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Abstract
The Fortran programming language is widely utilized in numerical computation and scientific computing. Fortran programs are prone
to potential runtime errors related to numerical properties due to the large number of numerical operations. In this paper, we present
F-IKOS, an abstract interpretation-based static analyzer for Fortran programs on top of IKOS, which soundly handles floating-point
types in Fortran programs. Firstly, we translate Fortran programs to LLVM IR using compiler front-end Flang. After that, we extend
IKOS to support sound floating-point analysis and then employ it to analyze the translated LLVM IR. Particularly, when analyzing
floating-point types in programs, we first abstract floating-point expressions into real-number expressions with interval coefficients, and
then linearize these expressions into real-number expressions with scalar coefficients. These linear expressions are subsequently handled
by abstract domains originally designed for real-number types to produce sound analysis results. We have conducted experiments on
representative Fortran programs to show the efficiency and effectiveness of F-IKOS. The experimental results are encouraging: F-IKOS
soundly analyzes runtime errors in complex programs, outperforming other analyzers.
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1. Introduction
The Fortran programming language is one of the oldest
high-level programming languages and one of the first to be
widely adopted for scientific computing. Additionally, sev-
eral numerical computation libraries, including BLAS[17],
which are developed in Fortran, have significantly con-
tributed to the widespread use of Fortran in domains such
as numerical computing and high-performance computing.
Compared with mainstream high-level programming lan-
guages such as C++ and Java, Fortran possesses a distinctive
set of features, such as powerful array manipulation and
abundant intrinsic functions for numerical computation.

However, Fortran programs are prone to potential run-
time errors related to numerical aspects such as division-
by-zero and arithmetic overflow due to the large number of
numerical operations. Researchers have dedicated efforts
to the analysis and verification of Fortran programs. Pre-
vious research on the analysis of Fortran programs can be
mainly classified into three categories: Firstly, approaches
such as f2c [3] and FABLE [11] convert Fortran programs to
other high-level language programs and verify them using
verifiers over the converted high-level language programs.
Secondly, approaches such as SMACK [7] and CIVL [8] trans-
late Fortran programs to Intermediate Representation (IR),
which is then verified using verifiers for IR, mainly based on
model checking. Additionally, some static analyzers such
as FORTRAN-lint [13], ftnchek [12] and Coverity [14] de-
tect certain generic defects, such as dead code and variable
usage problems, using pre-defined patterns.

Fortran programs are characterized by the extensive use
of floating-point operations, which are crucial for achieving
high precision and scale in numerical computing tasks, such
as solving differential equations. Every floating-point type
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has a specific finite precision and cannot represent all real
numbers exactly, leading to inherent and pervasive round-
ing errors in Fortran programs. If rounding errors are not
accounted for during the analysis of Fortran programs, the
analysis results may be unsound. However, the aforemen-
tioned approaches neglect to account for rounding errors
during the analysis of Fortran programs.

In this paper, we propose an approach to abstract floating-
point operations soundly in Fortran programs, which con-
siders rounding errors when analyzing programs. Our ap-
proach abstracts floating-point expressions in programs into
expressions with interval coefficients under real-number
semantics and then linearizes them into expressions with
scalar coefficients. This abstraction aims to eliminate round-
ing errors by floating-point operations during program anal-
ysis, which enables analyzers to perform sound analysis
under the abstract interpretation framework. We develop
a Fortran program analyzer on top of the Inference Kernel
for Open Static Analyzers (IKOS [10]) to implement the pro-
posed approach, named F-IKOS. F-IKOS utilizes Flang[5]
to translate Fortran programs into LLVM Intermediate Rep-
resentation (LLVM IR) and then leverages IKOS to analyze
the LLVM IR. The core of F-IKOS is IKOS, which is a static
analyzer based on abstract interpretation. IKOS can use
abstract domains from the Apron [6] numerical abstract
domain library to analyze programs. However, it mainly
detects runtime errors in machine integer types and cannot
infer invariants on floating-point types [1]. In our imple-
mentation, we first extended IKOS to support floating-point
types, and then applied the proposed approach to handle
floating-point operations soundly. With these extensions, F-
IKOS can analyze floating-point types in Fortran programs
and obtain sound analysis results. We conducted experi-
ments over benchmarks consisting of representative Fortran
programs and the evaluation results demonstrate the effi-
ciency, effectiveness, and utility of the analyzer F-IKOS. The
main contributions of this work are as follows:

• We proposed an approach to soundly abstract
floating-point operations in Fortran programs, ac-
counting for rounding errors during program analy-
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sis.
• We developed F-IKOS, a static analyzer for Fortran

programs, to implement the proposed approach. F-
IKOS can soundly analyze floating-point types in
Fortran programs.

• Evaluation shows that F-IKOS can handle the com-
plex syntax of Fortran programs and produce sound
analysis results, outperforming other relevant For-
tran analyzers.

