑥𝑖]←Mul([𝑥], . . . , [𝑥]) ◁ multiplied by [𝑥] of 𝑖

times

4: end parallel for
5: 𝑔 ← (1, [𝑥], . . . , [𝑥‖𝑔‖−1])
6: ◁ Iteratively exponentiating

7: 𝑡← 0
8: for 𝑖 ∈ [0, ⌊ 𝑛

‖𝑔‖⌋ − 1] do
9: s← 𝑖 · ‖𝑔‖

10: e← (𝑖+ 1) · ‖𝑔‖
11: 𝑡← 𝑡+ 𝑏𝑠:𝑒 · 𝑔
12: ◁ Vectorized Beaver Multiplication

13: 𝑔 ← [𝑥‖𝑔‖] · 𝑔
14: end for
15: return 𝑡

4.3. Nonlinear Approximations
In this section, we take one step further to optimize the com-

monly used nonlinear functions by leveraging the property

of parallelization of our proposed multivariate multiplica-

tion.

Exponentiation. Since exponential functions grow in ge-

ometrical speed, approximations based on series expansion

generally suffer from a significant reduction in accuracy

since we do not know the exact value of the input. Con-

sequently, we resort to the naive iterative approximation,

which is capable of utilizing multivariate multiplication ef-

fectively:

𝑒[𝑥] = lim
𝑛→∞

(︂
1 +

[𝑥]

𝑑𝑛

)︂𝑑𝑛

.



During each iteration, the 𝑑-th power of the previous result

is calculated. With increasing iteration rounds 𝑛, the answer

would become closer to the actual results.

Logarithm. The calculation of logarithms relies on the

higher-order iterative methods for a better convergence, i.e.

Householder methods on 𝑦 = ln𝑥:

[ℎ𝑛] = 1− [𝑥]𝑒−[𝑦𝑛]

[𝑦𝑛+1] = [𝑦𝑛]−
∞∑︁

𝑘=1

1

𝑘
[ℎ𝑘

𝑛]

Note that the implementation of logarithm is the combi-

nation of exponentiation and univariate polynomials. The

degree of the polynomials determines the precision of the

output.

Reciprocal. The reciprocal function 𝑦 = 1
𝑥

is calculated

using the Newton-Raphson method with an initial guess 𝑦0:

[𝑦𝑛+1] = [𝑦𝑛](2− [𝑥][𝑦𝑛])

= 2[𝑦𝑛]− [𝑥][𝑦𝑛][𝑦𝑛]

Trigonometry. Trigonometric functions could be treated

as the special case of exponentiation with 𝑑 = 2. The sine

and cosine functions are calculated in the field of complex

numbers:

[sin𝑥] = Im([𝑒𝑖𝑥])

[cos𝑥] = Re([𝑒𝑖𝑥])

Using the above-mentioned nonlinear functions, we can

calculate most of the existing loss functions in deep learning,

such as the sigmoid, tanh, and cross-entropy functions.

Various other common nonlinear functions, such as the

softmax function and kernel function, can also be calcu-

lated using exponential and reciprocal functions.

4.4. Communication Coalescing
The key to achieving low-latency secret-sharing compu-

tation is to reduce the total number of rounds of commu-

nications among different parties. While we introduce a

latency-friendly implementation of basic math operations,

other kinds of communications, such as precision checking,

still require an additional but independent communication

round.

In general, the communication involved in multiple math

operations could be abstracted as a communication graph,

or strictly, as a communication tree. Accordingly, we ob-

serve some independent communications that do not affect

downstream results can be deferred and combined into one

single round of communication. This process is referred to

as communication coalescing, and it eliminates unnecessary

rounds of communication and improves the utilization of

network bandwidth.

5. Security Analysis
The correctness of the multivariate multiplication is trivial

based on the observation in Equation 1 and 2. As univariate

polynomials are implemented using the same method as the

extended fast modulo algorithm, their effectiveness could

also be demonstrated by the correctness and security of

multivariate multiplication. Coalescing mechanisms only

alter the order of communication rounds without modifying

the payload, which is also reliable and secure.

Multivariate computations are similarly secure as tradi-

tional Beaver multiplications under semi-honest conditions.

It is intuitively obvious that since 𝑎𝑖 is chosen at random

by TTP, the 𝛿𝑖 = 𝑥𝑖 − 𝑎𝑖 value is indistinguishable from a

random number. Consequently, the disclosure of [𝛿𝑖] does

not reveal any critical information regarding 𝑥𝑖. This as-

sumption holds even if multiple parties, except for the TTP,

collude.

