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Abstract
Multimodal vector search offers a new paradigm for information retrieval by exposing numerous pieces of

functionality which are not possible in traditional lexical search engines. While multimodal vector search can be

treated as a drop in replacement for these traditional systems, the experience can be significantly enhanced by

leveraging the unique capabilities of multimodal search. Central to any information retrieval system is a user

who expresses an information need, traditional user interfaces with a single search bar allow users to interact

with lexical search systems effectively however are not necessarily optimal for multimodal vector search. In this

paper we explore novel capabilities of multimodal vector search applications utilising CLIP models and present

implementations and design patterns which better allow users to express their information needs and effectively

interact with these systems in an information retrieval context.
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1. Introduction

Different search backends lead to differing search experiences. This necessitates considered implemen-

tation of methods of interaction. Modern multimodal search applications leverage artificial intelligence

(AI) models capable of producing representations which unify different modalities. While a multimodal

vector search system can be treated as a drop in alternative to a traditional keyword search engine,

merely using it as a direct replacement doesn’t exploit its full potential. The fundamental components

of a standard search interface have remained largely unchanged since early research into interfaces for

statistical retrieval systems, such as inverted indices with TF-IDF[1] or BM25[2]. Emerging areas, such

as generative AI, have driven the development of new Human Computer Interaction (HCI) paradigms.

Chatbot agents such as OpenAI’s ChatGPT[3] have exposed users to new ways of seeking information

with natural language[4, 5]. Multimodal vector search systems offer a similar green field for HCI

research.

In this paper we explore techniques and interface elements for multimodal vector search in online

image search applications
1
. In particular, we focus on multimodal systems built with CLIP models[6],

however much of the content generalizes to other multimodal models (such as ImageBind[7] or

LanguageBind[8]). We provide visual examples of UI implementations and define the concepts of

query refinement, semantic filtering, contextualisation, and random recommendation walks as they per-

tain to multimodal information retrieval. We aim to provide practical implementations who’s complexity

can be hidden from the user making them suitable for non-expert users.
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2. Properties of Multimodal Models and Representations

To develop effective methods of interaction for multimodal vector search applications, it is essential to

understand the properties of multimodal models and representations. In this section, we discuss the

properties of CLIP models and vector representations for multimodal search.

2.1. Properties of CLIP Models

CLIP models are a class of models trained to encode images and text into a shared embedding space[6].

CLIP models are trained on large datasets of text and image pairs[9] to maximize the cosine similarity

between matching image-text pairs and minimize the similarity between non-matching pairs, typically

done with in-batch negatives. This allows for the model to be used for a variety of tasks such as

zero-shot classification and retrieval.

2.2. Vector Representations for Multimodal Search

Multimodal models, such as CLIP, create vectors for each modality that exist within a shared space.

Multiple vectors of one or more modalities can be combined into a single representation via weighted

interpolations, such as linear interpolation (lerp) or spherical linear interpolation (slerp)[10].

Given a set of 𝑛 vectors 𝑉 = {𝑣1,𝑣2, . . . ,𝑣𝑛 | ‖𝑣𝑖‖ = 1} in R𝑑
, and their corresponding weights

𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛 | 𝑤𝑖 ∈ R}, we can define lerp and slerp as follows:

Linear Interpolation (lerp):

𝑣
lerp

=
𝑛∑︁

𝑖=1

𝑤𝑖𝑣𝑖

Then, normalize the result to obtain the final result:

𝑣
lerp

=
𝑣

lerp

‖𝑣
lerp
‖

Spherical Linear Interpolation (slerp):
Spherical linear interpolation does not apply natively to 𝑛 vector combinations, an iterative approach

can be used to merge vectors hierarchically. The algorithm for hierarchical slerp is presented in

Algorithm 1.



Algorithm 1 Hierarchical slerp Interpolation

Require: Set of unit vectors 𝑉 = {𝑣1,𝑣2, . . . ,𝑣𝑛} and weights 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}
Ensure: Interpolated vector 𝑣

slerp

1: Initialize 𝑉 (0) ← 𝑉 , 𝑊 (0) ←𝑊
2: while length of 𝑉 (𝑘) > 1 do
3: Initialize 𝑉 (𝑘+1) ← [], 𝑊 (𝑘+1) ← []
4: for i = 1 to ⌊length of 𝑉 (𝑘)

/2⌋ do
5: Compute weights sum: 𝑤sum ← 𝑤

(𝑘)
2𝑖−1 + 𝑤

(𝑘)
2𝑖

6: Compute interpolation parameter: 𝑡← 𝑤
(𝑘)
2𝑖

𝑤sum

7: Compute interpolated vector: 𝑢
(𝑘)
𝑖 ← slerp(𝑣

(𝑘)
2𝑖−1,𝑣

(𝑘)
2𝑖 , 𝑡)