The rest of the paper is organized as follows. Section
2 describes background. Section 3 presents the overview
of our analyzer F-IKOS. Section 4 presents the proposed
abstraction of floating-point expressions. Section 5 presents
our analyzer implementation together with experimental
results. Section 6 discusses some related work and Section
7 concludes.

2. Background

2.1. The Fortran Programming Language
The Fortran programming language is a well-established
high-level language with many syntax standards, such as
Fortran 77 and Fortran 90. Fortran has similarities to other
high-level programming languages. For example, Fortran in-
cludes common control structures such as conditional state-
ments and looping control structures. However, Fortran
programs often emphasize numerical computation tasks
more than logical control functions. This is reflected by the
fact that Fortran has a wealth of intrinsic functions, such as
the trigonometric functions sin, cos, asin, and acos.

Besides, Fortran has a rich set of convenient array op-
erations. Fortran supports flexible array boundaries, such
as 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∶∶ 𝑣(−3 ∶ 3), indicating that the index of array
𝑣 ranges from -3 to 3. It also provides a range of intrinsic
functions for arrays, including sum and product, as well as
matmul and dot_product for computing matrix products
and dot products. Fortran inherently supports multidimen-
sional arrays and offers mechanisms for array slicing and
reshaping. For instance, the reshape function facilitates
altering the number of dimensions and the size of each
dimension within an array. Due to these characteristics,
Fortran is widely used in scientific and high-performance
computing.

2.2. The Floating-point Representation
The floating-point representation adheres to the IEEE-754
standard. Many high-precision real numbers, cannot be
exactly represented by floating-point numbers. The IEEE-
754 standard provides four rounding modes: nearest, zero,
−∞, and +∞, to approximate real numbers using floating-
point numbers. This approximation can introduce rounding
errors, which result in inexactness.

Due to rounding errors, mathematical properties followed
by real number operations do not hold in floating-point op-
erations. We illustrate it with an example. To distinguish be-
tween real and floating-point numbers and their respective
operators, we employ 𝑟𝑛𝑑(⋅) to represent floating-point num-
bers in machines and denote real number operators using
symbols +, −, ×, /, while denoting floating-point operators
using ⊕𝑓 ,𝑟, ⊖𝑓 ,𝑟, ⊗𝑓 ,𝑟, ⊘𝑓 ,𝑟 where the subscripts 𝑓 , 𝑟 denote
different precision and rounding modes. Real numbers like
0.1, 0.2, and 0.3 cannot be exactly represented by machines.

Under real number semantics, the equation 0.1 + 0.2 = 0.3
holds. But in machines, 𝑟𝑛𝑑(0.1) ⊕𝑓 ,𝑟 𝑟𝑛𝑑(0.2) is not equal
to 𝑟𝑛𝑑(0.3). Furthermore, the law of association and distri-
bution is not always true in floating-point operations. E.g.,
it may happen that

(𝑟𝑛𝑑(𝑎)⊕𝑓 ,𝑟𝑟𝑛𝑑(𝑏))⊕𝑓 ,𝑟𝑟𝑛𝑑(𝑐) ≠ 𝑟𝑛𝑑(𝑎)⊕𝑓 ,𝑟(𝑟𝑛𝑑(𝑏)⊕𝑓 ,𝑟𝑟𝑛𝑑(𝑐))

2.3. Rounding Model of IEEE-754
A simplified rounding model of the IEEE-754 standard fol-
lows the equation below:

𝑟𝑛𝑑(𝑥) = 𝑥 × (1 + 𝑒) + 𝑑

where |𝑒| ≤ 𝜖, |𝑑| ≤ 𝛿, and 𝑒 × 𝑑 = 0. When 𝑥 is a normalized
number, it holds that 𝑑 = 0, and when 𝑥 is a denormalized
number, it holds that 𝑒 = 0. Here, 𝜖 denotes the maximum
relative error for normalized numbers, and 𝛿 describes the
maximum absolute error for denormalized numbers for spe-
cific precision of floating-point numbers.

2.4. Linearization
An interval linear expression is an expression where the
coefficients may be intervals instead of scalars. For instance,

𝑧 = [𝑏1, 𝑐1]𝑥 + [𝑏2, 𝑐2]𝑦

Interval linear expressions, in which the coefficients are
intervals, can be abstracted into linear expressions with
scalar coefficients. This process is linearization, and it is
defined as follows:
Definition 1 (Linearization). An interval linear ex-

pression ∑𝑖[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑] can be linearized into a linear
expression∑𝑖 𝑒𝑖×𝑥𝑖+[𝑐′, 𝑑′], where 𝑒𝑖 ∈ [𝑎𝑖, 𝑏𝑖] and satisfying
∑𝑖[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑] ⊆ ∑𝑖 𝑒𝑖 × 𝑥𝑖 + [𝑐′, 𝑑′] for all 𝑥𝑖 ∈ [𝑥𝑖, 𝑥𝑖]
where 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖.

