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Abstract 
This research presents a mathematical model designed to optimize the helicopter turboshaft engines 
parametric tuning by accurately predicting engine performance characteristics through the integration of 
key operational parameters such as rotor speeds, fuel consumption rates, and temperature profiles. A neural 
network model is developed to capture the complex nonlinear relations between input parameters and 
engine performance outputs, employing a supervised training algorithm and an adaptive training rate to 
enhance convergence efficiency. The model demonstrates impressive performance metrics, achieving a 
prediction accuracy of 99.25 % and a mean squared error below 2.5 %. While the results are promising, the 
research identifies limitations related to the reliance on historical performance data and the potential for 
overfitting. Future studies are recommended to explore the various factors influence on engine 
performance, develop more adaptive neural network architectures, and conduct extensive field testing to 
ensure model robustness and effectiveness in real-world conditions. Ultimately, the integration of advanced 
predictive models into helicopter control systems will significantly enhance flight safety and operational 
efficiency.  

Keywords  
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1. Introduction 

Parametric debugging for helicopter turboshaft engines (TE) is a critical aspect in optimizing 
performance and ensuring reliability during flight operations [1]. Helicopter TE operate under 
varying conditions, which demand precise calibration and adjustment across multiple parameters to 
maintain efficiency and safety [2, 3]. The process involves fine-tuning various engine parameters, 
such as rotational speeds, temperatures, and fuel consumption rates, to align the engine's 
performance with expected operational standards [4]. This approach helps identify potential faults 
early, enhances the engine's operational longevity, and contributes to more effective engine control 
systems.  

The helicopter TE parametric debugging importance stems from the increasing complexity of 
modern aviation engines and the demand for higher reliability in dynamic flight conditions [5]. As 
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helicopters are often used in critical operations, ensuring optimal engine performance is paramount 
for both safety and operational efficiency. Advanced methods for parametric debugging allow for 
more accurate diagnostics, early detection of deviations in engine behavior, and timely corrective 
measures. This enhances overall flight safety, reduces maintenance costs, and supports the 
development of more robust systems for engine monitoring and control [6]. 

2. Related works 

Research on helicopter TE has significantly advanced over the years, focusing on areas such as 
engine modeling, fault diagnosis, and control systems. Traditional parametric debugging approaches 
primarily rely on physical models based on thermodynamic principles, which describe the engine's 
behavior under various operating conditions [7, 8]. These models are often calibrated using real-
world data and are effective for steady-state conditions. However, in transient modes, such as during 
takeoff or acceleration, physical models encounter limitations due to the complexity and nonlinearity 
of engine dynamics. Studies [9–11] emphasize the need for enhanced methods to capture these 
transient behaviors more accurately, which remain underrepresented in classical models. 

Recent developments in helicopter TE fault diagnosis have shifted towards model-based and data-
driven techniques [12]. Model-based approaches, such as Kalman filters [13, 14] or observer-based 
fault detection [15, 16], have been widely used for identifying deviations in engine performance. 
These methods, although effective in controlled environments, often struggle when faced with 
uncertainties in real-time operations or when sensors provide incomplete or noisy data. Data-driven 
approaches [17, 18] have gained traction, using historical performance data to detect anomalies 
through statistical or machine learning techniques. However, these methods are usually limited by 
the available data quality and quantity and often fail to account for rare or unexpected faults. 

In the dynamic flight conditions context, where engine parameters change rapidly, traditional 
methods fall short in their predictive accuracy. Studies [19, 20] that these approaches do not fully 
exploit the complex relations between multiple engine variables, especially in nonlinear and 
nonstationary environments. Additionally, the increasing advanced control systems use, such as 
adaptive control and fault-tolerant systems [21, 22], requires faster and more reliable diagnostic 
techniques. This gap in real-time diagnostic capability highlights the need for more sophisticated 
methods capable of data large amounts processing and adapting to changing conditions during flight. 

The neural networks application in the helicopter TE diagnostics and control is an emerging field 
that promises to the traditional methods limitations address many. Neural networks, particularly 
recurrent neural networks (RNN) [23] and long short-term memory (LSTM) networks [24], have the 
capacity to model complex temporal dependencies in engine behavior. Researches [25, 26] have 
demonstrated the potential of neural networks to improve fault detection and parameter estimation 
by training patterns directly from operational data. These models offer a more flexible and scalable 
solution, particularly in capturing transient and nonlinear behaviors that are difficult to model using 
conventional techniques. 

