
Neural Vicinal Risk Minimization:
Noise-robust Distillation for Noisy Labels
Hyounguk Shon1, Seunghee Koh1, Yunho Jeon2 and Junmo Kim1,*

1Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
2Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon, 34158, South Korea

Abstract
Training deep neural networks with noisy supervision remains a challenging problem in weakly supervised learning. Mislabeled
instances can severely degrade the generalization ability of classification models to unseen data. In this paper, we propose a novel
regularization method coined Noise-robust Distillation (NRD) that addresses robust training under noisy supervision. NRD is motivated
from a novel learning framework which we name Neural Vicinal Risk (NVR) minimization to improve the estimation quality of the data
distribution and handle label noise effectively. Our framework is based upon our observation that a neural network has capability to
correctly classify data sampled from vicinal distribution even when the model is overfitted to noisy label. By ensembling the predictions
from the neural vicinal distribution, we obtain an accurate estimation of the class probabilities that reflects sample-wise class ambiguity.
We validated our method through various noisy label benchmarks and demonstrate significant improvement in robustness to label noise.

Keywords
Learning with Label Noise, Vicinal Risk Minization, Noise-robust Loss

1. Introduction
Deep learning models have achieved remarkable success in
various domains, including image classification, natural lan-
guage processing, and speech recognition. However, the per-
formance of these models heavily relies on the availability of
high-quality labeled data for training. Obtaining accurately
annotated labels can be a challenging and time-consuming
task, often requiring human annotators to manually label
large amounts of data. As a result, noisy labels may arise
during the annotation process, leading to suboptimal model
performance.

In this paper, we address noisy label learning as a subset
of a more generic type of problem. This encompasses learn-
ing from an over-confident target probability distribution
and image ambiguity [1], human annotation errors, mul-
tiple classes in an image, and out-of-distribution training
examples [2] that can naturally occur due to, for example,
random crop data augmentation. We show that our generic
noisy label supervision algorithm can address a combination
of these issues using a simple and unified approach.

We propose a noise-robust learning algorithm named
Noise-Robust Distillation (NRD) to address the issue of noisy
supervision during training. NRD aims to improve the gen-
eralization performance of classification models by explicitly
considering the noise and ambiguity in the training labels.
We motivate NRD by a novel formulation of the noisy su-
pervision learning problem which we name Neural Vicinal
Risk (NVR) minimization.

This stems from the observation that deep neural net-
works have the inherent capability to detect and correct
noisy supervision, even when it is trained using noisy super-
vision. This ability is particularly evident when considering
the vicinal distribution, which represents the distribution
generated from perturbed versions of the training data. De-
spite being trained on noisy labels, neural networks can still

The IJCAI-2024 AISafety Workshop, August 4, 2024, Jeju, South Korea
*Corresponding author.
$ hyounguk.shon@kaist.ac.kr (H. Shon); seunghee1215@kaist.ac.kr
(S. Koh); yhjeon@hanbat.ac.kr (Y. Jeon); junmo.kim@kaist.ac.kr
(J. Kim)
� 0000-0002-0867-1728 (H. Shon); 0009-0006-8662-0834 (S. Koh);
0000-0001-8043-480X (Y. Jeon); 0000-0002-7174-7932 (J. Kim)

© 2024 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

0 10 20 30
GT class log-likelihood

D
en

si
ty AUROC: 0.9935

12

NoisyCIFAR-10-symm-50%

Not transformed
Transformed

Figure 1: Averaging prediction over the novel views of a misla-
beled training instance effectively mitigates memorization. The
model is trained on the noisy training set and tested again using
the training examples. The histogram shows the distribution
of cross-entropy loss with respect to the GT labels. Red curve
corresponds to standard prediction, and blue curve corresponds
to ensembling over transformation views. The right side shows a
training example with its original view vs. the transformed novel
views. The corresponding loss is marked as “1” and “2” on the
histogram.

accurately model the vicinal distribution, indicating their
potential to correct the noisy supervision.

Our findings suggest that the combination of
perturbation-based estimation and ensembling can
lead to improved model performance, even in the presence
of noisy supervision. Building on these insights, we propose
Noise-Robust Distillation (NRD), which is a noise-robust
learning method that leverages the neural vicinal risk
principle to enhance the generalization performance of
classification models trained on noisy labels.

The main contributions of this work are as follows:

• We introduce the Noise-Robust Distillation (NRD),
a noise-robust learning approach that comprehen-
sively addresses the challenges posed by noisy su-
pervision during training.

• NRD is motivated by a novel noise-robust learn-
ing framework which we name Neural Vicinal Risk
(NVR) minimization. We show that NVR improves
the estimation quality of the true class distribution
and handles label noise effectively.

• We demonstrate the ability of neural networks to

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:hyounguk.shon@kaist.ac.kr
mailto:seunghee1215@kaist.ac.kr
mailto:yhjeon@hanbat.ac.kr
mailto:junmo.kim@kaist.ac.kr
https://orcid.org/0000-0002-0867-1728
https://orcid.org/0009-0006-8662-0834
https://orcid.org/0000-0001-8043-480X
https://orcid.org/0000-0002-7174-7932
https://creativecommons.org/licenses/by/4.0

airplane

automobile

bird
label, gt

cat
deerdog

frog

horse

ship
truck airplane

automobile
label, gt

bird

cat
deerdog

frog

horse

ship
truck airplane

automobile

bird

cat
deerdog

frog

horse

ship
truck

label, gt
airplane

automobile

bird

cat
deer

label, gt
dog

frog

horse

ship
truck

airplane

automobile

bird
gt

cat
deerdog

label

frog

horse

ship
truck airplane

automobile
gt

bird

cat
deer
label

dog
frog

horse

ship
truck airplane

automobile

bird
gt

cat
deerdog

frog

horse

ship
label

truck airplane

automobile

bird

cat
gt

deerdog
frog

horse
label

ship
truck

Model tested with AutoAugment Model tested with RandomCrop

(a) Softmax predictions of clean instances (top row) and mislabeled instances (bottom row) from the noisy training
set. Each marker indicates a softmax vector projected onto a 2D decagon.

0 0.2 0.4 0.6 0.8 1.0
Confidence

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Not perturbed, ECE=0.34
Perturbed, ECE=0.13

(b) Calibration plot

Figure 2: On Figure 2a, model prediction of noisy samples are more sensitive to perturbation with respect to the input. NoisyCIFAR-10
dataset is used. Markers indicate the softmax scores predicted from the model trained using random crop augmentation. Red markers
(+) show predictions generated using the same augmentation policy used during training, and the blue markers (∙) are generated using
an unseen, stronger augmentation policy. The ten-class softmax scores are visualized by projecting onto a decagon using Equiradial
Projection [3]. On Figure 2b, while the model itself is heavily mis-calibrated (red bars), ensembling the predictions of the perturbed
inputs significantly improves the calibration. (blue bars)

detect and correct mislabeled examples through sen-
sitivity to perturbations in the input data, leading to
improved model predictions and calibration.