3. Overview
In this section, we give an overview of our approach. We
develop a static analyzer on top of IKOS [10], named F-IKOS,
to perform sound analysis of floating-point types in Fortran
programs. The architecture and workflow of F-IKOS are
illustrated in Fig. 1, highlighting our modifications to en-
able the sound analysis of floating-point types in Fortran
programs. Initially, F-IKOS takes Fortran programs as input
and uses the parser Flang [5] to translate programs into
LLVM IR. Subsequently, after optimization and processing,
F-IKOS uses extended IKOS together with numerical ab-
stract domains from Apron [6] to analyze the LLVM IR and
obtain invariants of programs. Finally, potential runtime
errors in programs are checked by utilizing these invariants.

4. Approach
Fortran programs involve numerous floating-point opera-
tions, and analyzing these programs within the abstract in-
terpretation framework by simply treating floating-point ex-
pressions as real-number expressions may result in unsound
results. This occurs because floating-point numbers in pro-
grams are rounded before being passed to abstract domains
(e.g., Apron [6]). For example, within the polyhedra abstract
domain, linear constraints between variables are collected
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Figure 1: Overview of F-IKOS

and utilized to infer the program’s invariants. Due to the
presence of floating-point numbers and operators (e.g., ⊕𝑓 ,𝑟,
⊖𝑓 ,𝑟, ⊗𝑓 ,𝑟, ⊘𝑓 ,𝑟), these expressions are under floating-point
semantics. Directly interpreting floating-point expressions
as expressions under real-number semantics introduces un-
soundness to the analysis. For instance, (rnd(𝑥)⊕𝑓 ,𝑟 rnd(𝑦))
is not equivalent to (𝑥 + 𝑦) under real-number semantics.

To address this challenge, Miné [19] proposes to over-
approximately abstract floating-point expressions into real-
number expressions. The approach includes the following
three steps:

1. Abstract the deterministic semantics of floating-
point expressions into non-deterministic semantics
on real-number expressions.

2. Convert the non-deterministic semantics of real
numbers into deterministic semantics for real num-
bers.

3. Analyze programs with real-number operations us-
ing abstract domains initially designed for programs
with real-number types.

In this section, we present the following three steps:
sound abstraction of floating-point expressions, lineariza-
tion of interval linear expressions, and the analysis of pro-
grams using abstract domains.

4.1. Abstraction of Floating-point
Expressions

Abstraction of floating-point numbers. Floating-point
types in Fortran programs adhere to the IEEE-754 standard.
Given the value of a floating-point number and its precision,
using the rounding model outlined in Section 2.3, we can
compute the relation of 𝑟𝑛𝑑(𝑥) and 𝑥 (the interval range) as
follows.

When 𝑥 is a normalized number, the relation of 𝑥 and
𝑟𝑛𝑑(𝑥) can be represented as:

𝑟𝑛𝑑(𝑥) = 𝑥 × [1 − 𝜖, 1 + 𝜖] (1)

When 𝑥 is a denormalized number (i.e., close to zero), the
relation of 𝑥 and 𝑟𝑛𝑑(𝑥) is given by:

𝑟𝑛𝑑(𝑥) = 𝑥 + [−𝛿, 𝛿] (2)

where 𝜖 denotes the maximum relative error for normalized
numbers, and 𝛿 represents the maximum absolute error for

Precision 𝜖 𝛿
single (32 bits) 2−23 2−149
double (64 bits) 2−52 2−1074
quad (128 bits) 2−112 2−16494

Table 1
Related/Absolute rounding errors for various types

denormalized numbers for specific precision of 𝑥. Table 1
illustrates the values of 𝜖 and 𝛿 for various floating-point
types. To enhance generality, we express the conversion
between a floating-point number and its corresponding real
interval range before rounding using Formula 3. This pro-
vides an over-approximation of 𝑥 given by Formula 1 and
2 regardless of whether 𝑥 is a normalized or denormalized
number.

𝑟𝑛𝑑(𝑥) = 𝑥 × ([1 − 𝜖, 1 + 𝜖]) + [−𝛿, 𝛿] (3)

Abstraction of Expressions with Floating-Point Oper-
ators. Miné [19] proposes a method for abstracting expres-
sions involving floating-point operators into real-number
expressions. This approach captures rounding errors of
floating-point arithmetic by over-approximating the behav-
ior of floating-point operators using real-number semantics.

Assume that 𝑟𝑛𝑑(𝑥) and 𝑟𝑛𝑑(𝑦) are two floating-point
expressions, with 𝑥 and 𝑦 representing the corresponding
real-number expressions. Let 𝑎 and 𝑏 be real numbers, and
let 𝜖 and 𝛿 denote the relative and absolute errors, respec-
tively, which depend on the precision of the floating-point
types.

