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Abstract
Various neural network verifiers have been developed to ensure that a neural network satisfies desired properties
after training. A promising approach for creating correct-by-construction machine-learnt models is to incorporate
explicit logical constraints into the training process via so-called differentiable logics. This paper provides an
overview of our research area, our preliminary results, as well as an outline of future research directions.
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1. Introduction

It has been shown that neural networks fail to learn background knowledge from data alone and are
susceptible to adversarial inputs [1, 2], which has implications for their use in safety-critical domains.

Numerous verifiers for neural networks have emerged in the past few years, such as Reluplex [3],
Marabou [4, 5], Branch-and-Bound [6], NNV [7], and 𝛼, 𝛽-CROWN [8–13], winner of the recent Neural
Network Verification Competitions (VNN-COMP) [14–17]. For an overview of state-of-the art verifiers,
we refer the interested reader to [18–21].

Verification of neural networks is typically limited to neural networks with fixed weights that have
ceased learning [22]. A step in the direction of correct-by-construction neural networks are so called
differentiable logics, used to incorporate logical constraints into the machine learning process.

2. Background

Machine learning. In gradient-based machine learning, optimal parameters 𝜃+ (such as neural
network weights) are determined by minimising a loss function, L, which quantifies the error between
the predicted output and the desired output. This optimisation is typically achieved using gradient
descent methods. The goal is to find the set of parameters 𝜃+ that minimises the loss function, formally
expressed as

𝜃+ = argmin𝜃 L(𝑥, 𝑦), (1)

where 𝑥 represents the input data and 𝑦 denotes the corresponding desired output.

Differentiable logics. The idea of learning with constraints is to incorporate a logical constraint 𝜙
into this optimisation process by translating the logical constraint into an additional loss term L𝜙.

𝜃+ = argmin𝜃 L(𝑥, 𝑦) + 𝜆L𝜙(𝑥, 𝑦). (2)

Note that the additional loss term introduces a new hyperparameter 𝜆 that is responsible for balancing
the different loss terms. As explained in Section 3, in our experimental evaluation [23] we used the
adaptive loss-balancing approach GradNorm [24] in order to find close-to-optimal values for 𝜆.
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Various translations that map logical constraints into real-valued, differentiable functions have been
defined in the literature, such as semantic loss [25], DL2 [26], designed specifically for incorporating
constraints into neural networks, or fuzzy logic based ones [27–30], which exploit the fact that fuzzy
logics are real-valued logics that often use operators that happen to be differentiable-almost-everwhere.

Specialised network architectures. Note that incorporating logical constraints into the machine
learning pipeline via additional loss terms as done in Eq. (2) does not guarantee constraint satisfac-
tion; other approaches exist that incorporate logical constraints into the network architecture, such
as proposed by Li and Srikumar [31], DeepProbLog [32], Logic Tensor Networks (LTNs) [33, 34],
MultiPlexNet [35], CNN [36], and CNN+ [37].

3. Contributions to Date

The theory of these differentiable logics is well-studied [38–41] in the literature with respect to various
interesting properties, such as (1) the shadow-lifting [42] property of a conjunction 𝑥 ∧ 𝑦, which requires
the truth value of the conjunction to increase when the truth value of one of its contituents increases,
(2) whether implication operators admit classical logic reasoning such as Modus Ponens and Modus
Tollens [39], and (3) the logical consistency [38] of operators, which looks at the maximum truth value
obtainable for tautologies when using certain operators.

Given the wide range of possible logic translations available, our initial research question was: what
is the optimal translation for use in training?

To address this question, we provide in [23] an experimental comparison of differentiable logic
operators. Additionally, we provide a Python implementation [43] of various differentiable logics in
PyTorch [44], implemented in a way that makes it easy to train any neural network on any dataset with
arbitrary constraints.

In order for our experimental comparison to be as fair as possible, we utilised Projected Gradient
Descent (PGD) [45] to use a constraint counterexample in training as initially suggested by [26], which
allows each logic to have the most impact on the learning process, and additionally we use the adaptive
loss-balancing approach GradNorm [24] in order to estimate the parameter 𝜆 from Eq. (2) to balance
the different loss terms, allowing each logic to perform at its best.