• We validate the effectiveness of NRD through ex-
periments on benchmark datasets, showing clear
improvements in model performance in comparison
to standard training methods under noisy supervi-
sion.

2. Related works
Noisy label learning Numerous methods tackle the chal-
lenge of training Deep Neural Networks (DNNs) on datasets
that contain a mix of correctly labeled and mislabeled sam-
ples, as discussed in [4]. Some approaches focus on design-
ing a noisy-robust loss to mitigate the impact of mislabeled
samples. Mean Absolute Error (MAE) loss [5] demonstrates
competitive performance. Following this, the introduction
of the Generalized Cross-Entropy (GCE), Symmetric Cross-
Entropy (SCE) loss, and active passive loss are proposed with
improved noisy-robustness. Generalized Jensen-Shannon
divergence (GJS) [6] enforces consistency between predic-
tions from multiple augmented views of a sample to regu-
larize training. Also, the principle of negative learning is
emphasized by [7, 8]. The strategies inspired by the train-
ing dynamics of models [9] such as early stopping [10, 11]
or over-parameterization [12] exploit the different conver-
gence speeds of clean and noisy samples. Co-teaching [13]
involves simultaneous training of two DNNs, where each
network learns from the clean samples chosen by its coun-
terpart. Noise identification aims to filter noisy samples
from the training dataset. Noisy samples can be filtered by
measuring the degree of disagreement between ensemble
models, which occurs once the model is overfitted to the
noisy samples. Recent algorithms [14, 15, 16] utilize the
power of Semi-Supervised Learning (SSL) by following a
two-step process: filtering out noisy labels first, and then
treating the detected noisy samples as unlabeled for reduc-
ing the noisy learning problem into a SSL task.

Semi-supervised learning (SSL) has emerged as a pow-
erful method for noisy label learning. Among them, consis-

tency regularization promotes a model to make consistent
outputs across data augmentations, as in Π-model, Tempo-
ral Ensembling [17] and Mean Teacher [18]. Also, FixMatch
[19] integrates pseudo-labeling and and virtual adversarial
training [20] utilizes adversarial attacks. MixMatch [21],
adopted by DivideMix [14], generates pseudo-label with
sharpening for data-augmented unlabeled examples and
mixes labeled and unlabeled data using MixUp [22].

Calibration and knowledge distillation Confidence
calibration [23] is the process of adjusting a model’s pre-
dicted probabilities to better reflect the true likelihood. It is
demonstrated that training a model with data augmentation
like Mixup [22] improves model calibration and robustness
to noise [24]. Meanwhile, Knowledge Distillation (KD) [25]
enhances the student model by transferring knowledge con-
tained in the prediction of the teacher model, focusing on
"dark" or "hidden" knowledge, including its confident and
less confident predictions.

3. Preliminaries

3.1. Notations
Consider a DNN classification model parameterized by
𝜃 ∈ Θ as 𝑓(𝑥, 𝜃) : 𝒳 ↦→ ∆𝐶−1 which outputs a proba-
bility distribution 𝑃 (𝑦|𝑥; 𝜃). The input space is defined as
𝒳 = R𝐻×𝑊×𝐶 where 𝐻,𝑊,𝐶 are the number of height,
width, and color channels of the image data. ∆𝑘 indicates
𝑘-simplex. The model takes an image input 𝑥 ∈ 𝒳 and pre-
dicts a categorical distribution over 𝒴 = {1, 2, ..., 𝐶}. We
denote an image augmentation operation as 𝒯 (𝑥) : 𝒳 →
𝒳 , and the training dataset as 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖. The loss
function is defined as ℓ(𝑥, 𝑦, 𝜃) : 𝒳 × 𝒴 ×Θ ↦→ R. 𝛿(·) is
the Dirac delta function and 1{·} is the indicator function.

3.2. Empirical Risk
The expected risk 𝑅(𝜃) is defined as the average loss over
𝑝(𝑥, 𝑦),

𝑅(𝜃) =

∫︁
𝑥,𝑦

ℓ(𝑥, 𝑦, 𝜃)𝑝(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 . (1)

In practice, a dataset 𝒟 is used to mimic the true distribution
𝑝(𝑥, 𝑦), which leads to the empirical risk

𝑅̂(𝜃) =

∫︁
𝑥,𝑦

ℓ(𝑥, 𝑦, 𝜃)𝑝̂(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 . (2)

where the corresponding empirical distribution 𝑝̂(𝑥, 𝑦) is
a mixture of delta masses using the observed samples, and
the class distribution is a one-hot distribution given by an-
notations,

𝑝̂(𝑥, 𝑦) =
1

𝑛

𝑛∑︁
𝑖=1

1{𝑦=𝑦𝑖}𝛿(𝑥− 𝑥𝑖) . (3)

Our goal is to refine the estimation of the data distribu-
tion 𝑝(𝑥, 𝑦) by utilizing the empirical distribution 𝑝̂(𝑥, 𝑦).
A pivotal question that arises is how to enhance the approx-
imation of the true risk 𝑅(𝜃) intrinsic to a classification
model. As evidenced by Equation (3), this task necessi-
tates the accurate estimation of two orthogonal components
present within the true distribution 𝑝(𝑥, 𝑦) = 𝑃 (𝑦|𝑥)𝑝(𝑥):
(1) the input distribution 𝑝(𝑥) and (2) the corresponding
conditional distribution 𝑃 (𝑦|𝑥).

3.3. Neural Empirical Risk
Estimating 𝑃 (𝑦|𝑥) as a one-hot distribution involves as-
signing a single class label per sample, which is vulnerable
to human annotation errors. Unfortunately, it proves chal-
lenging to enhance or secure accurate supervision signals
for 𝑃 (𝑦|𝑥), as this requires multiple human annotators re-
viewing the same image [1] which is a prohibitively costly
process. Nonetheless, enhancing the estimation quality of
the true class distribution 𝑃 (𝑦|𝑥) can lead to further im-
provements in estimating and minimizing the true risk.