Non-linear operators (such as ⊗𝑓 ,𝑟 and ⊘𝑓 ,𝑟) can be han-
dled by applying the corresponding operator on intervals
after ”intervalizing” the arguments [19]. The operator | ⋅ |𝜄
is used to ”intervalize” the argument by a single interval
[19]. When multiplying two linear forms that have not been
reduced to an interval, the operator | ⋅ |𝜄 can be applied to
either argument. Similarly, operator | ⋅ |𝜄 can be applied to
the divisor to obtain a single interval before performing
division.
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The abstraction is described as follows [19]:

𝑥 ⊕𝑓 ,𝑟 𝑦 = (𝑥 + 𝑦) × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿]

𝑥 ⊖𝑓 ,𝑟 𝑦 = (𝑥 − 𝑦) × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿]

𝑥 ⊗𝑓 ,𝑟 [𝑎0, 𝑏0] = 𝑥 × [1 − 𝜖, 1 + 𝜖] ⋅ [𝑎0, 𝑏0] + [−𝛿, 𝛿]

[𝑎0, 𝑏0] ⊗𝑓 ,𝑟 𝑥 = 𝑥 ⊗𝑓 ,𝑟 [𝑎0, 𝑏0]

𝑥 ⊗𝑓 ,𝑟 𝑦 = 𝑥 × [1 − 𝜖, 1 + 𝜖] ⋅ |𝑦 |𝜄 + [−𝛿, 𝛿]

𝑜𝑟
𝑥 ⊗𝑓 ,𝑟 𝑦 = 𝑦 × [1 − 𝜖, 1 + 𝜖] ⋅ |𝑥|𝜄 + [−𝛿, 𝛿]

𝑥 ⊘𝑓 ,𝑟 [𝑎0, 𝑏0] = 𝑥 × [1 − 𝜖, 1 + 𝜖]/[𝑎0, 𝑏0] + [−𝛿, 𝛿]

𝑥 ⊘𝑓 ,𝑟 𝑦 = 𝑥 × [1 − 𝜖, 1 + 𝜖]/|𝑦 |𝜄 + [−𝛿, 𝛿]

(4)

Abstraction of Floating-point Expressions. In Fortran
programs, variables (or constants) and operators in ex-
pressions are under floating-point semantics. We abstract
expressions that involve floating-point variables and per-
form floating-point arithmetic into real-number expressions,
which involve real-number variables and real-number oper-
ators.

The floating-point expression 𝑟𝑛𝑑(𝑥) ⊕𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can be
abstracted into a real-number expression as follows:

𝑟𝑛𝑑(𝑥) ⊕𝑓 ,𝑟 𝑟𝑛𝑑(𝑦)

where
𝑟𝑛𝑑(𝑥) = 𝑥 × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿]

𝑟𝑛𝑑(𝑦) = 𝑦 × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿]

Substituting these into the expression, we get

(𝑥×([1−𝜖, 1+𝜖])+[−𝛿, 𝛿])⊕𝑓 ,𝑟(𝑦×([1−𝜖, 1+𝜖])+[−𝛿, 𝛿]) (5)

Since 𝑥 ⊕𝑓 ,𝑟 𝑦 = 𝑟𝑛𝑑(𝑥 + 𝑦), we convert Formula 5 as:

𝑟𝑛𝑑(((𝑥 + 𝑦)([1 − 𝜖, 1 + 𝜖]) + 2 × [−𝛿, 𝛿]))

Thus, the expression 𝑟𝑛𝑑(𝑥) ⊕𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can be abstracted
as:

(𝑥 + 𝑦)[(1 − 𝜖)2, (1 + 𝜖)2] + [−(3 + 2𝜖)𝛿, (3 + 2𝜖)𝛿] (6)

By following this approach, the floating-point expression
𝑟𝑛𝑑(𝑥) ⊖𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can be abstracted into its corresponding
real-number expression, as illustrated:

(𝑥 − 𝑦)[(1 − 𝜖)2, (1 + 𝜖)2] + [−(3 + 2𝜖)𝛿, (3 + 2𝜖)𝛿] (7)

When multiplying two linear forms, the operator | ⋅ |𝜄 can
be applied to either argument to obtain an interval range
of the argument. In this case, we apply | ⋅ |𝜄 to the second
argument. The floating-point expression 𝑟𝑛𝑑(𝑥) ⊗𝑓 ,𝑟 𝑟𝑛𝑑(𝑦)
can be abstracted through the following steps:

Assume [𝑎, 𝑏] = |𝑟𝑛𝑑(𝑦)|𝜄 × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿], then
𝑟𝑛𝑑(𝑥) ⊗𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can be converted into

𝑟𝑛𝑑(𝑥) ⊗𝑓 ,𝑟 [𝑎, 𝑏] (8)

Given that 𝑟𝑛𝑑(𝑥) = 𝑥 × [1 − 𝜖, 1 + 𝜖] + [−𝛿, 𝛿] and 𝑥 ⊗𝑓 ,𝑟
[𝑎0, 𝑏0] = 𝑟𝑛𝑑(𝑥 ×[𝑎0, 𝑏0]) = 𝑥 ×[1−𝜖, 1+𝜖] ⋅ [𝑎0, 𝑏0]+[−𝛿, 𝛿],
we can express Formula 8 as follows:

𝑟𝑛𝑑 (𝑥 × [1 − 𝜖, 1 + 𝜖] ⋅ [𝑎, 𝑏] + [−𝛿, 𝛿] ⋅ [𝑎, 𝑏])

Thus, the expression 𝑟𝑛𝑑(𝑥) ⊗𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can be abstracted
as:

𝑥×[(1−𝜖)2, (1+𝜖)2]⋅[𝑎, 𝑏]+[−(1+𝜖)𝛿, (1+𝜖)𝛿]⋅[𝑎, 𝑏]+[−𝛿, 𝛿]
(9)

Similarly, we apply | ⋅ |𝜄 to the divisor to obtain a single
interval before performing the division. The floating-point
expression 𝑟𝑛𝑑(𝑥)⊘𝑓 ,𝑟 𝑟𝑛𝑑(𝑦) can then be abstracted into its
corresponding real-number expression, as illustrated below:

𝑥×[(1−𝜖)2, (1+𝜖)2]/[𝑎, 𝑏]+[−(1+𝜖)𝛿, (1+𝜖)𝛿]/[𝑎, 𝑏]+[−𝛿, 𝛿]
(10)

The coefficients of variables within the real-number ex-
pressions obtained by abstraction are represented as real-
number intervals. However, many abstract domains cannot
process such interval-coefficient forms, as they only support
linear expressions.

4.2. Linearization of Interval Linear
Expressions

To enable existing numerical abstract domains (e.g., poly-
hedra abstract domain) to handle interval linear expres-
sions, Miné [19] proposes to linearize these interval lin-
ear expressions to linear expressions. The core idea is
as follows: Supposing variable 𝑥𝑖 ranges over the interval
[𝑥𝑖, 𝑥𝑖], an interval linear expression Σ𝑖[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑] can
be over-approximated by a linear expression of the form
Σ𝑖𝑒𝑖 × 𝑥𝑖 + [𝑐′, 𝑑′]. This approach converts real-number inter-
val linear expressions into real-number linear expressions
with scalar coefficients. The existing numerical abstraction
domain initially designed for real-number semantics can di-
rectly analyze these expressions. We present our approach
to linearize interval linear expressions.

Drawing inspiration from [2, 19], we define the lineariza-
tion of interval linear expressions within real-number se-
mantics as follows:
Definition 2 (Linearization Operator). Given an in-

terval linear expression 𝜑 ∶ (∑𝑖[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑]), and
letting x ∶= [𝑥, 𝑥] be the bounding box of variable x, the
linearization operator is defined as

𝜁 (𝜑,x)
𝑑𝑒𝑓
= ∑

𝑖
𝑒𝑖 × 𝑥𝑖 + [𝑐′, 𝑑′]

where 𝑒𝑖 is any real number in the interval [𝑎𝑖, 𝑏𝑖], and
[𝑐′, 𝑑′] denotes the resulting interval of ∑𝑖[𝑎𝑖 − 𝑒𝑖, 𝑏𝑖 − 𝑒𝑖] ×
[𝑥𝑖, 𝑥𝑖] + [𝑐, 𝑑]. Generally, we choose the midpoint of the
interval 𝑒𝑖 = (𝑎𝑖 + 𝑏𝑖) × 0.5.

We provide the proof of the soundness of the linearization
operator through the following reasoning:

∑
𝑖
[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑]

⟺ ∑
𝑖
(𝑒𝑖 + [𝑎𝑖 − 𝑒𝑖, 𝑏𝑖 − 𝑒𝑖]) × 𝑥𝑖 + [𝑐, 𝑑]

⟺ ∑
𝑖
𝑒𝑖 × 𝑥𝑖 +∑

𝑖
[𝑎𝑖 − 𝑒𝑖, 𝑏𝑖 − 𝑒𝑖] × 𝑥𝑖 + [𝑐, 𝑑]

can be over-approximated as

∑
𝑖
𝑒𝑖 × 𝑥𝑖 + ([𝑎𝑖 − 𝑒𝑖, 𝑏𝑖 − 𝑒𝑖] × [𝑥𝑖, 𝑥𝑖]) + [𝑐, 𝑑]

since it holds that [𝑎𝑖−𝑒𝑖, 𝑏𝑖−𝑒𝑖] × 𝑥𝑖 ⊆ [𝑎𝑖−𝑒𝑖, 𝑏𝑖−𝑒𝑖] × [𝑥𝑖, 𝑥𝑖],
where 𝑎𝑖 ≤ 𝑒𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖.

Note that following the same principle, an interval linear
inequality∑𝑖[𝑎𝑖, 𝑏𝑖]×𝑥𝑖+[𝑐, 𝑑] ≤ 0 can be also linearized into
a linear inequality in the form of∑𝑖 𝑒𝑖×𝑥𝑖+[𝑐′, 𝑑′] ≤ 0 in the
sense of weak solution [23]. It means that a weak solution
of an interval linear inequality ∑𝑖[𝑎𝑖, 𝑏𝑖] × 𝑥𝑖 + [𝑐, 𝑑] ≤ 0 will
be a solution of ∑𝑖 𝑒𝑖 × 𝑥𝑖 + [𝑐′, 𝑑′] ≤ 0 (but the reverse does
not hold). This approach over-approximates interval linear
expressions (or inequalities) up into linear expressions (or
inequalities).
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4.3. Analyze programs with existing
abstract domains

Due to the sound handling of rounding errors inherent in
floating-point operations through the above abstraction and
linearization procedure, we can now obtain sound results
using abstract domains initially designed for real-number
semantics.