Experimental results. We obtained somewhat surprising results: while we expected to confirm
theoretic results from the literature, we found that shadow-lifting conjunctions were not necessarily
the best choice; neither were those implications that closely follow Modus Ponens and Modus Tollens
reasoning. In general, training with any differentiable logic will lead to improved constraint satisfaction
(albeit at an expense of prediction accuracy, as reported previously by Tsipras et al. [46]). However, the
performance of the differentiable logics depends highly on the specific task at hand.

For example, we compared the performance of five different logic translation for training a neural
network on the German Traffic Sign Recognition Benchmark (GTSRB) [47] to satisfy the constraint
“the sum of probabilities of all elements in a group of related traffic signs should either be very high or
very low”. Here, we consider groups of related traffic signs (e.g. the group of all speed limit signs) in
order to add background knowledge into the network.

As can be seen in Fig. 1, training with any differentiable logic leads to improved constraint accu-
racy and reduced prediction accuracy, however, the difference between the different logics is not as
pronounced as expected from their theoretical properties.

Conclusions for future research. Instead of trying to find a single best one-size-fits-all differentiable
logic that should be used in all scenarios, it might prove to be more fruitful to investigate what logical
constraints mandate what properties the logic translation should exhibit. In the following section, we
collate some interesting research areas which we have identified and which we plan to investigate in
the future.
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Figure 1: Training a network to satisfy a logical constraint on GTSRB with different logics. Surprisingly, the
best-performing logic is the Gödel fuzzy logic, despite not having favourable theoretical properties such as
shadow-lifting. Here, “Prediction Accuracy” is the percentage of correct predictions, and “Constraint Accuracy”
the percentage of the constraint being satisfied.

4. Areas for Future Work

Specifications for machine learning. A common problem in the machine learning context is the
lack of well-defined, general-purpose specifications [48–50] beyond often-used properties such as local
robustness, which requires the neural network to be stable against slight perturbations to an input.

Additionally, despite there being complete verification techniques based on SMT or abstract inter-
pretation, these require being able to specify a meaningful region of the input space. This is often
infeasible in all but the most low-dimensional, interpretable settings such as the verification [3] of
the experimental neural network compression [51] of the airborne collision avoidance system ACAS
Xu [52], where meaningful regions of the input space can be expressed via constraints on the position
and velocities of different aeroplanes.

For high-dimensional input spaces such as encountered in image classification, distinguishing mean-
ingful images from noise is usually impossible, and verification is therefore usually limited to point-wise
verification, which cannot provide any guarantees for the network behaviour on unseen data.

Going forward, it might prove to be beneficial to explore types of general-purpose properties (such as
robustness or monotonicity) one might expect a neural network to satisfy across various applications.

Expressivity of differentiable logics. Logical constraints used in training are usually expressed
in propositional logic, as in the ROAD-R dataset [53] for autonomous driving, which incorporates
background knowledge such as ¬(Pedestrian ∧ Cyclist) or ¬(Traffic light green ∧ Traffic light red) into
video frames. These constraints are sufficient to correct the network predictions if they do not align
with the background knowledge, however, the authors note that future extensions of the dataset will
investigate more expressive properties beyond propositional logic.

While properties such as local robustness [54] around point 𝑥0 are usually expressed as

∀𝑥. ||𝑥 − 𝑥0||∞ ≤ 𝜖 → ||N (𝑥) −N (𝑥0)||∞ ≤ 𝛿, (3)

the universal quantification is normally handled outside of the constraints by employing PGD to approx-
imate the worst possible perturbation in the neighbourhood of 𝑥0 as initially suggested by Fischer et al.
[26], however, a unifying approach capable of handling general universal (and existential) quantifiers is
provided by Ślusarz et al. [40].

Going beyond first-order logic, especially in contexts such as video or natural language processing,
one might like to employ temporal properties to model time-dependent behaviours. There are already



differentiable temporal logics [42, 55–57]. We plan to investigate the ways in which these logics differ
and identify the strengths and weaknesses of each.

Additionally, Farrell et al. [50] suggest there could be a need for probabilistic properties. To this end,
approaches have been developed such as DeepProbLog [32] that allow for incorporating probabilistic
constraints into neural networks.

Certified training. Using PGD to find the worst perturbation around a point as done for Eq. (3)
does not provide any guarantees as it minimises a lower bound on the worst-case loss [19]. Instead
of finding a worst perturbation, it would be interesting to investigate approaches based on certified
training such as proposed by [58–61].

This area will be the immediate focus of our work, as we expect it to provide a solid foundation that
all subsequent research efforts into expressive specifications and logics can benefit from.
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