
Hybrid Games with Triggers⋆

Qais Hamarneh

Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract
Hybrid games are a highly expressive way to model the interaction between cyber-physical systems. This high
expressivity comes at the price of decidability. This work proposes an extension to hybrid games that adds the
conditions prompting agents to move. We call this extension hybrid games with triggers (HGT). We show how
this extension makes it possible to translate a hybrid game into a discrete game with countable state space.

Keywords
Hybrid Games, Hybrid systems, Discrete Games, Verification

1. Introduction

Modelling the interaction between multiple cyber-physical systems (CPS) is a critical problem in
computer science, particularly in formal methods. Many approaches were presented to model and
reason about this interaction, such as dynamic differential logic [1], and its extension to differential
game logic [2], algebraic [3] and coalgebraic [4] approaches among many others.

This work is based on modelling an interaction between multiple CPSs as a hybrid game [5], a
multi-agent extension of hybrid automata [6]. Hybrid games allow for discrete and continuous system
evolution. Typically, the discrete evolution represents the agents’ control, whereas the continuous
evolution represents the motion dynamics. While hybrid games are very expressive, this expressivity
comes at the price of decidability. In [7], Heinziger et al. show that the reachability in even very
restrictive fragments of hybrid automata, like a stopwatch automaton, is undecidable.

There have been multiple attempts to discretize hybrid systems [8] by restricting either the discrete
dynamics like in rectangular hybrid games [5] or the continuous dynamics like in o-minimal hybrid
games [9]. This work presents a novel extension of hybrid games that allows discretization without
restricting system dynamics. It does this by augmenting the hybrid game definition with information
about the agents’ rationale. This rationale is expressed as quantifier-free formulas of real arithmetic
called triggers. A trigger is a condition that the agent must act once satisfied. We call this extension
hybrid games with triggers (HGT).

HGTs are inspired by de Alfaro et al.’s timed games [10]. In this version of timed games, each agent
declares a time delay, after which they would take an action unless some other agent played first. In
essence, our extension replaces the time delay with arithmetic formulas, similar to the guards and
invariants of hybrid automata [6], and the timed game with a hybrid game.

Using a logical formula instead of a time delay brings multiple advantages. (1) Formulas reduce the
need for perfect information by covering cases without calculating the time required to reach them. For
instance, a car safety trigger could look like this:

free-ahead(𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛) ≤ braking-distance(𝑠𝑝𝑒𝑒𝑑). (1)

(2) Unlike time, a small set of formulas like 1 could be sufficient to model a complete system. (3) As we
show in this paper, given a countable language of real arithmetic [11], triggers reduce the hybrid game
into a discrete game with countable state space.

PhD Symposium of the 19th International Conference on Integrated Formal Methods (iFM)
at the University of Manchester, UK, 12 November 2024.
Envelope-Open qais.hamarneh@kit.edu (Q. Hamarneh)
GLOBE https://mase.kastel.kit.edu/team_qais_hamarneh.php (Q. Hamarneh)
Orcid 0009-0009-9718-1664 (Q. Hamarneh)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:qais.hamarneh@kit.edu
https://mase.kastel.kit.edu/team_qais_hamarneh.php
https://orcid.org/0009-0009-9718-1664
https://creativecommons.org/licenses/by/4.0/deed.en

In the next Section 1.1, we briefly overview the related work. Section 2 defines the hybrid games this
work is based on. The main contribution of this work is presented in sections 3 and 4. In Section 3,
we introduce the syntax and semantics of hybrid games with triggers, and we informally define the
algorithm to create a discrete game based on an HGT in Section 4. We conclude in Section 5 with a
summary and a look at future work.

1.1. Related Work

This work can be seen as a hybrid extension of de Alfaro et al.’s timed games [10]. Multiple points were
taken directly from the timed games, like the winning conditions and what happens when multiple
triggers are satisfied simultaneously. However, the discretization algorithm is entirely different. The
discretization in the timed games relies on the existence of a finite bisimulation of timed automata as a
region automata. Hybrid automata do not always offer a finite bisimulation [12].