5. Implementation and Evaluation

5.1. Implementation
Wehave implemented a static analyzer for Fortran programs,
named F-IKOS, with over 4K LOC of C++ code by extending
IKOS. F-IKOS is endowed with the capability to perform
sound analysis of floating-point types in Fortran programs.

5.2. Research Questions and Experimental
Setup

To evaluate F-IKOS, we compare it with two most relevant
Fortran program analyzers, SMACK [7] and CIVL [8]. Both
SMACK and CIVL translate Fortran programs into IR for sub-
sequent verification using IR-compatible verifiers, mainly
based on model checking. They are designed to verify cer-
tain program properties but do not directly detect potential
errors in Fortran programs.

We investigate the following three research questions
across the analyzers:

• RQ1: How effective is F-IKOS in analyzing simple
Fortran programs?

• RQ2: How well does F-IKOS handle complex fea-
tures of Fortran programs?

• RQ3: How does F-IKOS perform when applied to
real-world Fortran programs?

To address these questions, we conducted three exper-
iments to evaluate the capabilities of F-IKOS. The bench-
marks employed in our experiments are categorized into
three distinct classes:

• 36 Fortran programs used by SMACK [7] and CIVL[8],
which are used to evaluate F-IKOS’s ability to handle
simple syntaxs and accomplish verification tasks.

• 45 real-world Fortran programs extracted from open-
source repositories [22, 21], encompassing various
Fortran syntax standards.

• 10 artificially constructed programs, derived from
the repository [20], designed to evaluate the capabil-
ity of F-IKOS in detecting runtime errors associated
with floating-point types.

All experiments were conducted on a PC running Ubuntu
20.04 (16GB Memory) in the Oracle VirtualBox 6.1.30 with
a 3.3GHz Intel Core i9 CPU. The abstract domain used is
Polka [6], which is an implementation of the Polyhedra
abstract domain in Apron.

5.3. RQ1: Verifying simple Fortran
programs

We analyzed 36 simple Fortran programs from the first
benchmark [7, 8], excluding parallel and recursive program

instances. The experimental results are presented in Ta-
ble 2, where ”F-IKOS Time (s)”, ”SMACK Time(s)” and ”CIVL
Time (s)” denote the execution time of F-IKOS, SMACK, and
CIVL, respectively. In the last row of Table 2, the average
execution time of programs is recorded.

Specifically, SMACK successfully verified only 19 out of 36
programs. In contrast, CIVL correctly verified all 36 pro-
grams, and F-IKOS successfully completed the analysis of
the majority (30 out of 36). Further analysis of the unverified
programs by F-IKOS reveals that most required disjunctive
invariants for successful verification, are out of the expres-
siveness of the used polyhedra abstract domain, whereas
CIVL, with the help of the SMT solver (i.e., Z3), can address
them effectively.

Furthermore, a comparative analysis of the average ex-
ecution time reveals that F-IKOS exhibits shorter analysis
time, approximately 5% of SMACK’s and 10% of CIVL’s. The
experimental results underscore F-IKOS’s ability to achieve
a delicate balance between analysis efficiency and effec-
tiveness, demonstrating its strengths compared to existing
state-of-the-art Fortran analyzers.
RQ-1 Answer: F-IKOS undergoes comparison with

SMACK and CIVL for the analysis of 36 Fortran programs.
It successfully verified 30 out of 36 programs, exhibiting a
shorter average execution time compared with state-of-the-
art approach and about 10% of CIVL’s. The results highlight
the efficiency and effectiveness of F-IKOS in analyzing sim-
ple Fortran programs.

5.4. RQ2: Handling complex feature
operations

We analyzed 45 Fortran programs from the second bench-
mark. The programs in this benchmark utilize features and
intrinsic functions in Fortran that have not been previously
examined. Some programs exemplify common Fortran pro-
gramming conventions, while others involve algorithmic
implementations. The inclusion of integer and floating-
point types, along with arrays, increases the complexity of
analyzing the programs.

In addition to the Fortran 90 standard programs, some
programs following Fortran 77, and Fortran 95 standards are
also included in bold in the table. The evaluation results in
the efficiency and effectiveness of the analyzers are shown
in Table 3. ”F-IKOS (s)” and ”F-IKOS FP” illustrate the Exe-
cution Time and False Positives (FP) of F-IKOS, respectively.