Despite the promising results in the literature, there are still gaps in the application of neural 
networks for helicopter TE. Most existing studies focus on steady-state conditions or specific fault 
scenarios, while few address the full range of operating conditions, especially during transient 
modes. Additionally, the integration of neural networks with traditional diagnostic systems has been 
limited, with most implementations remaining experimental. These gaps highlight the need for 
further research into hybrid models that combine the strengths of physical and data-driven 
approaches. 

The neural network approach offers significant advantages for the helicopter TE real-time 
diagnostics and control, particularly in handling the nonlinearity, noise, and uncertainties inherent 
in engine performance data. By continuously training from operational data, neural networks can 
improve predictive accuracy and provide earlier warnings for potential faults. Moreover, their ability 
to generalize from past data enables them to detect rare or complex fault patterns that might be 
missed by conventional methods. This justifies the need for a more comprehensive application of 



neural networks in the field, as they hold the potential to revolutionize engine diagnostics and 
enhance flight safety. 

3. Materials and methods 

This research proposes the helicopter TE parametric debugging mathematical model, which takes 
into account both static and dynamic engine characteristics. The model is based on the time series 
use of engine parameters recorded on board the helicopter: the gas-generator rotor r.p.m. nTC(t), the 
free turbine rotor speed nFT(t), gas temperature in front of the compressor turbine 𝑇∗(𝑡), the fuel 
consumption Qf(t) and other parameters [27, 28]. The model takes into account both standard engine 
operating parameters and deviations caused by external and internal influences. Additionally, the 
model allows for real-time analysis and adjustment to enhance engine performance and reliability.  

The main engine dynamics are described by the nonlinear differential equations system in the 
form: this system models the complex interactions between various engine components and 
operational parameters. 

Thus, 
𝑑𝑛்(𝑡)

𝑑𝑡
= 𝑓ଵ ቀ𝑛்(𝑡), 𝑛ி்(𝑡), 𝑇∗(𝑡), 𝑄(𝑡), 𝑃௫௧(𝑡)ቁ, 

𝑑𝑛ி்(𝑡)

𝑑𝑡
= 𝑓ଶ ቀ𝑛்(𝑡), 𝑛ி்(𝑡), 𝑇∗(𝑡), 𝑄(𝑡), 𝑃௫௧(𝑡)ቁ, 

𝑑𝑇∗(𝑡)

𝑑𝑡
= 𝑓ଷ ቀ𝑛்(𝑡), 𝑛ி்(𝑡), 𝑇∗(𝑡), 𝑄(𝑡), 𝑃௫௧(𝑡)ቁ, 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑓ଷ ቀ𝑛்(𝑡), 𝑛ி்(𝑡), 𝑇∗(𝑡), 𝑄(𝑡), 𝑃௫௧(𝑡)ቁ. 

(1) 

Functions f1, f2, f3, f4 describe interactions between engine parameters depending on its state, while 
Pext(t) represents external factors such as atmospheric pressure and turbulence. 

To minimize deviations actual rotor speeds nTC(t), nFT(t), gas temperature 𝑇∗(𝑡), and fuel 
consumption Qf(t) from their nominal values nTC_nom, nFT_nom, 𝑇 _

∗ , Qf_nom the following deviations 
are introduced [29]: 

∆𝑛்(𝑡) = 𝑛்(𝑡) − 𝑛்_, 

∆𝑛ி்(𝑡) = 𝑛ி்(𝑡) − 𝑛ி்_, 

∆𝑇∗(𝑡) = 𝑇∗(𝑡) − 𝑇 _
∗ , 

∆𝑄(𝑡) = 𝑄(𝑡) − 𝑄_. 

(2) 

The objective function for minimizing deviations takes the form: 

𝐽 = න ൬൫𝑤ଵ ∙ ∆𝑛்(𝑡)൯
ଶ

+ ൫𝑤ଶ ∙ ∆𝑛ி்(𝑡)൯
ଶ

+ ൫𝑤ଷ ∙ ∆𝑇∗(𝑡)൯
ଶ

+ ቀ𝑤ସ ∙ ∆𝑄(𝑡)ቁ
ଶ

൰ 𝑑𝑡,

்



 (3) 

where w1, w2, w3, w4 weighting coefficients defining the significance each parameter, and T is the 
final moment time. The parametric adjustment task reduces to minimizing the functional J, aiming 
to decrease deviations across key engine parameters. 