As already discussed, other ways to discretize hybrid games exist [5][9], but where these methods
restrict the game dynamics to allow discretization, our approach rely on adding more information to
the game instead of restricting it.

Tight durational concurrent game structures (TDCGS) [13] are intuitively similar to hybrid game
with triggers. Transitions in TDCGS carry an integer time delay. This time, however, is treated as a
cost and does not reflect the evolution of the continuous dynamics.

2. Preliminaries

Hybrid Game

This definition of a hybrid game is adopted from [5]. The hybrid game is defined over a finite set of
real-valued variables 𝑋. The set of all valuations 𝜈 ∶ 𝑋 → R is called 𝑉 𝑎𝑙(𝑋). We extend the notation 𝜈
to arithmetic terms over 𝑋. 𝐹𝑜𝑟𝑚𝑋 is the set of all real arithmetic quantifier-free formulas over 𝑋.

Given a valuation 𝜈 ∈ 𝑉 𝑎𝑙(𝑋) and an arithmetic term 𝜃, we write 𝜈[𝜃/𝑥] for the valuation where all
variables have the same value as in 𝜈, except 𝜈[𝜃/𝑥](𝑥) = 𝜈(𝜃). This definition is extended to ordered
sets of assignments, where the assignments are executed in order. Given a set of differential equations
𝐹, we write 𝜈[𝐹 , 𝑡] for the valuation updated according to the equations in 𝑓 𝑙𝑜𝑤 after some time 𝑡 ∈ R≥0
has passed. A hybrid game G is a tuple:

G = (𝐿𝑜𝑐, 𝑙0, 𝑋 , 𝜈0, 𝑓 𝑙𝑜𝑤, 𝑖𝑛𝑣 , 𝐴𝑔𝑡, 𝐴𝑐𝑡, 𝐸)

𝐿𝑜𝑐 a finite nonempty set of locations.
𝑙0 ∈ 𝐿𝑜𝑐 the initial location.

𝑋 a finite nonempty set of real-valued variables with typical elements 𝑥0, 𝑥1.
𝜈0 ∶ 𝑋 → R the initial valuation.

𝑓 𝑙𝑜𝑤 a continuous transition relation that assigns each location 𝑙 ∈ 𝐿𝑜𝑐
a set of differential equations 𝑓 𝑙𝑜𝑤(𝑙) = { ̇𝑥𝑖 = 𝜃𝑖 ∣ 𝑥𝑖 ∈ 𝑋}.

𝑖𝑛𝑣 ∶ 𝐿𝑜𝑐 → 𝐹𝑜𝑟𝑚𝑋 associate each location with an invariant.
𝐴𝑔𝑡 = { 1, 2, … , 𝑘 } a finite nonempty set of agents.
𝐴𝑐𝑡 = 𝐴𝑐𝑡1 ⊍ 𝐴𝑐𝑡2 ⊍ … ⊍ 𝐴𝑐𝑡𝑘 a disjoint union of finite nonempty sets of agents’ actions.

The typical actions of agent 𝑖 ∈ 𝐴𝑔𝑡 are 𝑎𝑖, 𝑏𝑖.
𝐸 a finite nonempty set of edges representing discrete transition relation

with typical elements (𝑙 , 𝜑, 𝑎𝑖, 𝐴, 𝑙′) such that:
● 𝑙 , 𝑙′ ∈ 𝐿𝑜𝑐,
● 𝜑 ∈ 𝐹𝑜𝑟𝑚𝑋 called a guard,
● 𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖 an action for some 𝑖 ∈ 𝐴𝑔𝑡, and
● 𝐴 is a finite (possibly empty) ordered set of assignments called a jump.

We use the functions 𝑏𝑒𝑔𝑖𝑛(𝑒), 𝑔𝑢𝑎𝑟𝑑(𝑒), 𝑎𝑐𝑡(𝑒), 𝑗𝑢𝑚𝑝(𝑒) and 𝑒𝑛𝑑(𝑒) to reference the components of
an edge 𝑒 ∈ 𝐸.