Neural Empirical Risk (NER) Instead of using Equa-
tion (3), we can choose to parameterize 𝑃 (𝑦|𝑥) by a neural
network 𝑃 (𝑦|𝑥, 𝜑) to further improve the estimation qual-
ity. First, we factorize the data distribution as 𝑝(𝑥, 𝑦) =
𝑃 (𝑦|𝑥)𝑝(𝑥), and denote the corresponding empirical distri-
butions as follows:

𝑝̂(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝛿(𝑥− 𝑥𝑖) (4)

𝑃 (𝑦|𝑥𝑖) = 1{𝑦=𝑦𝑖} . (5)

Instead of using 𝑃 (𝑦|𝑥), we choose to use a distribution
parameterized by a neural network trained on 𝒟,

𝑃 (𝑦|𝑥,𝒟) =

∫︁
𝜑

𝑃 (𝑦|𝑥, 𝜑)𝑝(𝜑|𝒟) 𝑑𝜑 , (6)

where 𝑝(𝜑|𝒟) is the distribution over the function class
parameterized by neural network. By plugging Equation (6)
into 𝑝̂(𝑥, 𝑦) = 𝑃 (𝑦|𝑥)𝑝̂(𝑥), we define the neural empirical
distribution 𝑝̂𝜌 and the neural empirical risk 𝑅̂𝜌 as

𝑝̂𝜌(𝑥, 𝑦|𝒟) = 𝑃 (𝑦|𝑥,𝒟)𝑝̂(𝑥) (7)

𝑅̂𝜌(𝜑) =

∫︁
𝑥,𝑦

ℓ(𝑥, 𝑦, 𝜑)𝑝̂𝜌(𝑥, 𝑦|𝒟) 𝑑𝑥𝑑𝑦 . (8)

Here, we refer to the model 𝑃 (𝑦|𝑥, 𝜑) as the teacher network
to distinguish from the model being trained, whose term
is borrowed from knowledge distillation. This can provide
better estimation quality than 𝑃 (𝑦|𝑥) as is often observed

in knowledge distillation, which we view as an instance
of NER minimization. Knowledge distillation is known to
improve generalization and calibration performance due to
the dark knowledge [25].

However, when the model is over-fitted to the noisy label,
it severely degrades the performance of estimating the class
probabilities. Hence, in order to effectively utilize a neural
network, it is necessary to employ a noise-robust method to
accurately estimate the class probabilities in the presence
of noisy labels.

3.4. Vicinal risk for noise-robust learning
Our motivation is based on the Vicinal Risk Minimization
(VRM) principle [26], which is an alternative approximation
to 𝑝(𝑥, 𝑦). The vicinal distribution 𝑝𝜈(𝑥̃, 𝑦) constructed
from the data distribution is defined as

𝑝𝜈(𝑥̃, 𝑦) =

∫︁
𝑥,𝑦

𝜈(𝑥̃, 𝑦|𝑥, 𝑦)𝑝(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 . (9)

where 𝜈(𝑥̃, 𝑦|𝑥, 𝑦) is the vicinity distribution around (𝑥, 𝑦).
For example, [26] used additive Gaussian noise 𝒩 (0, 𝜎2𝐼).
MixUp [24] and CutMix [27] chose stochastic interpolation
between samples which has also shown its effectiveness in
noisy label. [24]. Using the dataset, Equation (9) is replaced
by the empirical distribution as

𝑝̂𝜈(𝑥̃, 𝑦) =

∫︁
𝑥,𝑦

𝜈(𝑥̃, 𝑦|𝑥, 𝑦)𝑝̂(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 (10)

=
1

𝑛

𝑛∑︁
𝑖=1

𝜈(𝑥̃, 𝑦|𝑥𝑖, 𝑦𝑖) . (11)

Neural Vicinal Risk (NVR) We propose to further im-
prove by using a neural network to robustly approximate
the data distribution by modifying Equation (9). We propose
the following approximate vicinal data distribution parame-
terized by a deep neural network 𝜑 which we name neural
vicinal distribution 𝑝𝜋 .

𝑝𝜋(𝑥̃, 𝑦|𝒟) = 𝑃 (𝑦|𝑥̃;𝒟)𝑝(𝑥̃) (12)

=

∫︁
𝜑

𝑃 (𝑦|𝑥̃, 𝜑)𝑑𝑝(𝜑|𝒟)

∫︁
𝑥

𝜈(𝑥̃|𝑥)𝑑𝑝(𝑥) (13)

≈
∫︁
𝜑

𝑃 (𝑦|𝑥̃, 𝜑)𝑑𝛿(𝜑− 𝜑*)

∫︁
𝑥

𝜈(𝑥̃|𝑥)𝑑𝑝̂(𝑥) (14)

= 𝑃 (𝑦|𝑥̃, 𝜑*)
1

𝑛

𝑛∑︁
𝑖=1

𝜈(𝑥̃|𝑥𝑖) (15)

=
1

𝑛

𝑛∑︁
𝑖=1

𝑃 (𝑦|𝑥̃, 𝜑*)𝜈(𝑥̃|𝑥𝑖) . (16)

Here, 𝜑* = argmin 𝑅̂(𝜑) is the maximum-a-posteriori
(MAP) model trained on 𝒟. It is important to note that
the samples from the vicinal distribution 𝜈(𝑥̃𝑖|𝑥𝑖) is not
shown at the training of the model 𝜑*. Equation (14) is
given by substituting the Bayesian model with the MAP
model and also replacing the true distribution 𝑝(𝑥) with the
empirical distribution. The true neural vicinal distribution
is approximated by the ensembled MAP model predictions
averaged over the samples from the vicinal distribution.

Therefore, we define the empirical neural vicinal distribu-
tion 𝑝̂𝜋 as,

𝑝̂𝜋(𝑥̃, 𝑦;𝜑
*) =

1

𝑛

𝑛∑︁
𝑖=1

𝑃 (𝑦|𝑥̃, 𝜑*)𝜈(𝑥̃|𝑥𝑖) . (17)

EMA
update

Teacher
augmentation

Student
augmentation

stop-grad

Figure 3: Illustration of the proposed Noise-robust Distillation (NRD) architecture. 𝑥 is the input data to the neural network, and 𝑦
is the assigned target label. Red arrows show the gradient propagation path. During training, the predictions from the original views
(student augmentation) is regularized using the predictions generated from unseen views (teacher augmentation). We use asymmetric
augmentation policy so that the teacher augmentation generates novel views, and the stop-gradient operation ensures that the model
does not memorize the views generated from the teacher augmentation.

Table 1
Label correction behavior for memorized training examples using
transformed views. The models are trained to perfectly memo-
rize the noisy labels, then evaluated again for training set with
ground-truth labels. Due to memorization, the GT accuracy for
mislabeled instances is zero and the overall accuracy is bounded
by the noise rate. However, averaging the predictions from the
transformed inputs shifts the prediction of the noisy examples to
the ground-truth. For the transformation, AutoAugment followed
by RandomErasing was used. For the dataset, NoisyCIFAR-10
with symmmetric noise was used.