To adaptively correct engine parameters in real-time, a neural network corrector [30] is 
introduced. Let the network NN receive deviations ΔnTC(t), ΔnFT(t), Δ𝑇∗(𝑡), ΔQf(t) as inputs, 
generating a corrective signal u(t), which adjusts the engine control system: 

𝑢(𝑡) = 𝑁𝑁 ቀ∆𝑛்(𝑡), ∆𝑛ி்(𝑡), ∆𝑇∗(𝑡), ∆𝑄(𝑡)ቁ. (4) 

The neural network is trained on historical engine operation data and deviations, allowing for 
more precise parameter adjustments. 

The corrective signal u(t), generated by the neural network, is used to adapt control inputs for 
the engine. This can be described by the equation: 

𝑈(𝑡 + 1) = 𝑈(𝑡) + 𝛼 ∙ 𝑢(𝑡), (5) 



where U(t) is the control input vector for the system (such as fuel consumption rate, turbine blade 
angle), and α is the training coefficient that defines the speed adjustment. 

To account for random disturbances (such as changes in external conditions or airflow 
instability), a stochastic component is introduced [31, 32]. External influences can be described as: 

𝑃௫௧(𝑡) = 𝑃௫௧_(𝑡) + 𝜉(𝑡), (6) 

where ξ(t) is white noise with zero mean and variance σ2. This accounts for random deviations 
and allows real-time adjustments to control parameters. 

The overall control system for helicopter TE dynamics, considering the neural network corrector 
and stochastic perturbations, can be written as: 

𝑑𝑿(𝑡)

𝑑𝑡
= 𝑭൫𝑿(𝑡), 𝑼(𝑡)൯ + 𝑁𝑁൫∆𝑿(𝑡)൯, (7) 

where 𝐗(𝑡) = ቀ𝑛்(𝑡), 𝑛ி்(𝑡), 𝑇∗(𝑡), 𝑄(𝑡)ቁ is the engine state vector, and U(t) is the control 

input vector. The neural network corrector NN adjusts the deviations ∆𝐗(𝑡) =

ቀ∆𝑛்(𝑡), ∆𝑛ி்(𝑡), ∆𝑇∗(𝑡), ∆𝑄(𝑡)ቁ, ensuring precise engine control under uncertainty. 

In this research, the developed mathematical model is implemented in a neural network basis 
[33–37]. The proposed neural network (Figure 1) model consists of several layers, each serving a 
specific function to achieve optimal performance in helicopter TE parametric adjustment. The 
architecture includes an input layer, multiple hidden layers, and an output layer. Each layer consists 
of neurons that process information, passing it to the next layer through activation functions.  

 

nTC

nFT

TG*

E
n

g
in

e 
p
ar

a
m

et
er

s

Input 
layer

Hidden 
layers

Qf

...

Output 
layer

nTC

nFT

TG*

Qf

opt

opt

opt

opt

 

Figure 1: The proposed neural network architecture (author’s research). 

The architecture consists of an input layer that receives deviations in parameters and external 
influences, followed by multiple fully connected hidden layers equipped with activation functions to 
effectively capture complex relations among the input data. Finally, the output layer generates 
corrective signals aimed at adjusting engine parameters, ensuring optimal performance and 
responsiveness to identified deviations. 

The input layer is composed of four neurons, each corresponding to a specific input signal 
representing deviations from nominal values: ΔnTC(t) for the deviation in gas generator rotor speed, 
ΔnFT(t) for the deviation in free turbine rotor speed, Δ𝑇∗(𝑡) for the deviation in gas temperature, and 



ΔQf(t) for the deviation in fuel consumption. This layer processes these deviation signals, serving as 
the initial stage for capturing critical information necessary for subsequent computations and 
adjustments within the system. 

The neural network architecture includes three hidden layers, each designed to progressively 
refine and abstract the input features. The first hidden layer comprises 64 neurons with a 
SmoothReLU (Rectified Linear Unit) activation function, developed by this authors group in [27], 
capturing non-linear relationships and providing an initial level of abstraction from the input signals. 
The second hidden layer, consisting of 32 neurons and utilizing SmoothReLU activation, further 
refines these representations, enhancing the model's ability to generalize across varying input 
scenarios. The third hidden layer, with 16 neurons and SmoothReLU activation, reduces 
dimensionality while preserving essential information in preparation for output generation. The 
output layer features a single neuron with a linear activation function, producing a corrective signal 
u(t) that is applied to the control inputs for engine adjustments, ensuring optimal performance and 
response to deviations. 