The experimental results demonstrate that both SMACK
and CIVL to analyze the 45 programs in benchmark and
find that SMACK can parse 37 out of 45 programs, whereas
CIVL can only parse 3 out of 45. In contrast, F-IKOS can
analyze all programs within an average time of 1.79s while
maintaining an acceptable average of 3 false positives per
program. In particular, when analyzing programs that use
intrinsic functions to manipulate Fortran’s arrays, F-IKOS
issues some false positives. The reason for these false pos-
itives lies in the differences between Fortran arrays and
common high-level language arrays.

RQ-2 Answer: F-IKOS maintains analytical capabilities
when dealing with intrinsic functions. F-IKOS successfully
analyzed all Fortran programs within an average time of
1.79s. Moreover, F-IKOS can be used to analyze Fortran
programs adhering to multiple syntax standards, and the
results show that F-IKOS performs better than SMACK and
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ID Program Name Loc F-IKOS Time (s) SMACK Time (s) CIVL Time (s)
P1 array 15 0.14 3.22 2.9
P2 arrary_fail 11 0.14 2.79 3.19
P3 compound 19 0.26 3.23 1.41
P4 compound_fail 19 0.31 2.77 1.48
P5 compound_fail_2 19 0.30 3.64 1.71
P6 compute 13 0.12 3.14 1.57
P7 compute_fail 13 0.15 2.67 1.50
P8 forloop 15 0.16 3.62 1.5
P9 forloop_fail 15 0.21 2.99 1.89
P10 function 36 0.18 4.10 1.82
P11 function_fail 36 0.19 3.83 1.62
P12 function_fail_2 35 0.23 6.29 1.74
P13 function_fail_3 35 0.25 7.39 1.65
P14 hello 14 0.14 3.07 1.39
P15 hello_fail 13 0.16 2.63 1.62
P16 inout 19 0.17 2.20 1.54
P17 inout_fail 19 0.20 2.70 1.51
P18 pointer 15 0.18 3.28 1.40
P19 pointer_fail 15 0.22 2.75 1.46
P20 abs 15 - - 1.46
P21 abs_bad 15 - - 1.54
P22 array_section 29 - - 3.63
P23 array_section_bad 30 - - 3.88
P24 intent_inout 24 0.19 - 2.02
P25 intent_out 25 0.17 - 2.66
P26 intent_out_bad 24 0.21 - 2.28
P27 mod_impl 25 0.17 - 2.05
P28 mod_impl_bad 25 0.18 - 2.11
P29 mod_spec 19 0.12 - 1.48
P30 mult_impl 25 0.13 - 1.73
P31 mult_impl_bad 25 0.13 - 1.86
P32 mult_spec 21 0.16 - 1.46
P33 short_circuit 37 - - 3.57
P34 short_circuit_bad 35 - - 3.53
P35 truncate 14 0.12 - 1.42
P36 truncate_bad 14 0.14 - 1.63

Average 22 0.18 3.49 1.98

Table 2
Experimental results on 36 Fortran programs

CIVL.

5.5. RQ3: Handling real-world programs
We evaluated the capability of F-IKOS to detect runtime
errors in larger programs from the third benchmark. To
objectively demonstrate F-IKOS’s capabilities, we intention-
ally injected 10 division-by-zero bugs into some of these
programs. Our evaluation metrics include both analysis
time and accuracy. The accuracy of the analysis is defined
as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

where 𝑇𝑃 represents the number of true positives, and 𝐹𝑃
denotes the number of false positives.

The experimental results are represented in Table 4,
where ”F-IKOS TP” and ”F-IKOS FP” denote true positives
and false positives of F-IKOS, respectively. SMACK success-
fully parsed 7 programs, but it failed to detect runtime errors
within them. CIVL couldn’t parse any of the 10 programs.
In contrast, F-IKOS detected all runtime errors, achieving
an accuracy of 22.2%. The programs include both custom
and Fortran intrinsic functions, exhibiting more complex
numerical characteristics. The results demonstrate the ef-
fectiveness of F-IKOS to detect runtime errors in numerical
computation programs. Regardless of the rounding mode

used by machines, our analysis of Fortran programs remains
sound, ensuring consistent and sound analysis results across
different computational environments.

We find that some programs require more time for analy-
sis. Two primary factors contribute to the long execution
time. Firstly, our experiments utilize the polyhedra abstract
domain, which can be computationally expensive for certain
programs. Additionally, real-world programs often exhibit
distinct numerical characteristics, particularly due to the
presence of loops and arrays, which demand more time-
intensive processing.
RQ-3 Answer: The results show that SMACK parses 7

out of 10 Fortran programs, while CIVL fails to parse any.
Moreover, neither tools can detect runtime errors in the pro-
grams they parse. In contrast, F-IKOS soundly analyzes all
programs and successfully detects runtime errors, demon-
strating its effectiveness in handling Fortran numerical pro-
grams.