A valuation 𝜈 enables the edge 𝑒 = (𝑙 , 𝜑, 𝑎,𝐴, 𝑙′) ∈ 𝐸 (we say the action 𝑎𝑐𝑡(𝑒) is enabled) if:

● 𝜈 ⊧ 𝑖𝑛𝑣(𝑙), ● 𝜈 ⊧ 𝜑, and ● 𝜈[𝐴] ⊧ 𝑖𝑛𝑣(𝑙′)

In a hybrid game, a configuration is a pair ⟨𝑙 , 𝜈⟩ representing the game’s location 𝑙 ∈ 𝐿𝑜𝑐 and valuation
𝜈 ∈ 𝑉 𝑎𝑙(𝑋). ⟨𝑙0, 𝜈0⟩ is the initial configuration. Two types of transitions are possible: A time transition

⟨𝑙 , 𝜈⟩
𝑡
Ð→ ⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡]⟩ for 𝑡 ∈ 𝑅≥0 is legal if for all 𝑡′ ∈ [0, 𝑡], 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡′] ⊧ 𝑖𝑛𝑣(𝑙). An edge transition

⟨𝑙 , 𝜈⟩
𝑒
Ð→ ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑗𝑢𝑚𝑝(𝑒)]⟩ for an edge 𝑒 ∈ 𝐸 with 𝑏𝑒𝑔𝑖𝑛(𝑒) = 𝑙 is a legal transition if 𝜈 enables 𝑒. The

agent 𝑖 that takes the action 𝑎𝑐𝑡(𝑒) ∈ 𝐴𝑐𝑡𝑖 is called to blame for the edge transition. The other agents are
called blameless. A play is an infinite sequence of configurations (⟨𝑙0, 𝜈0⟩, ⟨𝑙1, 𝜈1⟩, ⟨𝑙2, 𝜈2⟩, …) which
starts at the initial configuration and for each 𝑖 ∈N0, there exists a legal transition ⟨𝑙𝑖, 𝜈𝑖⟩→ ⟨𝑙𝑖+1, 𝜈𝑖+1⟩.

Remark 1. In this paper, we assume all differential equations to be solvable. Even with solvable differential
equations, the question of whether there exists a play that reaches a certain configuration is undecidable in
a hybrid game [7].

2.0.1. Example

Figure 1: Robots on tracks.

Figure 1 shows an orange and a green robot
moving on tracks in a warehouse. The ware-
house contains 6 tracks, 2 horizontal 𝐻 =
{ℎ1, ℎ2 } and 4 vertical 𝑉 = { 𝑣1, 𝑣2, 𝑣3, 𝑣4 }. The
robots continuously pick items from storage
units (small circles) and take them to the pro-
cessing units (small squares). The robots must
also avoid collisions with each other. To model
this system as a hybrid game, we define the
locations as the current tracks of the two robots 𝐿𝑜𝑐 = (𝐻 ∪𝑉) × (𝐻 ∪𝑉). The current location is (ℎ1, 𝑣3).
The invariants define the end points of each track. The flow in each location describes the motion of
each robot based on its current speed. Intersection points are edges that allow the robots to change
tracks. Self-loop edges change a robot’s speed without changing its track.

3. Hybrid Game with Triggers (HGT)

In this section, we introduce an extension to the definition of hybrid games. We call this extension
hybrid games with triggers or (HGT) for short. A trigger is an agent-declared quantifier-free formula
of real arithmetic that, once satisfied, prompts the agent to take an action. Intuitively, the trigger is
the reason the agent moves. An autonomous vehicle could set a trigger to be not enough free space
ahead or the desired intersection is reached. According to the case that comes first, the car would have
to take an action. An edge transition only happens when some agent has a satisfied trigger. With
each edge transition, each agent gets to update their triggers. We call the set of all possible triggers
𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 ⊆ 𝐹𝑜𝑟𝑚𝑋.