The neural network training follows a supervised training approach, using historical data of 
engine operations and their corresponding corrective actions. For training, historical engine 
performance data ΔnTC(t), ΔnFT(t), Δ𝑇∗(𝑡), ΔQf(t) is collected and target outputs u(t) (corrective 
signals) are taken. Data preprocessing involves normalizing the input data to scale it between 0 and 
1, followed by splitting the dataset into training, validation, and test sets to facilitate effective model 
training and evaluation. The output signal u(t) is calculated using the current weights and biases: 

𝑢 = 𝑊ଷ ∙ 𝑆𝑚𝑜𝑜𝑡ℎ𝑅𝑒𝐿𝑈(𝑊ଶ ∙ 𝑆𝑚𝑜𝑜𝑡ℎ𝑅𝑒𝐿𝑈(𝑊ଵ ∙ 𝑿 + 𝑏ଵ) + 𝑏ଶ) + 𝑏ଷ, (8) 

where Wi are weight matrices, bi are bias vectors, and X is the input vector. 
The loss function is represented as the mean square error [38, 39] and is defined as: 

𝐿 =
1

𝑛
∙  ቀ𝑢௧௨(𝑖) − 𝑢ௗ(𝑖)ቁ

ଶ


ୀଵ

, (9) 

where utrue is the actual corrective signal and upred is the predicted signal. 
The gradients are calculated using backpropagation as: 

𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕𝑢
∙

𝜕𝑢

𝜕𝑊
. (10) 

Parameter updating with adaptive training rate using the Adam optimizer [40] is performed as: 

𝑚௧ = (𝛽ଵ ∙ 𝑚௧ିଵ) + (1 − 𝛽ଵ) ∙
𝜕𝐿

𝜕𝑊
, 𝑣௧ = (𝛽ଶ ∙ 𝑣௧ିଵ) + (1 − 𝛽ଶ) ∙ ൬

𝜕𝐿

𝜕𝑊
൰

ଶ

, 

𝑚ෝ௧ =
𝑚௧

1 − 𝛽ଵ
௧ , 𝑣ො௧ =

𝑣௧

1 − 𝛽ଶ
௧ , 𝑊 = 𝑊 −

𝜂௧

ඥ𝑣ො௧ + 𝜖
∙ 𝑚ෝ௧ , 

(11) 

where mt is the first moment estimate, vt is the second moment estimate, 𝑚ෝ௧ and 𝑣ො௧ are the bias-
corrected first and second moment estimates, ηt is the initial learning rate adjusted based on the 
parameter update. 

It is noted that at the neural network (see Figure 1) training initial stage, adaptive parameters for 
adaptive training algorithms are initialized. For Adam, for example, the parameters are initialized as: 
m = 0 (first moment vector), v = 0 (second moment vector), β1 = 0.9, β2 = 0.999, ϵ = 10–8 (to prevent 
division by zero) [38–40]. 

The training process involves repeating the parameters initialize, forward pass and loss 
calculation for a specified number of epochs until the loss converges, ensuring that the model 
effectively learns from the data. Following training, model performance is evaluated on validation 
and test datasets, with hyperparameters adjusted as necessary to mitigate the risk of overfitting. 
Upon successful training and validation, the model can be deployed within the onboard control 
system, facilitating real-time corrective adjustments to engine parameters, thereby enhancing overall 
performance and operational efficiency. 



The proposed innovative model for the parametric adjustment of helicopter gas turbine engines 
combines a robust mathematical framework with an advanced neural network architecture, enabling 
real-time optimization and adaptive control of engine parameters. The mathematical model 
effectively captures the dynamic relationships between critical operational variables, such as rotor 
speeds, gas temperature, and fuel flow, using precise equations that characterize engine behavior 
under varying conditions. Complementing this, the neural network leverages a multi-layered 
architecture with adaptive learning rates, allowing for efficient learning from historical data and 
improving the model's capability to generalize and respond to unforeseen operational scenarios. This 
hybrid approach not only enhances the accuracy of performance predictions and corrective actions 
but also contributes to improved engine reliability and efficiency, positioning the model as a cutting-
edge solution in aviation technology. 

