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Abstract
This paper addresses the challenges in Autonomous Robotic Systems (ARS) verification. We focus on identifying
the limitations of current ARS verification techniques and propose a new approach for verifying ARS using a
newly developed specification language called Cyclone.
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1. Introduction

The advent of ARS has revolutionized industrial production processes. Our society benefits from the
efficiency of ARS in multiple areas, such as manufacturing and healthcare. However, as ARS become
more complex and adaptive, ensuring their safety becomes increasingly important and challenging. The
challenges arise not only from the internal interactionswithin the systems themselves, but also from their
behavior in unpredictable environments. This poses a significant challenge for ARS verification [1, 2, 3].
Specifically, we aim to address the following challenges:

• Challenge 1: How can the properties of ARS be effectively verified to ensure that they operate
as intended without causing harm?

• Challenge 2: What are the properties of ARS that have not yet been fully elucidated, and how
can they be incorporated into the verification process?

• Challenge 3: Are current verification tools user-friendly enough to be used by users without a
background in formal verification?

To tackle these challenges, we have begun reviewing current techniques for verifying ARS. More
importantly, we are interested in gaining an overview of the types of properties that each verification
technique can address.

2. Current Techniques

So far, we have collected and reviewed 54 papers on autonomous robotic system verification1. Among
these papers, 24 use model checkers for verification [4, 5, 6, 7, 8, 9], while 21 focus on formal spec-
ifications [10, 11, 12, 13]. The remaining papers focus on contract-based verification (5 papers) and
runtime verification (4 papers) [10, 14, 15, 16, 17, 18, 19]. Some papers cover different types of ARS,
such as autonomous navigation, medical, aerospace, and industrial robots [20, 21]. Many verification
techniques focus on three key aspects of an ARS: autonomy, decision-making, and control.
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For example, Matt Luckcuck et al. propose an approach that uses model checkers to verify the safety
properties of an ARS [22, 23]. They focus on establishing a standardized verification framework across
multiple aspects of an ARS, such as perception, control, and decision-making.

Ingrand uses model checking to verify the low-level architecture of a robotic system [24]. This
approach particularly focuses on control algorithms, communication protocols, and autonomous prop-
erties. It ensures that the requirements of the fundamental layer of a robotic system (including real-time
decision-making and sensor-actuator coordination) are met. Foughali and Zuepke propose a cross-
disciplinary approach that is able to verify real-time systems used by autonomous robots [25]. Their
work covers aspects such as autonomy, perception, and control.

After reviewing these papers, we have identified three limitations in the scope of ARS verification. (1)
The key aspects of an ARS are not formally defined, which can directly impact the confidence in using
verification techniques. (2) The use of a set of verification tools is quite challenging for regular users.
Often, these tools require users to have knowledge of a particular formalism, and the learning curve is
typically steep. (3) Current techniques are prone to producing incorrect results when unpredictable
conditions occur. For example, when the weather changes, an ARS may behave entirely differently.
However, such conditions are typically not captured by current techniques.

3. Our Proposed Approach

Figure 1: The overview of our proposed approach. An ARS along with its properties are represented using a
graph that can be mapped to a Cyclone specification for verification.

To tackle these limitations, we have designed a new specification language called Cyclone [26]2.
Cyclone is based on graphs, and a verification task can be represented as a graph. Cyclone uses a novel
algorithm for bounded checking. It works by representing a verification task as a graph, which is then
reduced to a Satisfiability Modulo Theories (SMT) problem that can be efficiently verified/solved by an
SMT solver [27]. An overview of this proposed approach is illustrated in Figure 1.

Cyclone’s architecture is shown in Figure 2. Cyclone is written in Java and consists of more than 100k
lines of code including build scripts, test cases, configurations and other related projects. We designed
about 180 grammar rules for the Cyclone specification language and use ANTLR for generating lexers
and parsers. The type checker ensures the type safety of a specification, and produces relevant error
messages if there are any semantic errors in a specification. We have designed a state matrix as an
intermediate representation (IR) to capture all necessary information needed from the front-end of
the Cyclone compiler. Once this IR is produced, we use a novel algorithm to generate a set of graph
conditions with respect to the bounds chosen by users. These graph conditions can then efficiently be
verified by an off-the-shelf SMT solver3. Finally, the trace generator produces a trace or counter-example
for the specification (depending on the mode it is running as).