Training accuracy for GT labels (%)

𝜂 Transform Clean Mislabeled Overall

20%
× 99.99 0.01 81.93
○ 96.01 54.72 88.55

50%
× 99.97 0.07 55.11
○ 93.09 40.58 69.51

80%
× 99.83 0.06 28.10
○ 77.29 14.82 32.38

Note that Equation (17) is a parameterized version of Equa-
tion (11) using a deep neural network. Finally, the neural
vicinal risk is,

𝑅̂𝜋(𝜑) =

∫︁
𝑥,𝑦

ℓ(𝑥, 𝑦, 𝜑)𝑝̂𝜋(𝑥̃, 𝑦;𝜑
*) 𝑑𝑥𝑑𝑦 . (18)

Note that 𝜈(𝑥̃|𝑥) is distinct from the augmentation strategy
applied to the model being trained. Similar to Equation (8),
we refer to the 𝜈(𝑥̃|𝑥) as teacher augmentation.

3.5. Self-correction for memorized instances
We further discuss the behavior of the neural vicinal dis-
tribution over a noisy training dataset. Notably, when a
training dataset includes mislabeled instances, a teacher
neural network can overfit to these noisy labels, where the
neural empirical risk minimization fails in mitigating the
impact. Interestingly, we observe that the neural vicinal dis-
tribution exhibits robustness against label noise, effectively
self-correcting incoherent labels within the training set.

To understand this phenomenon, we visualize the behav-
ior of the neural vicinal distribution in Figure 2a. Here,
we compare the softmax scores from the augmented input
samples, distinguishing between the neural empirical dis-
tribution (red marker) and the neural vicinal distribution
(blue markers). For the transformation policy, the network
was trained using random crop augmentation and AutoAug-
ment [28] is chosen as the vicinal distribution to generate
the novel views. The top row shows clean instances and the
bottom row shows mislabeled instances.

The visual analysis contrasts the softmax predictions from
both seen and novel views of clean and mislabeled training
instances. The self-correction of the neural vicinal distribu-
tion is instance-dependent which responds differently based
on if an instance is clean or mislabeled. Notably, while the
teacher network’s predictions for the novel views tend to
shift misclassified predictions towards ground truth, they
remain consistent for clean samples. This suggests that the
network outputs corrected predictions by dissociating the
novel views from the memorized views.

Next, in Figure 1, we analyzed the label correction be-
havior of the neural vicinal distribution over the dataset
population. Note that the models are trained only using
the noisy training set, without access to the ground-truth
labels. Applying transformation (blue curve) significantly
reduced the GT class cross-entropy loss compared to no
transformation (red curve), and we observed a good sepa-
ration between the two distributions. Also, Table 1 shows
the ground-truth accuracy for the training samples where
we observed significant improvements for the mislabeled
instances when transformation is applied.

We additionally observed that ensembling perturbed pre-
dictions enhances the calibration, as depicted in Figure 2b.
While the original model is heavily over-confident due to
overfitting (red), vicinal prediction improves accuracy and
reflects class ambiguities. (blue)

4. Method
Motivated from the observation in Section 3.5, we propose a
novel learning method for noisy labels named Noise-robust
Distillation (NRD). Our method is formulated as a simple

loss function which makes it easy to employ in existing
training pipeline.

For this, we combine the target loss with the neural vic-
inal risk loss as a regularization objective. We formulate
the combined objectives into a triplet loss. We have found
Jensen-Shannon divergence (JSD) to be effective which gen-
eralizes to a triplet loss. The JSD for three distributions
is,

JSD𝜋(p1,p2,p3) =
∑︁
𝑖

𝜋𝑖𝐷KL (pi||m) , (19)

where m =
∑︀

𝑖 𝜋𝑖pi. The hyperparameter 𝜋 ∈ ∆2 is
chosen to balance the importance weight between the dis-
tributions. Additionally, JS divergence is known to have a
nice robustness property against label noise. [6] showed
that JS divergence simulates MAE loss [5] in its asymptote.

Next, we derive our NRD objective step-by-step. By ap-
plying NVR to JSD loss, we have

ℒ(𝜃;𝑥,y, 𝜑) = JSD𝜋(y,ys,y𝑡) (20)

ys = 𝑓(𝑥, 𝜃) (21)

yt = E
𝜈(𝑥̃|𝑥)

[𝑓(𝑥̃, 𝜑)] , (22)

assuming that we have a trained teacher network 𝜑. Here,
y is the target label, ys is the model output and yt

is the teacher network output. The loss is solved for
min𝜃 ℒ(y,ys,yt).

To improve noise-robustness, we can further employ an
iterative distillation scheme which we repeat the strategy
for multiple rounds of training. We set the teacher network
as the model obtained from the previous training round,
such that 𝜑𝑡 = 𝜃𝑡−1 at the 𝑡-th training round. Applying to
Equation (20),

𝜃𝑡 = argmin
𝜃

ℒ(𝜃;𝑥,y, 𝜃𝑡−1) . (23)

A student network obtained from previous training round
is switched to the teacher role for next round. However,
in practice, we found this to be unstable and difficult to
converge. Instead, we take the exponential average of the
historical models as the teacher and set 𝜑𝑡 = 𝜃̄𝑡−1.

𝜃̄𝑡 = 𝛽 · 𝜃̄𝑡−1 + (1− 𝛽) · 𝜃𝑡 . (24)

For the decay rate, we simply set 𝛽 = 0.99 for all exper-
iments. The aggregation reduces the variance of neural
vicinal risk estimation caused by stochastic gradient, and
we have empirically found that it effectively stabilizes the
training and lead to faster convergence.

Finally, we formally define our NRD training objective.
To reduce the training cost, we simplify each training round
into a single step of stochastic gradient descent. (SGD)
This simplifies the algorithm from multi-staged process into
a single-staged process, and significantly accelerates the
training. The NRD objective is,

ℒNRD(𝜃;𝑥,y, 𝜃̄) = JSD𝜋(y,ys,yt) (25)

ys = 𝑓(𝑥, 𝜃) (26)

yt = E
𝜈(𝑥̃|𝑥)

[︀
𝑓(𝑥̃, 𝜃̄)

]︀
, (27)

with a slight abuse of notation for 𝜃̄, which is not an op-
timization variable but continuously updated after each
SGD step. This is implemented by detaching yt from the

Algorithm 1 PyTorch-style pseudocode

ema_model = ema(model)
optimizer = sgd_optimizer(model)

for x, y in dataloader:
x_t = teacher_aug(x)
x_s = student_aug(x)

disconnect from backprop
y_t = ema_model(x_t).detach()
y_s = model(x_s)

distance between predictions
loss = js_div(y, y_s, y_t)
loss.backward()
optimizer.step()
ema_model.update()

backpropagation graph, which prevents the model from
memorizing the teacher augmentation views. (stop-grad in
Figure 3) For Equation (27), we found single sample per SGD
step was sufficient. The overall architecture is illustrated in
Figure 3 and the pseudocode is presented in Algorithm 1.