To clarify the security of multivariate multiplication for-

mally, we denote [𝑥]𝑝 as the secret share of 𝑥 for party

𝑝 ∈ 𝒫 . The global equations of the multivariate system are

as follows: ∑︁
𝑝∈𝒫

[𝑥𝑖]𝑝 = 𝑥𝑖∑︁
𝑝∈𝒫

[𝑎𝑖]𝑝 = 𝑎𝑖∑︁
𝑝∈𝒫

[𝑎𝑖𝑎𝑗 ]𝑝 = 𝑎𝑖𝑎𝑗

. . . . . .∑︁
𝑝∈𝒫

[𝑎1 . . . 𝑎𝑛] = 𝑎1 . . . 𝑎𝑛

[𝑥𝑖]𝑝 − [𝑎𝑖]𝑝 = [𝛿𝑖]𝑝

(3)

with known [𝛿𝑖]𝑝 for every 𝑝 ∈ 𝒫 to each party. From each

party’s view, these 2𝑛 + 2𝑛− 1 equations have Θ(2𝑛‖𝒫‖)
unknown variables. This indicates the difficulty in deter-

mining the exact value of 𝑥𝑖, as shown in [18].

A party’s view represents all the values it can obtain

during its execution. Then the following theorem holds:

Theorem 1. Let {𝑥′
𝑖} and {𝑥′′

𝑖 } be random values. The
distribution of the view of each party is identical when𝑥𝑖 = 𝑥′

𝑖

or 𝑥𝑖 = 𝑥′′
𝑖 .

This guarantees the security of multivariate multiplication

by ensuring the indistinguishability between the random

distribution and the view’s distribution.

6. Experiments

6.1. Experimental Setup
As part of our proposed methodology, we use CrypTen [5]

as the basic MPC deep learning framework, which has al-

ready provided naïve implementations of secret-sharing-

based computations. In most of our experiments, we use

3-party MPC on CPUs. Additionally, we allow a maximum

of 4-ary multiplication as stated in Section 4.1, and we set

𝑑 = 3 for exponentiation and 𝑘 = 8 for logarithm as de-

scribed in Section 4.3.

To measure the performance, we perform several ex-

periments with deep learning models with different sizes:

(a) Linear Support Vector Classification (LinearSVC) with

L2 penalty; (b) LeNet [19] with shallow convolutional

and linear layers along with ReLU activation functions;

(c) ResNet-18 model [20] with multiple convolutional, lin-

ear, pooling, and activation layers; (d) Transformer Encoder

model [21] with a single multi-head attention layer and

BatchNorm [22] in place of LayerNorm [23]. We employ

several datasets for classification tasks with appropriate

adaption to specific models, including MNIST [19], CIFAR-

10 [24], ImageNet[25], and Sentiment140 [26] datasets.



Table 1
Communication Latency and Data with Different Network Settings. Latency and data are measured in milliseconds and MiBs.

Model Dataset 𝑡comp
Data Size 𝑡comm (𝑁low) 𝑡comm (𝑁med) 𝑡comm (𝑁high)

Naïve Ours Naïve Ours Naïve Ours Naïve Ours

LinearSVC MNIST 0.032 0.022 0.024 0.082 0.059 0.604 0.568 4.339 4.026
LeNet CIFAR-10 0.900 38.562 41.647 1.373 1.182 7.673 6.983 53.010 47.868

ResNet-18 ImageNet 110.447 11571.294 12612.711 219.541 185.293 1681.685 1407.570 ~11 760 ~9 870
Transformer Sentiment140 7.824 771.787 893.421 12.190 9.715 78.624 61.877 559.645 421.413

Each of our experiments is conducted in a simulated multi-

node environment using Docker. TTP is conducted in an

independent environment separate from the normal parties.

To manually simulate different network environments con-

cerning bandwidth and latency, we utilize the docker-tc
tool to adjust the docker network settings accordingly.

6.2. Metrics
To provide a comprehensive evaluation of our proposed

method, we adopt metrics from a variety of perspectives.

• 𝑡comp: The computational time cost for evaluating a

single data sample in one round.

• 𝑡comm: The time cost of communication associated

with evaluating a single data sample in one round.

• Size of Transmission Data: The size of transmit-

ted network packets when evaluating a single data

sample in one round.

• Accuracy: The classification accuracy when evalu-

ated on a particular dataset.

6.3. Latency & Throughput
To assess the efficiency of our proposed method, we simu-

late networks with different network latencies: (a) network

𝑁low with 0.1ms latency, (b) network 𝑁med with 5ms la-

tency, (c) and network 𝑁high with 40ms latency. All of these

networks have a bandwidth of 1Gbps. Our simulated multi-

node settings include 3 nodes with an additional TTP by

default.

As shown in Table 1, the computation cost of each model

is negligible in medium and high latency network settings

in comparison to the communication cost. Therefore, we

will focus only on the communication costs associated with

our proposed method.

Compared to the naïve method implemented by CrypTen,

our method illustrated in Section 4.1 remains close since

it does not introduce a substantial amount of additional

communication payload if the maximum number of input

variables is set appropriately. For instance, a 3-ary or 4-ary

multiplication would not produce a significant increase in

the total size of communications.