6. Related Work
In the literature, there exists several tools to analyze or
verify Fortran programs. Some tools such as f2c [3] and
FABLE[11], involve converting Fortran programs into other
high-level languages (such as C++) programs, and then use
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ID Program Loc F-IKOS (s) F-IKOS FP SMACK (s) CIVL (s)
P1 arguments 41 2.40 0 2.43 -
P2 associate_bounds 9 0.99 0 2.71 -
P3 bounds 12 0.88 8 3.24 -
P4 boz 11 1.83 1 2.85 -
P5 case_insensitivity 15 0.18 1 2.43 -
P6 column_major 18 0.12 0 2.9 -
P7 compare_floats 15 2.14 0 3.25 -
P8 data 21 0.18 5 2.91 -
P9 derived_type_composition 21 1.31 0 2.73 -
P10 derived_type_implied_do 19 1.69 5 3.34 -
P11 dimension 13 0.36 0 2.67 -
P12 direct_access 28 5.16 15 - -
P13 do_loop_index 18 0.17 0 3.14 0.99
P14 do_while 32 1.78 12 3.27 -
P15 error_stop 20 0.26 1 - -
P16 get_command 23 1.49 3 3.27 -
P17 implicit_save 41 0.39 7 3.17 -
P18 intrinsic 50 1.18 0 2.93 -
P19 list_directed_read 20 1.65 0 3.23 -
P20 loop 10 0.16 4 2.91 1.59
P21 loop_bound 32 0.59 0 3.28 -
P22 loop_index 22 0.34 5 3.05 -
P23 loop_label 34 4.45 15 3.64 -
P24 merge 10 0.82 0 3.26 -
P25 module 16 0.12 0 2.7 -
P26 module_parameter 35 0.17 0 2.62 -
P27 open_file 27 1.93 2 2.98 -
P28 overlapping_arg 31 1.69 0 2.84 -
P29 print_implied_do_loop 22 3.10 16 4.27 -
P30 protected 29 0.34 0 2.87 -
P31 recursive_io 37 0.51 0 - -
P32 scratch 19 1.27 6 3.47 -
P33 select_case 21 0.99 0 3.56 -
P34 slash 15 0.85 0 2.9 -
P35 sum_exit 14 0.23 5 3.11 1.52
P36 trim 9 0.26 0 2.63 -
P37 type_constructor_optional 23 0.75 0 2.75 -
P38 value 45 0.41 4 2.73 -
P39 write_char 15 0.76 0 2.67 -
P40 xrandom_int 17 4.60 4 - -
P41 swap_arrays 51 5.12 2 - -
P42 average 40 17.81 8 - -
P43 submod 41 0.56 0 - -
P44 linear_equations 27 7.29 3 - -
P45 temp_converter 40 1.47 2 2.19 -

Table 3
Experimental results on 45 Fortran programs

verifiers to conduct verification. Alternatively, FORTRAN-
lint [13], ftnchek [12] and Coverity [14] specializes in
predefined, general-purpose defect detection within For-
tran programs, lacking the comprehensive capability to ana-
lyze program properties semantically. In contrast, CamFort
[15] incorporates a lightweight declarative specification lan-
guage capable of both checking and inferring specifications.

SMACK [7] and CIVL [8] translate Fortran programs into
Intermediate Representation (IR) for subsequent verification
using IR-compatible verifiers. Specifically, SMACK converts
Fortran programs to LLVM IR and then verifies LLVM IR via
Corral [9], wherein Corral restricts the syntax of expres-
sions in this language to one that can be efficiently decided
by a SMT solver. CIVL [8] converts Fortran programs to
CIVL-C which is an Intermediate Verification Language
(IVL), which is subsequently verified using model check-
ing and symbolic execution. However, their work mainly
focuses on the verification of Fortran programs, without

addressing runtime error detection. In this paper, we use
F-IKOS to support the sound analysis of Fortran programs
with complex features.

7. Conclusion
In this paper, we present F-IKOS, an abstract interpretation-
based static analyzer designed for Fortran programs. Partic-
ularly, F-IKOS provides a sound analysis for floating-point
types in programs. F-IKOS first abstracts floating-point ex-
pressions into real-number expressions with interval coeffi-
cients, then linearizes these expressions into real-number ex-
pressions with scalar coefficients. These linear expressions
are subsequently handled by abstract domains originally
designed for real-number types to produce sound analy-
sis results. Evaluation of three benchmarks demonstrates
F-IKOS’s efficiency and effectiveness than other relevant
analyzers in the analysis of Fortran programs.
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ID Program Name Loc F-IKOS (s) F-IKOS TP F-IKOS FP SMACK (s) CIVL (s)
P1 converter 41 1.06 0 2 2.95 -
P2 bubblesort 62 169.81 0 10 - -
P3 libconstants 107 0.38 0 0 2.17 -
P4 simpson 53 11.62 0 5 3.65 -
P5 differentiation 39 4.48 0 5 - -
P6 div 111 0.15 6 0 2.98 -
P7 expr 110 0.12 2 0 3.08 -
P8 function 112 12.01 2 0 3.05 -
P9 palindrome 51 63.05 0 7 - -
P10 trapezodial 102 18.79 0 6 3.27 -

Table 4
Experimental results on 10 Fortran programs
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