5. Experiments

5.1. Experimental settings
Benchmarking datasets For synthetic label noise bench-
marks, we used NoisyCIFAR-10, NoisyCIFAR-100 [29]. For
symmetric label noise, we randomly flip the ground truth
label with a probability 𝜂 uniformly across all categories.
For asymmetric label noise, we follow the scheme in [30].
For NoisyCIFAR-10-asymm, we flip truck→automobile,
bird→airplane, cat→dog, dog→cat, deer→horse. For
NoisyCIFAR-100-asymm, within each superclass, we ran-
domly replace a subclass label 𝑦𝑖 to adjacent subclass 𝑦𝑖 +1
with probability 𝜂.

For the real-world benchmark, we used WebVision [31]
dataset. WebVision consists of 2.4M training examples col-
lected via Google and Flickr image search. We used a minia-
turized training set following [32] which uses only the first
50 categories in the “Google” image set. Mini-WebVision
consists of 66K training and 2.5K validation examples. We
additionally evaluated the trained model on ImageNet [33]
validation set. The noise rate is known to be around 20%.
Baseline methods For the CIFAR benchmarks, we com-
pare against cross-entropy (CE), bootstrapping (BS) [34],
label smoothing (LS) [35], symmetric cross-entropy (SCE)
[36], generalized cross-entropy (GCE) [37], normalized loss
(NCE+RCE) [38], Jensen-Shannon divergence (JS, GJS) [6].

For the WebVision benchmarks, we compared our method
with the state-of-the-art methods including ELR+ [10], Di-
videMix [14], and GJS [6]. The baseline results were adopted
from [6].
Models PreActResNet-34 architecture [39] is used for all
experiments conducted on CIFAR-10/100 datasets. For We-
bVision experiments, we used ResNet-50. All experiments
were trained from random initialization.
Augmentation policy For the CIFAR experiments, we fol-
lowed [6] and used RandAugment [40] chained with Cutout
[41] for all methods. For the NRD teacher transformation,
we used AugMix [42] in all experiments.
Hyperparameters For CIFAR-10/100 benchmarks, we used
400 epochs for each training. We used SGD optimizer with
momentum 0.9 and weight decay of 10−4. Learning rates

Table 2
Noisy label performance on synthetic noisy label benchmarks. We used NoisyCIFAR-10 and NoisyCIFAR-100 datasets. Values
indicate clean test accuracy. All values are averaged over five independent runs. The best and second best results are highlighted
in bold.

NoisyCIFAR-10 NoisyCIFAR-100

Symmetric Asymmetric Symmetric Asymmetric
Noise rate 20% 40% 60% 80% 20% 40% 20% 40% 60% 80% 20% 40%

CE 91.63 87.74 81.99 66.51 92.77 87.12 65.74 55.77 44.42 10.74 66.85 49.45
BS 91.68 89.23 82.65 16.97 93.06 88.87 72.92 68.52 53.80 13.83 73.79 64.67
LS 93.51 89.90 83.96 67.35 92.94 88.10 74.88 68.41 54.58 26.98 73.17 57.20

SCE 94.29 92.72 89.26 80.68 93.48 84.98 74.21 68.23 59.28 26.80 70.86 51.12
GCE 94.24 92.82 89.37 79.19 92.83 87.00 75.02 71.54 65.21 49.68 72.13 51.50

NCE+RCE 94.27 92.03 87.30 77.89 93.87 86.83 72.39 68.79 62.18 31.63 71.35 57.80
JS 94.52 93.01 89.64 76.06 92.18 87.99 75.41 71.12 64.36 45.05 71.70 49.36

GJS 95.33 93.57 91.64 79.11 93.94 89.65 78.05 75.71 70.15 44.49 74.60 63.70
NRD (ours) 95.43 94.65 92.45 85.32 93.90 91.25 78.54 76.29 72.43 60.01 76.07 61.40

Table 3
Real-world noisy label benchmark on WebVision. The models
are trained using the WebVision training set, and evaluated on
WebVision and ImageNet validation sets. The values indicate
accuracy. IRNv2 and RN50 indicates Inception-ResNet-V2 and
ResNet-50, respectively. 𝑁 indicates the number of networks
used.

WebVision ImageNet

Method Arch. Aug. 𝑁 Top-1 Top-5 Top-1 Top-5

ELR+ IRNv2
MixUp 2

77.78 91.68 70.29 89.76
DivideMix IRNv2 77.32 91.64 75.20 90.84
DivideMix RN50 76.32 90.65 74.42 91.21

CE RN50

ColorJitter 1

70.69 88.64 67.32 88.00
JS RN50 74.56 91.09 70.36 90.60

GJS RN50 77.99 90.62 74.33 90.33
NRD (ours) RN50 78.56 92.48 75.24 92.36

were reduced by a factor of 0.1 after 200-th and 300-th epoch.
For WebVision benchmarks, we trained the network for 300
epochs. Learning rate was reduced by a factor of 0.1 after 150
and 250 epochs. Refer to Appendix A for hyperparameter
configuration details.

5.2. Results
Performance on noisy label benchmarks In Table 2,
we show the performance of our method in comparison to
robust loss functions. While most of the baselines shows
inconsistent performance between symmetric and asymmet-
ric noise types, our method shows consistent improvement
across a wide range of noise rates and noise types. No-
tably, we significantly improve performance under high
noise rate settings where GJS tend to underperform. For
NoisyCIFAR-10 80% noise, we improve by 5%p over SCE,
and for NoisyCIFAR-100-80%, we improve by 10%p over
GCE.

Furthermore, the results on large-scale real-world noisy
label benchmark is shown in Table 3. Notably, we observed
that our method outperforms over existing methods that
uses two networks.
Performance on clean datasets The proposed method im-
proves model generalization when applied to clean dataset
training as seen in Table 4. This is because the training
dataset contains visually ambiguous images that make it
difficult to draw a clear decision boundary, and therefore
the hard target distributions from the annotations serve as

Table 4
Performance on clean CIFAR-10 and CIFAR-100 datasets. The
values indicate test accuracy.

Method CIFAR-10 CIFAR-100

CE 94.35 77.60
GCE 94.00 77.65
GJS 94.78 79.27

NRD (ours) 95.05 79.61

0 200 400 600 800 1000
Epoch

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Method and Noise Rate ()
GJS =0.2
GJS =0.4
GJS =0.6
GJS =0.8
NRD =0.2
NRD =0.4
NRD =0.6
NRD =0.8

Figure 4: Comparison of overfitting behavior in consistency reg-
ularization (GJS [6]). Enforcing consistency does not fully prevent
overfitting because the model memorizes the noisy labels after
an extended number of epochs. In contrast, our method (NRD)
effectively prevents memorization. NoisyCIFAR-100 dataset is
used.

a type of noisy supervision signal. We show that applying
NRD can regularize and improve the performance of the
model.
Comparison to consistency regularization Consistency
regularization used in GJS is a powerful technique for noise-
robustness. While it is similar to NRD, however, it does
not directly prevent memorization of noisy labels. Figure 4
shows that GJS suffers from overfitting when trained for an
extended number of steps. This is shown by test accuracy
decreasing after reaching a peak at an early epoch. In con-
trast, NRD significantly mitigates overfitting. Notably, in
80% noise rate setting, we improve GJS by 36%p. The key
contributing factor is that our method uses stop-gradient
which directly prevents the model from memorizing the
views generated by the asymmetric augmentation policy.