8: Update weights: 𝑤
(𝑘+1)
𝑖 ← 𝑤sum

2

9: Append 𝑢
(𝑘)
𝑖 to 𝑉 (𝑘+1)

, 𝑤
(𝑘+1)
𝑖 to 𝑊 (𝑘+1)

10: end for
11: if length of 𝑉 (𝑘)

is odd then
12: Append the last vector and weight unchanged to 𝑉 (𝑘+1)

and 𝑊 (𝑘+1)

13: end if
14: Update 𝑉 (𝑘) ← 𝑉 (𝑘+1)

, 𝑊 (𝑘) ←𝑊 (𝑘+1)

15: end while
16: return 𝑉 (𝑘)[0]

where the function slerp(𝑣0,𝑣1, 𝑡) is defined as follows:

slerp(𝑣0,𝑣1, 𝑡) =
sin((1− 𝑡)Ω)

sinΩ
𝑣0 +

sin(𝑡Ω)

sinΩ
𝑣1

and Ω = arccos(𝑣0 · 𝑣1).
Combined representations via lerp and slerp merge understanding from multiple fields and modalities

into a single unit normalized vector which can be compared to other merged vectors or individual vectors

produced by the same model. This property arises naturally with CLIP models however techniques

such as Generalized Contrastive Learning (GCL) can also be used to directly optimise for this[11].

3. User Interface Elements and Implementations

In this section, we present user interface elements and their implementations for multimodal vector

search applications. These elements are inspired by the nature of CLIP models and properties of

multimodal representations discussed in Section 2.1 and Section 2.2.

3.1. Query Refinement

Query refinement is not something new in the field of information retrieval, however multimodal vector

search enables novel and effective implementations. By merging the query with additional queries,

users can provide more context to the search engine, which can lead to more relevant results. This can

be done iteratively by interpolating additional query vectors with positive or negative weights. Vectors

for queries can be merged with approaches such as lerp or slerp as discussed in Section 2.2. Many

existing search UIs treat search as a single shot process, similar to what is done in information retrieval

benchmarking, in reality though, this is not reflective of real world scenarios. Users interact with retrieval

systems in a search session where multiple queries are executed[12, 13], iterative refinement ties into

this concept and bears semblance to other models of information retrieval such as berrypicking[14].

One way in which we can present this functionality is through additional input fields which enable

query refinement with natural language as shown in Figure 1. Each input corresponds to a term which is



vectorised and combined via linear interpolation with weights, "more of this" query terms are assigned

a positive weight and "less of this" query terms are assigned a negative weight.

Figure 1: Multiple search fields for query refinement.

Formally, for a CLIP model 𝑀 with text encoder 𝑀txt, we can create refined queries from multiple

queries as follows:

𝑞
refined

= N [((𝑀txt(dining chair) · 1.0) + (𝑀txt(scandinavian design) · 0.6) + (𝑀txt(upholstery) · −1.1)]

where N[v] denotes the unit normalized version of the vector v. This vector 𝑞
refined

becomes the

query vector for the search engine. The weights are abstracted from the user allowing for iterative

refinement on results with natural language as shown in Figure 2.

Figure 2: Iterative refinement of search results with multi-part queries. Data presented here is from an online
furniture retailer.

3.1.1. Removing Low Quality Items

Query refinement can also be applied in marketplaces with large amounts of user generated content

where quality of product listings can be dubious. By merging a query with a negatively weighted

query term concerning quality we can dissuade the search from items relevant to the query indicating

a lack of quality in the visual component of the listing. Queries can be merged with vectors such as



(𝑀txt(low quality, low res, burry, jpeg artefacts) · −1.1). In a marketplace setting this can be used to

encourage higher quality listings with more professional or appealing photos as shown in Figure 3.

Figure 3: Query refinement to remove low quality items from search results.

3.2. Query Prompting and Expansion

In Section 2.1 we refered to how CLIP models are trained, providing an intuition as to the nature of

the text that is in domain for these models. In search, we often encounter short queries of one or two

words which don’t provide the level of specificity which would be typically considered in domain for

CLIP models given the captions they are trained with, this is similar to the problem of using CLIP for

zero-shot classification. When performing zero-shot classification with CLIP, dataset labels are typically

a single word, which does not align with the text captions seen in the model’s training data. To work

around this, labels are prefixed with additional text to convert it into a caption[15]. A simple prefix for

class labels in zero-shot classification is "a photo of a" or "an image of a"[16].