The definition of HGT extends the definition of hybrid games as follows:

G ≔ (𝐿𝑜𝑐, 𝑙0, 𝑋 , 𝜈0, 𝑓 𝑙𝑜𝑤, 𝑖𝑛𝑣 , 𝐴𝑔𝑡, 𝐴𝑐𝑡⊥, 𝐸⊥, 𝐹 𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔, trig0)

The function 𝑡𝑟 𝑖𝑔0 ∶ 𝐴𝑔𝑡 → 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 is the initial triggers function. The set 𝐴𝑐𝑡⊥ includes a stutter
action ⊥ ∉ 𝐴𝑐𝑡, available for every agent. If an agent’s trigger is satisfied and this agent has no enabled
actions in 𝐴𝑐𝑡, the agent must take the stutter action ⊥. This indicates that there is a self-loop edge
for every location 𝑙, (𝑙 , 𝑇 𝑟𝑢𝑒, ⊥, ∅, 𝑙) ∈ 𝐸⊥. A configuration in a HGT is a triplet ⟨𝑙 , 𝜈 , trig⟩. The initial
configuration is ⟨𝑙0, 𝜈0, trig0⟩.

Trigger Formula: A formula 𝜑 is called a trigger formula if and only if for every valuation 𝜈 and
every map 𝑓 𝑙𝑜𝑤 assigning a differential equation to each variable in 𝑋, there exists a minimum time
𝑡 ∈ R≥0 to satisfy 𝜑, i.e. such that 𝜈[𝑓 𝑙𝑜𝑤, 𝑡] ⊧ 𝜑 and for all 0 ≤ 𝑡′ < 𝑡, 𝜈[𝑓 𝑙𝑜𝑤, 𝑡′] ⊭ 𝜑, or if 𝜑 is never
satisfied, i.e. 𝜈[𝑓 𝑙𝑜𝑤, 𝑡] ⊭ 𝜑 for all 𝑡 ∈ R≥0. In other words, a formula 𝜑 is a trigger formula (𝜑 ∈ 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔)
if and only if its solution set is a closed set under the usual topology in R∣𝑋∣.

This restriction eliminates formulas like 𝑥 > 2 for a variable 𝑥 ∈ 𝑋 where no exact time exists when
it is first satisfied if the valuation 𝜈(𝑥) = 0 and 𝑓 𝑙𝑜𝑤(𝑥) = 1. On the contrary, 𝑥 ≥ 2 is a valid trigger
formula.

Given a valuation 𝜈, a flow 𝑓 𝑙𝑜𝑤 and a trigger 𝜑, we define the function time to trigger or 𝑡 𝑡 𝑡(𝜈, 𝑓 𝑙𝑜𝑤, 𝜑)
to return the minimum time required to satisfy the trigger 𝜑 if it exists and ∞ otherwise. This definition
is extended to configurations ⟨𝑙 , 𝜈 , trig⟩ to return the minimum time required to satisfy any of the
formulas if such a time exists:

𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩) = min{ 𝑡 𝑡 𝑡(𝜈, 𝑓 𝑙𝑜𝑤, trig(𝑖)) ∣ 𝑖 ∈ 𝐴𝑔𝑡}.

The definition of legal transitions in HGT is more restrictive than that in hybrid games. A transition
is ⟨𝑙 , 𝜈 , trig⟩→ ⟨𝑙′, 𝜈′, trig′⟩ legal if and only if it fulfils the following conditions:

• ⟨𝑙 , 𝜈⟩→ ⟨𝑙′, 𝜈′⟩ is legal in the hybrid game,

• a time transition ⟨𝑙 , 𝜈 , trig⟩
𝑡
Ð→ ⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), trig], trig⟩ does not change the triggers function trig,

and 𝑡 ≤ 𝑡𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩), and
• an edge transition ⟨𝑙 , 𝜈 , trig⟩

𝑒
Ð→ ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑗𝑢𝑚𝑝(𝑒)], trig′⟩ if 𝜈 ⊧ 𝑡𝑟 𝑖𝑔(𝑖) for the agent 𝑖 ∈ 𝐴𝑔𝑡 to

blame for the transition.