0 0.2 0.4 0.6 0.8 1.0
Confidence

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CE, ECE=0.08
CE+NRD, ECE=0.09

(a) 𝜂 = 0.2

0 0.2 0.4 0.6 0.8 1.0
Confidence

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CE, ECE=0.31
CE+NRD, ECE=0.13

(b) 𝜂 = 0.5

0 0.2 0.4 0.6 0.8 1.0
Confidence

0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CE, ECE=0.63
CE+NRD, ECE=0.13

(c) 𝜂 = 0.8

Figure 5: Comparison of CE baseline and NRD models trained on
NoisyCIFAR-10 with symmetric label noise, where 𝜂 denotes the
noise rate. Expected calibration error (ECE) is measured. NRD
training consistently improves calibration across a range of noise
rates.

Confidence calibration In Figure 5, we additionally eval-
uated the calibration performance. We observed that the
regularization effect from NRD also improves calibration
of the model. Our method shows consistent calibration
performance across all noise rates, which aligns with the
performance of our method.

6. Conclusion
Our work proposes Noise-Robust Distillation (NRD) which
is a simple regularization objective that is designed to im-
prove a wide range of noisy supervision problems in training.
We motivate our method based on the novel formulation
of Neural Vicinal Risk (NVR) minimization, which focuses
on leveraging deep neural networks to improve empirical
risk minimization under noisy supervision scenarios. A key
insight of our work is the inherent capacity of deep neural
networks to detect and correct mislabeled examples based
on vicinal distribution, a feature we exploited to improve
model predictions and calibration. We have validated our
method on several noisy label learning benchmarks. The
results show clear improvements in performance compared
to the baselines under noisy supervision. These findings
suggest that NRD offers an effective strategy for handling
noisy supervision, leading to enhanced generalization per-
formance of classification models.

Acknowledgement This work was supported by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT) (No. RS-2023-00240379).

References
[1] L. Schmarje, V. Grossmann, C. Zelenka, S. Dippel,

R. Kiko, M. Oszust, M. Pastell, J. Stracke, A. Valros,
N. Volkmann, et al., Is one annotation enough?-a data-
centric image classification benchmark for noisy and
ambiguous label estimation, in: Thirty-sixth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

[2] S. Yun, S. J. Oh, B. Heo, D. Han, J. Choe, S. Chun, Re-
labeling imagenet: from single to multi-labels, from
global to localized labels, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2021, pp. 2340–2350.

[3] C. Lehman, Visualizing softmax, 2019.
URL: https://charlielehman.github.io/post/
visualizing-tempscaling/.

[4] H. Song, M. Kim, D. Park, Y. Shin, J.-G. Lee, Learning
from noisy labels with deep neural networks: A survey,

IEEE Transactions on Neural Networks and Learning
Systems (2022).

[5] A. Ghosh, H. Kumar, P. S. Sastry, Robust loss func-
tions under label noise for deep neural networks, in:
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[6] E. Englesson, H. Azizpour, Generalized jensen-
shannon divergence loss for learning with noisy labels,
Advances in Neural Information Processing Systems
34 (2021) 30284–30297.

[7] Y. Kim, J. Yim, J. Yun, J. Kim, Nlnl: Negative learning
for noisy labels, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
2019.

[8] Y. Kim, J. Yun, H. Shon, J. Kim, Joint negative and
positive learning for noisy labels, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 9442–9451.

[9] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Ben-
gio, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville,
Y. Bengio, S. Lacoste-Julien, A closer look at memo-
rization in deep networks, in: Proceedings of the 34th
International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
PMLR, 2017, pp. 233–242.

[10] S. Liu, J. Niles-Weed, N. Razavian, C. Fernandez-
Granda, Early-learning regularization prevents mem-
orization of noisy labels, in: Advances in Neural In-
formation Processing Systems, volume 33, 2020, pp.
20331–20342.

[11] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu,
T. Liu, Understanding and improving early stopping
for learning with noisy labels, in: Advances in Neural
Information Processing Systems, volume 34, 2021, pp.
24392–24403.

[12] S. Liu, Z. Zhu, Q. Qu, C. You, Robust training under la-
bel noise by over-parameterization, in: Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, PMLR, 2022, pp. 14153–14172.

[13] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang,
M. Sugiyama, Co-teaching: Robust training of deep
neural networks with extremely noisy labels, in: Ad-
vances in Neural Information Processing Systems, vol-
ume 31, 2018.

[14] J. Li, R. Socher, S. C. Hoi, Dividemix: Learning with
noisy labels as semi-supervised learning, in: Interna-
tional Conference on Learning Representations, 2020.

[15] J. Li, G. Li, F. Liu, Y. Yu, Neighborhood collective
estimation for noisy label identification and correction,
in: European Conference on Computer Vision, 2022.

[16] G. Zhao, G. Li, Y. Qin, F. Liu, Y. Yu, Centrality and
consistency: Two-stage clean samples identification
for learning with instance-dependent noisy labels, in:
European Conference on Computer Vision, volume
13685, 2022, pp. 21–37.

[17] S. Laine, T. Aila, Temporal ensembling for semi-
supervised learning, in: International Conference
on Learning Representations, 2017. URL: https://
openreview.net/forum?id=BJ6oOfqge.

[18] A. Tarvainen, H. Valpola, Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results, in: Advances
in Neural Information Processing Systems, volume 30,
2017.

https://charlielehman.github.io/post/visualizing-tempscaling/
https://charlielehman.github.io/post/visualizing-tempscaling/
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge

[19] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang,
C. A. Raffel, E. D. Cubuk, A. Kurakin, C.-L. Li, Fix-
match: Simplifying semi-supervised learning with con-
sistency and confidence, in: Advances in Neural In-
formation Processing Systems, volume 33, 2020, pp.
596–608.

[20] T. Miyato, A. M. Dai, I. Goodfellow, Adversarial train-
ing methods for semi-supervised text classification,
in: International Conference on Learning Representa-
tions, 2017.

[21] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,
A. Oliver, C. A. Raffel, Mixmatch: A holistic approach
to semi-supervised learning, in: Advances in Neural
Information Processing Systems, volume 32, 2019.