We draw influence from CLIP zero-shot classification implementations and present "semantic filtering"

as an approach to align queries with in domain captions and create query expansions with minimal user

input. Semantic filtering alters the semantic representation of a query to control results in a similar

manner to traditional filtering, without the need to label metadata. It provides a structured way to

perform query expansions[17, 18, 19] to short queries without requiring an expert user to design a

verbose query. This approach also draws inspiration from more modern prompt engineering strategies

used with Large Language Models (LLMs)[20]. The goal is to expand this user submitted query with

additional text within the model’s context window. For example, to semantically filter to a boho style

the, a query could be expanded with "A bohemian (boho) style image of a <QUERY>, rich in patterns,

colors, and textures" where <QUERY> is the user submitted query.

The process of prompt design can be abstracted from the user, we can retain familiar UI elements

while altering their backend implementation to expose new functionality to the user. This can be done

by providing a set of predefined prompts which can be selected by the user to modify the query. A

traditional selector as shown in Figure 4 is a suitable element to expose this functionality.



Figure 4: Query prompting with predefined prompts. In this example we use "A black and white, monochromatic
image of a <QUERY>".

3.2.1. Realtime LLM Assisted Query Expansion

Semantic filtering can also be performed online with the inclusion of vision capable LLMs. Using direct

or indirect user feedback on search results with a visual component we can prompt LLMs to extract

query expansion terms to better align a user’s search term with their desired information. This is

useful when a user may not know the best way to describe a visual style they are looking for or if they

are unaware of the semantic capabilities of the underlying search engine. The process is depicted in

Figure 5.

Figure 5: Online query expansion via semantic filtering with LLM generated expansion terms from user
preferences.

3.3. Realtime Personalisation and Contextualised Search

Taking influence from the field of relevance feedback[21, 22], vectors of existing documents in the index

can be harnessed as query expansion terms in realtime, steering search results towards analogous items.

Contextualisation can be broadly categorised into two types:

• Intra-category Contextualisation: These contextualise with items from the same category. For

instance, recommending another watch based on a user’s preference for a specific watch model.

• Inter-category Contextualisation: Here, contextualisations span different categories. An

example might be tailoring search results for "couch" by a user’s affinity for certain rug patterns

or style of coffee table.

Intra-category contextualisation is the simpler of the two cases and can be achieved by combining a

query with information from documents from its own result set, a well established pattern in relevance



feedback. Inter-category contextualisation is more challenging; it is not something that is easily done

with lexical search implementations, however with multimodal embedding models, information can be

combined across categories. These contextualisations can be implemented with explicit, implicit, or

pseudo relevance feedback.

Intra-category contextualisation can be achieved by merging the query vector with one or more

results from the existing result set, the original query retains the majority of the weight, as shown in

Figure 6.

Figure 6: Contextualisation of a search for a watch with a similar watch model.

The ability of CLIP models to capture complex inter-category relationships can be applied to dis-

connected pieces of information, in Figure 7 we show that text queries can be contextualised with

cross-modal information, in particular that a search for a backpack can be tailored with an image of a

forest.

Figure 7: Contextualisation of a backpack search with an image of a forest setting, where a more rugged
backpack would be suitable.



Figure 8: Recommendation ensembling effect between two product embeddings using slerp. Data used originates
from a global online e-commerce retailer.

3.4. Recommendations as Search

Recommendations are an application of search. To formulate recommendations as a search problem we

consider a query vector 𝑞 in R𝑑
which exists in the same embedding space as a corpus of vectors 𝑋 ;

where in search 𝑞 would be derived from a user submitted query, in recommendations this vector is

derived from some other source, or combination of sources, which orients the vector towards suitable

item recommendations. This formulation can be applied to multimodal search applications with models

like CLIP; the high dimensional embedding spaces is sufficiently expressive, with enough degrees of

freedom, to create these representations. Formulation of recommendations as a search problem is trivial

for similar items however raises challenges for diversification of recommended items. We present two

approaches to tackle this issue:

• Vector Ensembling: Merging vectors for disparate items to ensemble content.

• Random Recommendation Walks: Traversal of the vector space for adjacent items to explore

diverse but related content.

3.4.1. Vector Ensembling

A recommendation vector can be constructed from document vectors, pieces of user information, or

any combination of any number of both. Combination can be done with techniques such as lerp or

slerp as discussed in Section 2.2. Interpolation between vectors of the same class (e.g. all document

embeddings) with equal weights seeks a middle point between their representations which provides

an ensembling effect where distinct classes of items can be retrieved by a single vector with some

shared qualities. Using slerp preserves the geometric relationship between constituent vectors in the

hypersphere, calculated as v
ensembled

= HierarchicalSlerp(𝑉,𝑊 ) where ∀𝑤 ∈𝑊, 𝑤 = 1. This is useful

in online recommendations applications where interactions from clicks or add-to-carts (ATCs) can be

used to build a dynamic list of products to ensemble when generating recommendations. An example

of this ensembling effect is shown in Figure 8.