Along with each edge transition, each player 𝑖 gets to choose a new trigger 𝜑𝑖 ∈ 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 creating a new
trigger function mapping 𝑡𝑟 𝑖𝑔′(𝑖) = 𝜑. Similar to [10], if more than one trigger is satisfied at the same
time, the agent who gets to take an action is chosen at random.

3.0.1. Example

We go back to the example shown in Figure 1. In the current configurations, the green robot has the
trigger:

𝑔𝑟𝑒𝑒𝑛.𝑝𝑜𝑠 = 𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑐𝑡 𝑖𝑜𝑛(ℎ1, 𝑣4) ∨ free-ahead(𝑔𝑟𝑒𝑒𝑛.𝑝𝑜𝑠) ≤ braking-distance(𝑔𝑟𝑒𝑒𝑛.𝑠𝑝𝑑)

The orange robot’s trigger is similar but has 𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑐𝑡 𝑖𝑜𝑛(ℎ2, 𝑣3).
In this example, we can notice that robots (agents) do not need to calculate the time needed for the

trigger to be satisfied when selecting one. Another observation is that a small set of trigger formulas is
often sufficient for many systems. This feature makes reasoning about the system significantly easier.

Remark 2. Contrary to guards and invariants, triggers are not part of the game structure but rather part
of the players’ strategies. A player could choose different triggers in the same location (see Example 3.0.1).
While it is possible to extend the game structure by adding more locations and more restrictive guards and
invariants to embed the triggers into the game structure, this is not always possible with a finite set of
locations.

Winning Conditions: We adopt the winning conditions from [10]. The idea of these winning
conditions is that an agent cannot win by preventing time from progressing. A play is a winning
play for agent 𝑖 if time diverges 𝑡𝑑 and the play fulfils their goal 𝜙𝑖 or if time converges 𝑡𝑐, but the
agent 𝑖 is not to blame (𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠𝑖) for the time convergence, i.e. the agent 𝑖 only takes a finite number
of actions during the entire play. The set of winning plays for agent 𝑖 with the desired outcome 𝜙𝑖
is (𝑊𝐶(𝜙𝑖) ∩ 𝑡𝑑) ∪ (𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠𝑖 ⧵ 𝑡𝑑), where 𝑊𝐶(𝜙) is the set of plays that fulfils 𝜙. As noted in [10],
according to these winning conditions, both agents can lose in a two-agent game where one agent
has the goal 𝜙 and the other ¬𝜙. This is when the two agents infinitely take turns blocking time from
progressing. I.e. time converges, and neither agent is 𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠.

Figure 2: Time-abstract discrete game structure.

4. Discretizing a Hybrid Game with Triggers

In this section, we show an intuitive way to define a discrete game, such that agent 𝑖 ∈ 𝐴𝑔𝑒𝑛𝑡 has a
winning strategy in the HGT if and only if the same 𝑖 has a winning strategy in the discrete game. The
intuition of the discrete game is to skip any time steps where no triggers are satisfied. This allows
time to move in discrete steps. At any configuration ⟨𝑙 , 𝜈 , trig⟩ with 𝜈 ⊭ trig(𝑖) for all 𝑖 ∈ 𝐴𝑔𝑡, the game
can progress by 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩). If a trigger is satisfied, any enabled edge can be taken and the trigger
function gets updated.

Due to space limitations, we only briefly describe the discrete game in this paper.
The discrete game is structured as a concurrent game structure (CGS) [14]. The players are the agents

of the HGT 𝐴𝑔𝑡 with the addition of the player 𝑅𝑎𝑛𝑑𝑜𝑚 ∉ 𝐴𝑔𝑡 to select the agent who gets to take an
action when more than one trigger is satisfied. While only one action is taken in each step, the game
is concurrent to allow all agents to select new triggers simultaneously. The actions available for the
agents are 𝐴𝑐𝑡 × 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔. The actions available for 𝑅𝑎𝑛𝑑𝑜𝑚 are the set 𝐴𝑔𝑡.