[22] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz,
mixup: Beyond empirical risk minimization, in: In-
ternational Conference on Learning Representations,
2018.

[23] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger, On calibra-
tion of modern neural networks, in: International con-
ference on machine learning, PMLR, 2017, pp. 1321–
1330.

[24] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhat-
tacharya, S. Michalak, On mixup training: Improved
calibration and predictive uncertainty for deep neu-
ral networks, in: Advances in Neural Information
Processing Systems, volume 32, 2019.

[25] G. Hinton, O. Vinyals, J. Dean, Distilling the knowl-
edge in a neural network, 2015. arXiv:1503.02531.

[26] O. Chapelle, J. Weston, L. Bottou, V. Vapnik, Vicinal
risk minimization, Advances in neural information
processing systems 13 (2000).

[27] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, Cut-
mix: Regularization strategy to train strong classi-
fiers with localizable features, in: Proceedings of the
IEEE/CVF international conference on computer vi-
sion, 2019, pp. 6023–6032.

[28] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le,
Autoaugment: Learning augmentation strategies from
data, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

[29] A. Krizhevsky, Learning multiple layers of features
from tiny images, Technical Report, 2009.

[30] G. Patrini, A. Rozza, A. Menon, R. Nock, L. Qu, Making
neural networks robust to label noise: a loss correction
approach, stat 1050 (2016) 13.

[31] W. Li, L. Wang, W. Li, E. Agustsson, L. Van Gool, We-
bvision database: Visual learning and understanding
from web data, arXiv preprint arXiv:1708.02862 (2017).

[32] P. Chen, B. B. Liao, G. Chen, S. Zhang, Understand-
ing and utilizing deep neural networks trained with
noisy labels, in: International Conference on Machine
Learning, PMLR, 2019, pp. 1062–1070.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei,
Imagenet: A large-scale hierarchical image database,
in: Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 248–
255.

[34] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Er-
han, A. Rabinovich, Training deep neural networks
on noisy labels with bootstrapping, arXiv preprint
arXiv:1412.6596 (2014).

[35] M. Lukasik, S. Bhojanapalli, A. Menon, S. Kumar, Does
label smoothing mitigate label noise?, in: International

Conference on Machine Learning, PMLR, 2020, pp.
6448–6458.

[36] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, J. Bailey, Sym-
metric cross entropy for robust learning with noisy
labels, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[37] Z. Zhang, M. Sabuncu, Generalized cross entropy loss
for training deep neural networks with noisy labels, in:
Advances in Neural Information Processing Systems,
volume 31, 2018.

[38] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, J. Bai-
ley, Normalized loss functions for deep learning with
noisy labels, in: Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, PMLR, 2020,
pp. 6543–6553.

[39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning
for image recognition, in: CVPR, 2016.

[40] E. D. Cubuk, B. Zoph, J. Shlens, Q. V. Le, Randaug-
ment: Practical automated data augmentation with a
reduced search space. 2020 ieee, in: CVF Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2019, pp. 3008–3017.

[41] T. DeVries, G. W. Taylor, Improved regularization of
convolutional neural networks with cutout, arXiv
preprint arXiv:1708.04552 (2017).

[42] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer,
B. Lakshminarayanan, AugMix: A simple data pro-
cessing method to improve robustness and uncertainty,
Proceedings of the International Conference on Learn-
ing Representations (ICLR) (2020).

[43] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in
deep residual networks, in: Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part
IV 14, Springer, 2016, pp. 630–645.

[44] T. maintainers, contributors, Torchvision: Pytorch’s
computer vision library, https://github.com/pytorch/
vision, 2016.

A. Detailed hyperparameter
configurations

A.1. CIFAR-10/100 benchmarks
General training details For the network architecture,
we use PreActResNet-34 [43]. For training, we use SGD
optimizer with momentum 0.9, a batch size of 128, and train
for 400 epochs. The learning rate is reduced by 1/10 at 50%
and 75% of the training iterations.
Augmentation policy For data augmentation, we use Ran-
dAugment [40] with 𝑁 = 1,𝑀 = 3 followed by random
crop (size 32 and 4-pixel padding), random horizontal flip
and Cutout [41] with length 5.
Hyperparameters See Table 5 for the details. For the base-
lines, we follow the same hyperparameter configurations
used by [6]. 40% noise rate setting was used to find the best
learning rates and weight decay rates. For the learning rates
and weight decay rates for NRD, we used the same configura-
tions as GJS. For the tuning of hyperparameters {𝜋1, 𝜋2, 𝜋3}
in the NRD loss, we fixed 𝜋1 = 𝜋3 so that the targets y and
yt have equal weight. We tuned 𝜋2 ∈ {0.1, 0.2, ..., 0.9}.
For the moving average decay rate, we used 𝛽 = 0.99 for

http://arxiv.org/abs/1503.02531
https://github.com/pytorch/vision
https://github.com/pytorch/vision

Table 5
Hyperparameters for CIFAR-10/100. The hyperparameters for the baseline methods are identical to [6]. For the learning
rate and weight decay, each entry denotes [LR, WD]. For the method-specific hyperparameters, each entry denotes its
hyperparameters: BS (𝛽), LS (𝜖), SCE ([𝛼, 𝛽]), GCE (𝑞), NCE+RCE ([𝛼, 𝛽]), JS (𝜋1), GJS (𝜋1), NRD ([𝜋1, 𝜋2, 𝜋3]).

Dataset Method
Learning Rate & Weight Decay Method-specific Hyperparameters

Sym Noise Asym Noise No Noise Sym Noise Asym Noise

20-80% 20-40% 0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE [0.05, 1e-3] [0.1, 1e-3] - - - - - - -
BS [0.1, 1e-3] [0.1, 1e-3] 0.5 0.5 0.7 0.7 0.9 0.7 0.5
LS [0.1, 5e-4] [0.1, 1e-3] 0.1 0.5 0.9 0.7 0.1 0.1 0.1
SCE [0.01, 5e-4] [0.05, 1e-3] [0.2, 0.1] [0.05, 0.1] [0.1, 0.1] [0.2, 1.0] [0.1,1.0] [0.1, 0.1] [0.2, 1.0]
GCE [0.01, 5e-4] [0.1, 1e-3] 0.5 0.7 0.7 0.7 0.9 0.1 0.1
NCE+RCE [0.005, 1e-3] [0.05, 1e-4] [10, 0.1] [10, 0.1] [10, 0.1] [1.0, 0.1] [10,1.0] [10, 0.1] [1.0, 0.1]
JS [0.01, 5e-4] [0.1, 1e-3] 0.1 0.7 0.7 0.9 0.9 0.3 0.3
GJS [0.1, 5e-4] [0.1, 1e-3] 0.5 0.3 0.9 0.1 0.1 0.3 0.3
NRD [0.1, 5e-4] [0.1, 1e-3] [0.2, 0.6, 0.2] [0.2, 0.6, 0.2] [0.2, 0.6, 0.2] [0.25, 0.5, 0.25] [0.25, 0.5, 0.25] [0.1, 0.8, 0.1] [0.15, 0.7, 0.15]

