
Resource Aware Implementation of Image Processing

Algorithms – A Teacher Perspective

Petar Rajković1, ∗, †, Dragan Janković1, †

1 University of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, Niš, Serbia

Abstract
Teaching image processing algorithms is a widely interesting and easily accepted topic by students.
The mentioned algorithms offer initial visual results, a lot of space for improvements, personal
initiative, and the opportunity for continuous work. This paper presents our experience in teaching
image processing algorithm implementation with different approaches, emphasizing concepts of
resource awareness. The programming routines explained to the students start from a managed
environment with and without dedicated classes and packages, through the unsafe code execution
up to native code integration. The paper presents the comparison of time utilization, programming
effort, and the level of the concept adoption by the students. The analysis was based on the student
projects uploaded to the learning management system in the period from 2018 to 2024. The results
are used to adjust the course structure and better adopt resource awareness-related concepts. The
percentage of projects entirely based on more effective approaches rose from 44% in 2018 to 80% in
2023 and 2024. During the monitored period, the overall average execution time of the benchmark
algorithms was reduced closely to one-third compared to the results from 2018, which follows the
shift towards more effective approaches. In this way, we tend to say that it is important to point out
all the technology benefits and shortcomings and to encourage students to try to find more effective
ways to solve time and resource-consuming problems.

Keywords
Image processing algorithms, resource awareness, execution efficiency 1

1. Introduction

Implementation of image processing algorithms is

considered a remarkably interesting part of computer

science [1]. Many students and programmers genuinely

like this topic since it gives results that can be verified

quickly and visually.

To learn about image processing, a variety of

sources are available through different books, papers,

and tutorials. Looking at Google Scholar, it could be

realized that standard learning resources like [2] and [3]

are cited several thousand times. Furthermore, the topic

offers particularly good ground for students’ further

development and research.

Teaching image processing itself, is also an

interesting challenge. It is important to find a suitable

approach in terms of the used technology, offered

frameworks, and teaching methods. All this should

consider previous students’ knowledge and experience.

3rd workshop on Resource AWareness of Systems and Society
(RAW 2024)
∗ Corresponding author.
† These authors contributed equally.

 petar.rajkovic@elfak.ni.ac.rs (P. Rajković);
dragan.janković@elfak.mi.ac.rs(D. Janković);

The result should be a well-defined engineering course

and a properly suited set of requirements for the projects

that should be implemented by the students.

One of the well-known approaches, that we used as

the starting point, is to create an environment with basic

methods and interfaces that will allow students to

implement their algorithms as plugins [4]. This

methodology typically favors technologies that enable

rapid implementation, such as Java or C#, with the

objective being to grasp complex algorithms. In our

scenario, we present students with a project that

includes fundamental functionalities and an application

framework, yet they retain the liberty to develop their

applications from the start.

Since we teach the course in the eighth (final)

semester of bachelor studies, we tend to move the focus

of the subject to more efficient programming, while

basing the course outline on the standard image

processing algorithms that could be practically used, as

 0000-0003-4998-2036 (P. Rajković); 0000-0003-1198-0174 (D
.Janković);

Copyright © 2024 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

in [5] and [6]. The idea of focusing on real-life effects,

such as execution speed, was taken from [5], while

topics from the research shown in [6] helped in forming

the curriculum.

On the other hand, the image processing algorithms

are interesting from the point of view of execution

optimization and general resource awareness, using

different techniques and approaches [7][8].

In this study, emphasis is placed on examining the

students’ execution of image processing algorithms and

their propensity to adopt various resource-aware

strategies to enhance performance in their projects.

Besides the execution of complex algorithms constitutes

a component of the curriculum at the bachelor’s,

master’s, and doctoral study levels. This analysis

concentrates on a cohort of final-year bachelor’s degree

students who undertake image processing algorithm

implementation as part of their Multimedia Systems

course. [9].

To implement some operations on digital images,

they must be stored in the form of a matrix of pixels [1].