It is noteworthy that our proposed method reduces the

communication cost in every network setting as compared

to the naïve implementation of MPC. Overall, we achieve

an improvement of 10 ∼ 20%, which shows significant

enhancement in the performance of high-latency environ-

ments for practical purposes.

Furthermore, we observe that our proposed method be-

haves differently with neural models with different archi-

tectures. Figure 1 illustrates the communication occupation

Table 2
Classification Accuracy using Different Methods.

Model Dataset Accuracy (%)

Origin Naïve Ours

LinearSVC MNIST 100.00 100.00 100.00
LeNet CIFAR-10 100.00 100.00 100.00

ResNet-18 ImageNet 69.30 61.58 60.10
Transformer Sentiment140 59.87 58.55 57.74

Conv2D
(49.8%)

ReLU
(19.1%)

BatchNorm
(25.0%)

Other
(6.1%)

(a) ResNet Basic Block

Softmax
(60.5%)

GeLU
(23.1%)

MatMul
(14.4%)

Other
(2.0%)

(b) Attention Block

Figure 1: Communication percentage of different models.

percentage of ResNet basic blocks and Attention blocks.

As can be seen, the attention mechanism is constrained

by its communication bottleneck in Softmax operation,

while CNN is constrained by its communication via convo-

lutional operations. Considering that our method makes an

improved optimization for nonlinear functions, attention-

based models show a significant improvement in latency,

with almost a 25% improvement. Additionally, this explains

the limited improvement of only 8 ∼ 15% in traditional

machine-learning models and CNN-based models.

6.4. Evaluation
In this section, we examine the side effects and factors asso-

ciated with the basic settings, such as the downstream tasks’

accuracy, the number of parties involved, and the trade-off

between network latency and bandwidth.

To evaluate the drop in accuracy, we compare our method

with both the original baseline and the naïve implementa-

tion without a low-latency design. Figure 2 shows that, in

relatively small scenarios, both the naïve implementation

and our methods are capable of achieving perfect perfor-

mance as the baselines. Nevertheless, both MPC-based im-

plementations obtain lower accuracy in complex scenarios

than the baseline, while our methods perform slightly worse

than the naïve implementation. We hypothesize that the

multivariate multiplication introduces additional precision

requirements, which in turn reduces accuracy.

The throughput and latency of MPC-based methods are
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Figure 2: Transimission data and latency of naïve and our pro-
posed methods when a different number of parties are involved.
The experiment is conducted using the LeNet model on CIFAR-10
using a medium latency network.

also affected by the number of parties involved in the compu-

tation. From Figure 2, it can be seen that the communication

data size of both methods increases linearly as the number

of parties involved increases. There is, however, a tendency

for the latency to be worse when there are more parties

involved.

Moreover, Figure 3 illustrates how network bandwidth

affects communication costs. When sufficient bandwidth is

available, our method can still optimize the network latency.

It is important to note, however, that when the bandwidth

becomes the bottleneck, our method would not be any more

effective in reducing the overall costs of communication.

This indicates that bandwidth remains an important factor

in a multi-node MPC setting, especially as the number of

nodes in use grows.

7. Discussion
Since the proposed multivariate multiplication is based on

a finite ring, it is likely to have precision issues that lead to

incorrect results. Fortunately, a loss in precision would not

significantly affect the overall performance of deep learning,

since the loss could be interpreted as random noise and
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Figure 3: Latency of naïve and our proposed methods concerning
different network bandwidth. The experiment is conducted using
the LeNet model on CIFAR-10 using a medium latency network.

distortion in the input data.

Moreover, our proposed method is only applicable to

functions that are based on linear MPC operation. To avoid

heavy communications, a modern MPC-based deep learn-

ing framework would also involve other protocols, such as

Homomorphic Encryption [27], Garbled Circuit [28], and

Function Secret Sharing[29]. Though these works may have

less communication, our approach could still be seamlessly

integrated with the current secret-sharing framework and

achieve a latency improvement of ~20% without adding ex-

cessive computational workload.

8. Conclusion
This study proposes a secret-sharing-based MPC method for

enhancing the linear computation required in deep learning

through increased communication utilization. By utilizing

the multivariate multiplication and communication coalesc-

ing mechanisms, we can reduce the number of unnecessary

communication rounds during the execution of both linear

and nonlinear deep learning functions. In our experiments,

we demonstrate that our proposed methods achieve an over-

all improvement in latency of 10 ∼ 20% when compared

to the naïve MPC implementation. Additionally, it indicates

that throughput and downstream task performance are com-

parable to naïve implementations, which demonstrate the

method’s validity and efficiency. We hope that this work

will inspire future improvements in privacy-preserving deep

learning techniques and lead to more practical MPC appli-

cations.
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