4. Results 

The subject of this study is the TV3-117 TE [41, 42], which powers the Mi-8MTV helicopter and its 
various modifications. This engine is widely used in both civil and military aviation. The recorded 
parameters onboard the helicopter include: nTC(t), representing the gas-generator rotor speed 
(measured by the D-2M sensor); nFT(t), indicating the free turbine rotor speed (measured by the D-
1M sensor); and 𝑇∗(t), representing the gas temperature before the compressor turbine (measured by 
a set of 14 T-101 thermocouples) (Table 1) [43–45]. Additionally, atmospheric conditions such as 
flight altitude (h), temperature (TN), pressure (PN), and air density (ρ) are considered as input variables. 
For this study purposes, these atmospheric parameters are assumed to remain constant. Furthermore, 
the engine's dynamic behavior under various flight conditions is thoroughly analyzed to optimize its 
performance and reliability. The collected data allows for accurate modeling of the engine's 
operational behavior, serving as a foundation for further improvements in control and diagnostics 
systems. 
 

Table 1 
The training dataset fragment 

Number The gas-generator 
rotor r.p.m. nTC 

The gas temperature in 
front of the compressor 

turbine 𝑇∗, 

The engine 
inlet 

pressure 𝑃
∗  

The fuel 
consumption 

GT 

1 0.973 0.961 0.983 0.973 
… … … … … 
42 0.983 0.966 0.988 0.977 
… … … … … 

139 0.988 0.950 0.992 0.970 
… … … … … 

256 0.985 0.952 0.984 0.971 

 
During the training dataset pre-processing phase, homogeneity is assessed, followed by the 

division into control and test subsets, along with an evaluation of their representativeness through 
cluster analysis. To evaluate the homogeneity of the training dataset, the Fisher-Pearson criterion 
[46] is employed, utilizing observed frequencies and comparing them against critical values of χ², 
where the degrees of freedom r – k – 1 = 13 and the significance level α = 0.01. This methodology 
enables the statistical significance determination, which is accepted only when the likelihood of 
obtaining these or more extreme outcomes under the null hypothesis is less than 1 %. The computed 
value of χ² = 5.721 remains below the critical threshold of 6.6, thereby the samples consistency 
validating and the normal distribution hypothesis supporting. 



To further affirm homogeneity, the Fisher-Snedecor criterion [47] is applied, which calculates the 
ratio of the larger variance to the smaller variance, with degrees of freedom r – k – 1 = 13 and 
significance level α α = 0.01. The calculated value of F = 2.224 does not surpass the critical value of 
2.58, reinforcing the samples' consistency and the normal distribution hypothesis. The training and 
test subsets representativeness is examined using cluster analysis, which aims to partition the input 
data set X (refer to Table 1) into k distinct clusters, where k is a clusters pre-defined number. Each 
cluster comprises objects deemed more similar to one another than to those from other clusters. The 
k-means clustering method is utilized, focusing on minimizing the total squared distances between 
the objects in a cluster and their centroids. Each object xi in the set X is allocated to the nearest 

centroid according to the equation 𝐶 = arg minฮ𝑥 − 𝜇ฮ
ଶ
, where μj represents the initial centroids 

and ฮ𝑥 − 𝜇ฮ
ଶ
 signifies the Euclidean distance between object xi and centroid μj. Subsequently, 

centroids are recalibrated as the objects average within each cluster using 𝜇 =
ଵ

หೕห
∙ ∑ 𝑥௫∈ೕ

, where 

ห𝐶ห denotes the objects quantity in the j-th cluster. The calculations for Ci and μj are reiterated until 
variations in cluster distribution become minimal. The algorithm concludes when none of the 
centroids undergo significant alterations or upon reaching the predetermined iteration count [48, 
49]. 

The results from the cluster analysis conducted on the training sample data (see Table 1) revealed 
eight distinct classes (I…VIII). Following a random selection process, training and test samples were 
formed in a 2:1 ratio (67 % training and 33 % testing). The cluster analysis performed on both subsets 
unveiled the presence of eight groups, indicating a similarity in composition between the training 
and test samples. The inter-group distances are nearly identical in both subsets, confirming the 
comparability of their compositions (refer to Figure 2). Thus, an optimal sample size was established, 
consisting of 256 elements for training (100 %), 172 elements for control (67 % of the training sample), 
and 84 elements for testing (33 % of the training sample). 