The operation should run through the matrix and

perform some calculations for each pixel. To describe

the importance of resource awareness in image

processing, let us analyze the processing requirements

for the simple invert operation [3]. Invert operation is

replacing every byte in the picture with its

complementary value. I.e., if one byte in the original

picture has a value of 30, in the inverted picture it will

have a value of 225. The inverted value is calculated as

the difference between the maximal value for a byte and

the original value.

If the image, where we perform the invert operation,

has a resolution of 1000x1000 pixels, and three bytes per

pixel (standard 24bRGB format [10]), this means that

three million operations need to be performed to create

the inverted image.

If we observe today's image resolution, which is far

more than one million pixels, it is obvious that image

processing must be implemented carefully and

effectively. Looking at the side of the story related to the

execution speed, the obvious direction is to go towards

the implementation in the programming environment

closest to the processor and operation system’s core.

Unfortunately, such environments are not usually

user-friendly and not convenient for the one-semester

course teaching where students must finish their tasks

and learn as much as possible. On the other hand, the

environments based on the execution of virtual

machines, such are Java and .NET offer high

programming flexibility and user-friendly interface

which makes the work on the project much faster.

Unfortunately, the execution speed in such

environments is much slower than with native code.

For this reason, we choose one possible approach

that could bring the best of both worlds, with the

technology that offers a combination of both execution

speed and fast developments, in the parts where each of

the approaches has its value [14].

At the same time, we do not post any limitations to

the students for the technology choice, but advocate

implementation approaches that result in the code that

executes faster. However, in this paper, four different

implementation approaches, which are presented to the

students during the course, are compared by the

execution and development speed, with a set of

guidelines on how to use them.

The mentioned approaches are used by the students

for the implementation of various categories of image-

processing algorithms, as part of their projects. Data

collected over several years are examined to identify the

student’s responses to the use of the different

implementation approaches.

The study shows that students are willing to adopt

implementation approaches that are more complex,

from the point of view of the implementation, up to

some point, for the benefit of faster code execution.

2. Course Environment and
Project Implementation

It should be noted that each student that attended our

course, hails from the Department of Computer Science

and is presently in their final semester. Throughout their

academic journey, they have uniformly completed a

foundational curriculum encompassing algorithms,

mathematics, as well as programming environments and

technologies. Consequently, there exists no subset of

students possessing a disproportionate advantage in

terms of prior knowledge. Prior to commencing our

course, they have garnered experience with

programming languages such as C++, Java/C#, in

addition to various Web and Mobile technologies.

The example project environment is set up to

Microsoft .NET Windows Forms application [11]. Such

setup is advocated by the fact that the technology has all

the prominent features of object-oriented design (similar

to Java in [4]), is constantly developed, and has a fully

integrated development environment offering the

possibility to build user interfaces fast and debug

efficiently.

Like Java, .NET is the environment that runs on a

process virtual machine [12]. In that sense, it offers

higher security for the end-user in terms of garbage

collection, exception handling, and managed code

execution. The downside of this approach is slower

execution.

Figure 1: Method with an unsafe block.

Figure 2: Integration of managed and unmanaged code

(as described in [12])

To overcome this issue, the application requires a

higher execution speed, the .NET framework offers the

concept of unsafe code execution [14] which allows the

programmer to write native C++ code into a managed

environment directly (Figure 1). Furthermore, unsafe

allows full pointer level memory access without

restriction. The unsafe code is written under a specific

block starting with the keyword unsafe.

Also, .NET offers the possibility to directly include

libraries written in native code, as in any other

programming environment, which is supposed to run as

fast as possible. To support lectures, the following

implementation modes are presented to the students.

Namely:

 Raw data processing through managed code

 Included capabilities of framework classes

(managed code)

 Processing based on the native code, in the

unsafe block, which runs through the managed

environment.

 Processing based purely on a native code,

written, and evaluated in an external execution

environment, and then brought to the

managed environment using COM

(Component Object Model) interface and

runtime-capable wrapper.