CIFAR-100

CE [0.4, 1e-4] [0.2, 1e-4] - - - - - - -
BS [0.4, 1e-4] [0.4, 1e-4] 0.7 0.5 0.5 0.5 0.9 0.3 0.3
LS [0.2, 5e-5] [0.4, 1e-4] 0.1 0.7 0.7 0.7 0.9 0.5 0.7
SCE [0.2, 1e-4] [0.4, 5e-5] [0.1, 0.1] [0.1, 0.1] [0.1, 0.1] [0.1, 1.0] [0.1,0.1] [0.1, 1.0] [0.1, 1.0]
GCE [0.4, 1e-5] [0.2, 1e-4] 0.5 0.5 0.5 0.7 0.7 0.7 0.7
NCE+RCE [0.2, 5e-5] [0.2, 5e-5] [20, 0.1] [20, 0.1] [20, 0.1] [20, 0.1] [20,0.1] [20, 0.1] [10, 0.1]
JS [0.2, 1e-4] [0.1, 1e-4] 0.1 0.1 0.3 0.5 0.3 0.5 0.5
GJS [0.2, 5e-5] [0.4, 1e-4] 0.3 0.3 0.5 0.9 0.1 0.5 0.1
NRD [0.2, 5e-5] [0.4, 1e-4] [0.2, 0.6, 0.2] [0.2, 0.6, 0.2] [0.2, 0.6, 0.2] [0.2, 0.6, 0.2] [0.15, 0.7, 0.15] [0.25, 0.5, 0.25] [0.4, 0.2, 0.4]

all experiments.

A.2. WebVision benchmark
General training details For the network architecture, we
use ResNet-50 with random initialization. For training, we
use SGD optimizer with momentum 0.9, a batch size of 64,
and train for 300 epochs. The initial learning rate was set to
0.1 and reduced by 1/10 after the 100-th and 200-th epoch.
Augmentation policy For data augmentation, we use ran-
dom resized crop with size 224, random horizontal flip, and
color jitter. We used the color jitter implementation from
TorchVision [44] with brightness=0.4, contrast=0.4, satura-
tion=0.4, hue=0.2. For the NRD teacher augmentation, we
use AugMix [42] followed by random resize crop with size
224 and random horizontal flip.
Hyperparameters For the hyperparameters {𝜋1, 𝜋2, 𝜋3}
in the NRD loss, we used 𝜋1 = 𝜋3 = 0.1 and 𝜋2 = 0.8.
The moving average decay rate was set to 𝛽 = 0.99.

B. Training dynamics visualization
of perturbed inputs

In this section, we provide the visualized trajectory of the
model prediction of the perturbed inputs throughout train-
ing. (See Table 6) These are the same plots presented in Fig-
ure 2a, albeit on different mid-training epochs. The model
is trained using a standard training scheme with the cross-
entropy loss on the NoisyCIFAR-10-symm-40% dataset. We
observe that a significant portion of the predictions per-
turbed using augmentation unseen at training (AutoAug-
ment) gradually settles to the ground truth class, whereas
the predictions perturbed using the same augmentation pol-
icy used at training (RandomCrop) eventually converge to
the noisy target class. The result shows that predictions
from the perturbation identical to the training augmenta-
tion (red markers) are non-noise-robust distillation targets,
whereas the predictions from the unseen perturbation (blue
markers) are noise-robust distillation targets.

Table 6
Visualization of the model prediction over training. We randomly selected four distinct noisy samples from the training dataset,
which corresponds to the four rows. The model is trained using RandomCrop and tested using RandomCrop-perturbed inputs
(red) and AutoAugment-perturbed inputs (blue). Leftmost column shows the predicted confidence of the perturbed inputs
with respect to the ground-truth classes. The figures on the right hand-side visualizes the softmax vectors projected onto a
decagonal surface, which are analogous to Figure 2a. At the early phase of the training, both red and blue markers predict the
ground-truth class. However, as the training progresses and the model overfits to the noisy labels, the red markers predict the
target label, whereas a significant portion of the blue markers predicts the ground-truth markers. This shows that unseen
perturbation to the input can produce noise-robust learning signal for training.

Confidence of GT class Epoch 40 Epoch 70 Epoch 100 Epoch 150

0 40 70 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 o

f G
T

cl
as

s Autoaugment
RandomCrop

airplane

automobile
gt

bird

cat
deerdog

frog

horse

ship
truck
label

airplane

automobile
gt

bird

cat
deerdog

frog

horse

ship
truck
label

airplane

automobile
gt

bird

cat
deerdog

frog

horse

ship
truck
label

airplane

automobile
gt

bird

cat
deerdog

frog

horse

ship
truck
label

0 40 70 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 o

f G
T

cl
as

s Autoaugment
RandomCrop

airplane

automobile

bird
gt

cat
deerdog

label

frog

horse

ship
truck airplane

automobile

bird
gt

cat
deerdog

label

frog

horse

ship
truck airplane

automobile

bird
gt

cat
deerdog

label

frog

horse

ship
truck airplane

automobile

bird
gt

cat
deerdog

label

frog

horse

ship
truck

0 40 70 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 o

f G
T

cl
as

s Autoaugment
RandomCrop

airplane

automobile
label

bird

cat
deerdog

frog
gt

horse

ship
truck airplane

automobile
label

bird

cat
deerdog

frog
gt

horse

ship
truck airplane

automobile
label

bird

cat
deerdog

frog
gt

horse

ship
truck airplane

automobile
label

bird

cat
deerdog

frog
gt

horse

ship
truck

0 40 70 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 o

f G
T

cl
as

s Autoaugment
RandomCrop

airplane

automobile

bird

cat
deerdog

frog
label

horse
gt

ship
truck airplane

automobile

bird

cat
deerdog

frog
label

horse
gt

ship
truck airplane

automobile

bird

cat
deerdog

frog
label

horse
gt

ship
truck airplane

automobile

bird

cat
deerdog

frog
label

horse
gt

ship
truck

	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Notations
	3.2 Empirical Risk
	3.3 Neural Empirical Risk
	3.4 Vicinal risk for noise-robust learning
	3.5 Self-correction for memorized instances

	4 Method
	5 Experiments
	5.1 Experimental settings
	5.2 Results

	6 Conclusion
	A Detailed hyperparameter configurations
	A.1 CIFAR-10/100 benchmarks
	A.2 WebVision benchmark

	B Training dynamics visualization of perturbed inputs