The set of states 𝑆 of the discrete game is defined inductively:

• 𝑠0 = ⟨𝑙0, 𝜈0, trig0⟩ ∈ 𝑆 is the initial state.
• If the state 𝑠 = ⟨𝑙 , 𝜈 , trig⟩ ∈ 𝑆, then:

– if no trigger is satisfied 𝜈 ⊭ trig(𝑖) for all 𝑖 ∈ 𝐴𝑔𝑡 and 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩) ∈ R≥0, then
⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩)], trig⟩ ∈ 𝑆,

– otherwise for every 𝑒 ∈ 𝐸⊥ enabled at 𝑠 and for every function trig′ ∶ 𝐴𝑔𝑡 → 𝑇 𝑟𝑖𝑔𝑔𝑒𝑟, the
state ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑎𝑠𝑠𝑖𝑔𝑛(𝑒)], trig′⟩ ∈ 𝑆.

A time-abstract game is visualized in Figure 2, where the game evolves only based on the players’
choices.

Given that the number of edges 𝐸⊥ is finite and the number of trigger formulas is countable [11], each
layer of the tree is countable. The state space of the entire discrete game is, therefore, countable. Each
discrete game state is labelled with formulas that its valuation satisfies and are relevant to the agents’
winning conditions. These formulas serve as atomic propositions in the discrete game. Additionally, the
states are labelled according to their position in the tree. We use a set of atomic propositions inspired
by [10] to prevent agents from winning by blocking the passing of time. The boolean proposition 𝑡 𝑖𝑐𝑘
is true if the global time has passed an integer value compared to the state’s parent in the tree. The
atomic propositions 𝑏𝑙𝑎𝑚𝑒𝑖 for 𝑖 ∈ 𝐴𝑔𝑡 express the agent whose action reached this state.

A play is winning for an agent 𝑖 if (1) the play satisfies the desired outcome 𝜙 (expressed as a temporal
property) and has an infinite number of states marked with 𝑡 𝑖𝑐𝑘 or (2) the play has a finite number of
states marked with 𝑡 𝑖𝑐𝑘 and a finite number of states marked with 𝑏𝑙𝑎𝑚𝑒𝑖. The existence of a winning
strategy for the agent 𝑖 can be then expressed in the notation of ATL* [14] as follows:

⟪{ 𝑖}⟫(𝜙 ∧◻◇ 𝑡 𝑖𝑐𝑘) ∨ (◇◻¬𝑡𝑖𝑐𝑘 ∧◇◻¬𝑏𝑙𝑎𝑚𝑒𝑖) (2)

This reduces the winning conditions in a hybrid game with triggers to an ATL* model checking problem
over countable state space. This is shown to be decidable in [15, 16].

5. Discussion and Conclusion

Extending hybrid games with triggers has multiple advantages and applications beyond the decidable
fragment of hybrid games brought on by triggers.

In addition to the significant decidability results, triggers could help improve system understandability.
An AI system, for instance, could be trained to choose (or form) a trigger formula and not act again until
this formula is satisfied. Such a feature would have major benefits to AI verification and explainability.

In summary, hybrid games with triggers (HGT) offer a powerful framework for reasoning about and
verifying multi-agent hybrid systems. We show that by incorporating agents’ rationale into the game
model, HGT can effectively reduce a hybrid game to a decidable discrete game without restricting its
continuous or discrete dynamics.

Acknowledgments

This research was supported by the Innovation Campus for Future Mobility (www.icm-bw.de) and by
the German Research Foundation (DFG) within the Collaborative Research Center (CRC) 1608 Convide
(www.sfb1608.kit.edu/index.php).

References

[1] A. Platzer, Differential dynamic logic for hybrid systems, J. Autom. Reason. 41 (2008) 143–189.
URL: https://doi.org/10.1007/s10817-008-9103-8. doi:10.1007/S10817-008-9103-8.