We now use a bouncing example to illustrate some of the features of Cyclone. Figure 3 plots a
transition graph for bouncing ball model. Listing 1 shows the corresponding Cyclone specification.
The two states 4(Fall and Bounce) in Figure 3 are directly mapped to the nodes and each transition
2Cyclone can be accessed through our online editor: https://cyclone.cs.nuim.ie, and a short tutorial is also included.
3Currently, Cyclone uses Z3 [27] as its default solver. Work is in progress to also support the CVC5 solver.
4The computation could terminate at any of the two nodes.

https://cyclone.cs.nuim.ie


Figure 2: Architecture of Cyclone.

Fall
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Figure 3: A transition graph for a bouncing ball.

is mapped to an edge. The calculation of the position of the ball is shown in each node. For example,
the Bounce node describes that when the ball hits ground (x=0), it loses some energy and change its
direction to bounce back. For this simple model, we use Cyclone to verify whether the position of the
ball always stays positive. In other words, the ball is either in the air or on the ground. This property is
described using a graph invariant 5 (Line 22 in Listing 1) in the specification. To verify this specification,
Cyclone uses a new algorithm that effectively reduces the transition graph along with its invariants
into a set of formulas that can be solved by an SMT solver [27].

To comprehensively evaluate Cyclone’s robustness, we have designed and collected over 200 sample
problems for testing purposes. We have found and fixed more than 120 issues in the past year. We have
also introduced Cyclone into the curriculum at Maynooth University and compared to other verification
tools. More than 200 students have learned and used Cyclone in multiple modules such as Software
Verification and Theory of Computation. We collect the feedback from students, more than 85% of them
think Cyclone is easier to learn. Some of the highlighted evaluation results can be found in [26].

Based on our preliminary evaluation, this approach provides us with three main advantages: (1) The
behaviors of a complex system can be visualized as a transition graph, making it easier to share and
communicate with other users. (2) Properties can be specified using graph invariants, and Cyclone
is capable of generating test cases for the defined graph (if needed) or verifying it by discovering
counter-example(s). (3) The learning curve is not as steep as other verification tools. In fact, we have
successfully used Cyclone to verify Event-B hybrid models [28] and now aim to extend it to ARS.

Listing 1: A Cyclone specificationmodelling a transition graph of a bouncing ball hybrid system depicted
in Figure 3. The variable block (Line 2–6) contains all necessary variables for computing the
ball’s position 𝑥, which can never be below 0 (Line 22). The node and edge blocks (Line 8–20)
model different states of the ball. The goal block (Line 24–26) instructs Cyclone to explore a
counter-example within a set of given bounds. Note that 𝑡 is the discretisation unit for time.

1 graph Bouncing_Ball {
2 real x where x >= 0; // position of the ball
3 real v; // velocity of the ball

5When a specification contains at least one graph invariant, Cyclone switches to the counter-example discovery mode.



4 real t where t >= 0; // time sequence
5 const real G = 9.81; // gravitational force
6 real c where c >= 0 && c <= 1; // constant (energy loss)
7
8 normal start final node Fall {
9 x += v * t;

10 v -= G * t;
11 }
12
13 normal final node Bounce {
14 v = -c * v;
15 x = 0;
16 }
17
18 edge { Fall -> Fall }
19 edge { Fall -> Bounce, where x == 0 && v <= 0; } // the ball starts to bounce back when it reaches ground and its

velocity becomes negative.
20 edge { Bounce -> Fall }
21
22 invariant inv { x >= 0; } // position of the ball is never < 0
23
24 goal { // defines different bounds for Cyclone to explore.
25 check for 2,3,4,5
26 }
27 }

4. Work in Progress

Currently, we are investigating the use of Cyclone to verify a scheduling algorithm in an elevator system
as a case study. Our aim is to use Cyclone to help engineers uncover design flaws at a very early stage.
This involves modeling a scheduling procedure using a transition graph and defining its invariants. In
the future, we plan to (1) complete our survey on ARS verification, (2) identify other key aspects of an
ARS that need to be verified, and (3) design a framework that can transform an ARS’s specifications
along with its properties into a graph that can be directly mapped to a Cyclone specification.
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