Utilising existing document vectors for the search means that recommendations can be done in

realtime and has no cold-start problem for new products or users. Information can be gathered from a

session on the fly without prior knowledge about the user[23].



3.4.2. Random Recommendation Walks

To diversify recommendations we must deviated from the immediate neighbourhood of our query

vector without disregarding relevancy. Random walks can achieve this by finding neighbours to our

initial recommendation vector, selecting neighbours, and exploring outwards from these neighbours

(using their embeddings as queries). We present a process for performing random recommendation

walks in Algorithm 2 and Algorithm 3.

Algorithm 2 Generate Recommendation Tree with a Random Walk

Require: v ∈ R𝑑
, 𝐿: number of layers, 𝐶 : maximum children per node, 𝑘: nearest neighbours

Ensure: 𝑟𝑜𝑜𝑡: Tree structure with children up to 𝐿 layers deep

1: Initialize 𝑟𝑜𝑜𝑡 with (v, {}) as the vector and an empty list for children

2: Initialize 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 set with {v}
3: Initialize 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡 as a queue containing 𝑟𝑜𝑜𝑡
4: for ℓ = 1 to 𝐿− 1 do
5: Initialize 𝑛𝑒𝑥𝑡𝐹𝑟𝑜𝑛𝑡 as an empty queue

6: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡 ̸= ∅ do
7: Dequeue 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑚 from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡
8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← GetLayer(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑚,𝐶, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑘)
9: for each 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

10: Enqueue child into 𝑛𝑒𝑥𝑡𝐹𝑟𝑜𝑛𝑡
11: end for
12: end while
13: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡← 𝑛𝑒𝑥𝑡𝐹𝑟𝑜𝑛𝑡
14: end for
15: return 𝑟𝑜𝑜𝑡

Algorithm 3 Get Layer

Require: item, 𝐶 : maximum children per node, visited: set of visited vectors, 𝑘: nearest neighbours

1: v, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← item

2: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← NN(v, 𝑘) {Nearest neighbours search for 𝑘 neighbours}

3: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠← {r ∈ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 | r /∈ visited}
4: if 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = ∅ then
5: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← ∅
6: return ∅
7: end if
8: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠← RandomSample(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠, 𝐶)
9: Initialize 𝑙𝑎𝑦𝑒𝑟 ← ∅ {Empty list}

10: for each r ∈ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠 do
11: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {r}
12: rData← {(v, {})} {Vector and empty list for children}

13: 𝑙𝑎𝑦𝑒𝑟 ← 𝑙𝑎𝑦𝑒𝑟 ‖ r_data {Append rData to 𝑙𝑎𝑦𝑒𝑟}

14: end for
15: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← 𝑙𝑎𝑦𝑒𝑟
16: return 𝑙𝑎𝑦𝑒𝑟

In practice, this output can be represented in a variety of formats. A typical grid or carousel layout can

be used to display the results of the random recommendation walk. Another more tailored visualisation

is to retain the tree structure created by the traversal as shown in Figure 9. These trees can be interactive

to enable exploratory search and discovery.



Figure 9: A recommendation tree generated by a random walk from neon lights. The walk explores adjacent
concepts in neon lighting, general lighting, and interior design.

4. Conclusion

In this paper, we have explored the unique capabilities and enhanced user experiences offered by

multimodal vector search systems, particularly those leveraging CLIP models. By understanding the

properties of these models and their vector representations, we proposed novel user interface elements

that can effectively facilitate the expression of information needs in a multimodal context. Techniques

such as query refinement, semantic filtering, contextualisation, and recommendations offer the potential

to improve search relevance and user satisfaction. The implementation of linear interpolations and

spherical linear interpolations with hierarchical slerp, provides robust methods for combining vectors

across different modalities. This allows for more nuanced and contextually relevant search results,

demonstrating the unique properties of multimodal vector search when compared to traditional lexical

search systems. Additionally, the introduction of vision capable LLMs for realtime query expansion

further extends how multiple modalities can be leveraged in search experiences.

While our study focuses on CLIP models, the principles and techniques described are broadly

applicable to other multimodal models such as ImageBind and LanguageBind. The proposed user

interface elements and implementations are broadly applicable in various multimodal search applications.

By presenting these multimodal search capabilities and their implementations, we hope to further

understanding and ideation around how users can be enabled in describing their information need. Our

goal is to deliver more intuitive and effective search experiences for users.
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