 

Figure 2: The cluster analysis results, where “left figure” denotes the training dataset, “right figure” 
denotes the test (author’s research). 

To assess the neural network's efficacy in the subsequent training stage, both accuracy (Figure 3) 
and loss (Figure 4) are quantified. The accuracy metric reflects the percentage of correct predictions, 
whereas the loss metric represents the average squared error of the predictions, illustrating the 
extent to which they differ from the actual values. To determine the precise calculations ratio for 
ΔnTC(t), ΔnFT(t), Δ𝑇∗(𝑡), ΔQf(t), the accuracy metric is employed (Figure 3) and is calculated at training 
epoch t using the following expression [50, 51]: 

 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௧ =
1

𝑁
∙  𝐼൫𝑛ො்

௧ = 𝑛்൯

ே

ୀଵ

. (12) 

 
As illustrated in Figures 3 and 4, these metrics demonstrate that the neural network model 

achieves a remarkable prediction accuracy of 99.25 % and operates effectively, with the mean squared 
error remaining below 2.5 %. Moreover, the substantial decrease in the loss function from 2.5 to 0.5 
% signifies an improvement in the model's performance throughout the training process. 

 

Figure 3: The accuracy metric diagram (author’s research). 

 

Figure 4: The loss metric diagram (author’s research). 

The performance evaluation of the developed neural network (Figure 1) is carried out using 
essential quality metrics, including accuracy, precision, recall, F1 score, and AUC-ROC. These 
metrics provide a comprehensive assessment of the model's ability to make accurate predictions, 
reduce errors, accurately identify relevant instances, and maintain a balance between precision and 
recall. The F1 score provides insight into the harmonic mean of precision and recall, while AUC-
ROC evaluates the model's ability to differentiate between classes at various thresholds, ensuring 
resilience in diverse operational contexts. These metrics are computed using the following 
expressions [52–54]: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (13) 



 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, 

 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 =  න 𝑇𝑃𝑅 ∙ ൫𝐹𝑃𝑅ିଵ(𝑡)൯

ଵ



𝑑𝑡. 

 

In this context, several key terms are utilized to assess the model's performance: True Positives 
(TP) refer to instances correctly identified as positive, representing relevant cases accurately detected 
by the model. False Positives (FP) indicate instances incorrectly classified as positive, highlighting 
irrelevant cases mistakenly identified as relevant. Conversely, True Negatives (TN) signify instances 
accurately classified as negative, while False Negatives (FN) represent relevant instances the model 
failed to identify. The True Positive Rate (TPR) measures the proportion of actual positives correctly 

identified, calculated as 𝑇𝑃𝑅 =  
்

்ାிே
. Meanwhile, the False Positive Rate (FPR) assesses the 

proportion of actual negatives incorrectly identified as positives, computed as 𝐹𝑃𝑅 =  
ி

ிା்ே
. 

Collectively, these metrics offer valuable insights into the classification performance of the model, 
aiding in the evaluation of its effectiveness in detecting relevant instances while minimizing 
erroneous classifications. 

The evaluation metrics reveal significant insights into the model's performance: a precision score 
of 0.989 indicates that 98.9% of the instances classified as positive are indeed relevant, reflecting a 
high level of accuracy in the model's positive predictions. A recall score of 1.0 signifies perfect 
sensitivity, meaning the model successfully identifies all relevant instances without missing any, 
showcasing its comprehensive detection capability. Finally, the F1-score of 0.994, which is the 
harmonic mean of precision and recall, highlights the model's balanced performance, indicating that 
it maintains both high precision and recall rates effectively. Collectively, these scores suggest that 
the model operates with exceptional reliability and accuracy in identifying relevant instances within 
the dataset. 

The evaluation metrics provide important insights into the model's classification performance: 
the TPR = 0.833 indicates that the model correctly identifies 83.3 % of actual positive instances, 
demonstrating a strong sensitivity in detecting relevant cases. The FPR = 0.0136 signifies that only 
1.36 % of actual negative instances are incorrectly classified as positive, reflecting a low level of 
erroneous positive predictions and enhancing the model's reliability. The FNR = 0.0095 shows that 
the model fails to identify only 0.95 % of actual positives, which is a minimal proportion, indicating 
high effectiveness in recognizing relevant instances. Lastly, an AUC-ROC score of 0.844 suggests 
that the model has a good capability to distinguish between positive and negative classes across 
various thresholds, with a value closer to 1 indicating better performance. Collectively, these metrics 
reveal that the model is effective in achieving a balance between sensitivity and specificity while 
maintaining robust discrimination power in classifying instances. 