[2] A. Platzer, Differential game logic, ACM Transactions on Computational Logic (TOCL) 17 (2015)
1–51.

[3] P. Höfner, B.Möller, An algebra of hybrid systems, The Journal of Logic andAlgebraic Programming
78 (2009) 74–97.

[4] R. Neves, L. S. Barbosa, Hybrid automata as coalgebras, in: Theoretical Aspects of Computing–
ICTAC 2016: 13th International Colloquium, Taipei, Taiwan, ROC, October 24–31, 2016, Proceed-
ings 13, Springer, 2016, pp. 385–402.

[5] T. A. Henzinger, B. Horowitz, R. Majumdar, Rectangular hybrid games, in: J. C. M. Baeten,
S. Mauw (Eds.), CONCUR ’99: Concurrency Theory, 10th International Conference, Eindhoven,
The Netherlands, August 24-27, 1999, Proceedings, volume 1664 of Lecture Notes in Computer
Science, Springer, 1999, pp. 320–335. URL: https://doi.org/10.1007/3-540-48320-9_23. doi:10.1007/
3-540-48320-9_23.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis,
S. Yovine, The algorithmic analysis of hybrid systems, Theor. Comput. Sci. 138 (1995) 3–34. URL:
https://doi.org/10.1016/0304-3975(94)00202-T. doi:10.1016/0304-3975(94)00202-T.

[7] T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, J.
Comput. Syst. Sci. 57 (1998) 94–124. URL: https://doi.org/10.1006/jcss.1998.1581. doi:10.1006/
JCSS.1998.1581.

[8] R. Alur, T. A. Henzinger, G. Lafferriere, G. J. Pappas, Discrete abstractions of hybrid systems,
Proceedings of the IEEE 88 (2000) 971–984.

[9] P. Bouyer, T. Brihaye, F. Chevalier, O-minimal hybrid reachability games, Logical Methods in
Computer Science 6 (2010).

[10] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, M. Stoelinga, The element of surprise in timed
games, in: R. M. Amadio, D. Lugiez (Eds.), CONCUR 2003 - Concurrency Theory, 14th International
Conference, Marseille, France, September 3-5, 2003, Proceedings, volume 2761 of Lecture Notes in

www.icm-bw.de
www.sfb1608.kit.edu/index.php
https://doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/S10817-008-9103-8
https://doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1007/3-540-48320-9_23
https://doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1006/JCSS.1998.1581
http://dx.doi.org/10.1006/JCSS.1998.1581

Computer Science, Springer, 2003, pp. 142–156. URL: https://doi.org/10.1007/978-3-540-45187-7_9.
doi:10.1007/978-3-540-45187-7_9.

[11] A. Tarski, A decision method for elementary algebra and geometry, in: B. F. Caviness, J. R. Johnson
(Eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer Vienna, Vienna,
1998, pp. 24–84.

[12] T. A. Henzinger, Hybrid automata with finite bisimulations, in: Z. Fülöp, F. Gécseg (Eds.), Automata,
Languages and Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1995, pp. 324–335.

[13] F. Laroussinie, N. Markey, G. Oreiby, Model-checking timed atl for durational concurrent game
structures, in: International Conference on Formal Modeling and Analysis of Timed Systems,
Springer, 2006, pp. 245–259.

[14] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002) 672–713.
URL: https://doi.org/10.1145/585265.585270. doi:10.1145/585265.585270.

[15] S. Schewe, Atl* satisfiability is 2exptime-complete, in: International colloquium on automata,
languages, and programming, Springer, 2008, pp. 373–385.

[16] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strategies: On the model-checking
problem, ACM Transactions on Computational Logic (TOCL) 15 (2014) 1–47.

https://doi.org/10.1007/978-3-540-45187-7_9
http://dx.doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1145/585265.585270
http://dx.doi.org/10.1145/585265.585270

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.0.1 Example

	3 Hybrid Game with Triggers (HGT)
	3.0.1 Example

	4 Discretizing a Hybrid Game with Triggers
	5 Discussion and Conclusion