The results obtained in this study enabled the optimal helicopter TE parameter values prediction 
(Table 2), ensuring acceptable performance for safe flight operations. Through the analysis of 
recorded onboard data, including gas-generator rotor speed, free turbine rotor speed, and gas 
temperature, combined with constant atmospheric parameters, the developed models provide a 
reliable framework for predicting engine behavior under various flight conditions. These predicted 
parameters are crucial for maintaining engine stability, minimizing risk, and enhancing the 
helicopter operations overall safety and reliability in both civil and military aviation. 



Table 2 
The optimal helicopter TE parameter values predicted values 

Set 
number 

The gas-generator 
rotor r.p.m. nTC 

The gas temperature in 
front of the compressor 

turbine 𝑇∗, 

The engine 
inlet 

pressure 𝑃
∗  

The fuel 
consumption 

GT 

1 0.985 0.972 0.984 0.972 
2 0.986 0.973 0.987 0.974 
3 0.984 0.971 0.983 0.973 
4 0.985 0.972 0.986 0.971 
5 0.983 0.978 0.983 0.971 
6 0.987 0.977 0.987 0.977 
7 0.990 0.979 0.991 0.972 
8 0.985 0.973 0.983 0.975 
9 0.986 0.973 0.987 0.973 
10 0.985 0.978 0.984 0.974 

 

5. Discussions 

In this research, a mathematical model (1)–(7) has been developed to optimize the helicopter TE 
parametric tuning. This model focuses on accurately predicting engine performance characteristics 
by integrating various operational parameters, including rotor speeds, fuel consumption rates, and 
temperature profiles. By employing a systematic approach to data analysis and parameter estimation, 
the model enhances the helicopter TE understanding behavior under different operating conditions.  

A neural network model (see Figure 1) has been developed to implement the mathematical 
framework for the helicopter TE parametric tuning optimizing. This model is designed to capture 
complex nonlinear relations between various input parameters and engine performance outputs, 
leveraging an architecture that typically includes multiple layers, such as input, hidden, and output 
layers. The training process (8)–(11) involves a supervised learning algorithm, where the model is 
exposed to a dataset comprising historical engine performance data and corresponding operational 
conditions. Utilizing backpropagation, the model adjusts its weights and biases through iterative 
optimization, minimizing the loss function that quantifies the difference between predicted and 
actual outputs. An adaptive training rate is incorporated to enhance convergence efficiency, allowing 
for dynamic adjustments based on the model’s performance during training. By employing this 
approach, the neural network not only trains to predict engine behavior accurately but also improves 
its capability to generalize across various operational scenarios, thus facilitating effective parametric 
tuning in real-time applications. 

A homogeneous and representative training dataset (see Table 1 and Figure 2) has been 
formulated, consisting of input parameters crucial for the helicopter TE optimal tuning. This dataset 
includes key operational variables such as rotor speeds, fuel consumption rates, temperature 
readings, and other relevant metrics that influence engine performance. 

A computational experiment established that the evaluation metrics reveal the neural network 
model's prediction accuracy of 99.25 % (see Figure 3) and effective operation, with a mean squared 
error below 2.5 %. A notable reduction in the loss function from 2.5 to 0.5 % (see Figure 4) signifies 
significant performance enhancement during training. Key metrics indicate that a precision score of 
0.989 reflects high accuracy in positive predictions, while a recall score of 1.0 confirms the model's 
ability to identify all relevant instances, showcasing comprehensive detection capability. The F1-
score of 0.994 highlights the model's balanced performance in maintaining both precision and recall. 

Further analysis shows a True Positive Rate (TPR) of 0.833, indicating strong sensitivity, and a 
False Positive Rate (FPR) of 0.0136, which enhances reliability by showing that only 1.36 % of actual 
negatives are misclassified. A False Negative Rate (FNR) of 0.0095 signifies high effectiveness in 



recognizing relevant instances. Lastly, an AUC-ROC score of 0.844 illustrates robust discrimination 
between positive and negative classes across thresholds. Collectively, these metrics confirm the 
model's effectiveness in balancing sensitivity and specificity while maintaining strong classification 
power. 

The neural network model quality assessing obtained results made it possible to obtain the 
helicopter TE optimal thermogas-dynamic parameters set (see Table 2), at which the flight will be as 
safe as possible. The results obtained in this research, while promising, are subject to several 
limitations that warrant consideration. The developed mathematical model (1)–(7) for optimizing 
helicopter TE parametric tuning primarily relies on historical performance data, which may not 
encompass all potential operating conditions, leading to reduced generalizability in real-world 
scenarios. Furthermore, the neural network model's architecture, despite its capability to capture 
complex nonlinear relationships, may be sensitive to overfitting, particularly if the training dataset 
does not adequately represent the operational variables full spectrum, such as variations in 
environmental conditions or anomalies during engine operation. 

Additionally, the use of an adaptive training rate, while beneficial for convergence, may introduce 
instability if not carefully managed, potentially affecting the model's reliability. The metrics 
indicating high prediction accuracy (99.25 %) and low mean squared error (< 2.5 %) suggest effective 
performance; however, these figures must be interpreted with caution, as they do not account for 
potential biases in the training dataset or limitations in the model's assumptions regarding engine 
behavior. Lastly, while the quality assessment of the neural network enabled the optimal thermogas-
dynamic parameters identification for safe flight (see Table 2), the practical implementation of these 
parameters in diverse operational environments necessitates further validation through extensive 
field testing to ensure their robustness and effectiveness under varying conditions. 

The prospects for further research in helicopter TE parameter optimization involve a deeper 
exploration into the influence that various factors have on engine performance under dynamic 
operating conditions. Future studies may focus on developing more complex and adaptive neural 
network architectures capable of efficiently processing and analyzing data in real time, which would 
improve prediction quality and enhance model resilience to external disturbances. Additionally, 
comparing different machine learning algorithms and their combinations would be beneficial in 
identifying the most effective optimization approaches. It is essential to consider the impact resulting 
from changing climatic and operational conditions on engine behavior, which will require expanding 
the database and incorporating additional variables. Finally, integrating developed models into 
helicopter control systems and testing them in real flight conditions will be crucial for verifying the 
reliability and effectiveness of proposed solutions, thereby contributing to enhanced aviation engine 
safety and efficiency. 

6. Conclusions 

The research developed a mathematical model to optimize the helicopter turboshaft engines 
parametric tuning, demonstrating a high level of accuracy in predicting engine performance 
characteristics. By integrating key operational parameters such as rotor speeds, fuel consumption 
rates, and temperature profiles, this model significantly enhances the helicopter TE understanding 
behavior across varying operating conditions. The neural network inclusion further strengthens this 
framework by effectively capturing complex nonlinear relationships between input variables and 
engine performance outputs, allowing for more precise parametric tuning in real-time applications. 

The model's training process, leveraging a representative dataset of historical engine performance 
data, has resulted in impressive performance metrics. With a prediction accuracy of 99.25 % and a 
low mean squared error below 2.5 %, the neural network demonstrates its capability to generalize 
well across different operational scenarios. Moreover, metrics such as precision, recall, and F1-score 
indicate a robust ability to identify relevant instances while maintaining a balance between 
sensitivity and specificity. These findings highlight the potential for applying this model to enhance 
safety and efficiency in helicopter operations. 



Despite the promising results, the research identifies several limitations that must be addressed. 
The reliance on historical performance data may limit the model's generalizability to all potential 
operating conditions, and the neural network’s architecture could be prone to overfitting if the 
training dataset is not sufficiently diverse. Additionally, the adaptive training rate, while beneficial, 
requires careful management to avoid introducing instability. Therefore, the high prediction 
accuracy should be interpreted with caution, considering potential biases and limitations inherent in 
the training data. 

Future research avenues include exploring the influence of various factors on engine performance 
and developing more complex neural network architectures for real-time data analysis. A 
comparative study of different machine learning algorithms may also yield insights into the most 
effective optimization approaches. Expanding the database to encompass a wider range of climatic 
and operational conditions is essential for improving model robustness. Ultimately, integrating these 
developed models into helicopter control systems and conducting extensive field tests will be critical 
for verifying their reliability and enhancing aviation engine safety and efficiency. 
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