As presented in Figure 2, the source code, crafted in

.NET languages such as C#, is initially translated into

intermediate or bytecode. Subsequently, this bytecode is

compiled into the final executable. In contrast, unsafe

code bypasses the intermediate code stage and is

compiled directly into the executable. Additionally,

integrated calls to native libraries are executed directly

in the executable code, leveraging the capabilities

provided by the COM interface.

2.1. Course and Project Outline

The curriculum is delivered over the spring semester,

spanning 14 working weeks, and encompasses a variety

of topics related to image processing. In the initial

stages, students become acquainted with various color

models, image file formats, and techniques for reducing

image size, including downscaling and compression

methods.

Subsequently, the course curriculum introduces

students to a range of image processing algorithms,

including fundamental filters (such as brightness,

grayscale, contrast, gamma correction, and others),

dithering techniques, convolution, and displacement

filters. Furthermore, advanced subjects are explored,

encompassing histogram-based methods and intricate

filters like the Kuwahara filter. [13].

When teaching image processing algorithms we

focus on three major points – algorithm

construction/correctness, variants and similar filters,

and execution efficiency. In most cases, execution

efficiency is more important than memory use, since

many algorithms are built around additional data

structures which cannot be avoided during the

implementation.

As mentioned, the focus of our course is execution

analysis. Since we expect that students implement

algorithms efficiently, from the algorithm flow’s point

of view, we display the differences in the execution

depending on the chosen technology.

The students are then able to measure in the demo

filters differences in the execution speed between the

implementation in different technologies and directly

experience trade-offs between comfort programming

environments (such as C# and Java), and execution

speed in native code implementation (C++).

Source code

(any language supported by

.NET Framework)

MSIL Code

Unsafe Source Code

Runtime Capable Wrapper

Executable Code

Since the execution time is one of the most

important factors in the eventual grade (14 out of 30

points), students could decide whether pays off if they

invest more time in a faster solution (Table 1).

Over the years, we slightly adapted the project

structure, taking into consideration results from the

previous years. The current project structure consists of:

 Image processing application that can load

standard file formats and display changes after

applying image transformation.

 Defining own file format by implementing

down sampling and compression

 Implementation of one basic filter

 Implementation of one dithering method (like

convolution filters)

 Implementation of one displacement filter

 Additional advanced filter implementation

During this time, we kept the project complexity

requirements at the same level. The basic requirement is

to implement a user-friendly application that will

display, at any point, original and changed pictures, and

to allow the user to save the effect of transformation

either to some standard or to a custom file format.

From year to year, we are changing requirements

in terms of classes of implemented algorithms as well

as the definition of the file format. The projects from

one year exclude combinations of algorithms

implemented in previous years, but the general

requirements remain at the same level. For example, this

year (2024) the students had to convert RGB pictures to

YUV models and then apply some downsample scheme

as in JPEG (4:2:0, or 4:1:1, etc.). After downsample, they

had to implement some of the dictionary based lossless

compression algorithms like Huffman or Shannon-Fano.

Table 2 shows the requirements for filters in three

different years.

This year students had to implement contrast as the

basic filter, where different variants will be applied to

different group of students. Similarly, for the

convolution style filter, dithering was the theme for

2024, where each group should implement its specific

variant (like Jarvis, Stucki, Sierra, etc.).

When we look in the Table 1, each project element

comes in two to five variants, giving us more

combinations than the students, which means that every

student will have a unique project. I.e., in 2024, we had

4 downsampling variants, 2 compression algorithms, 3

contrast variants, 4 dithering filters, 3 variants of

displacement filter, and 2 different advanced topics,

which makes 576 different variants for less than 100

students.

Table 1
General point distribution scheme and criteria

Table 2
Examples of project composition between different
years (Project elements: B – basic filter, C – convolution-
style filter, D – displacement filter, A – advanced topic)

The students upload their projects in Moodle (until

2020) and Teams (2021 onwards). After that, we execute

them in the referent environment and with a referent set

of images and assign points for each project item. We

evaluate both algorithm correctness and execution

speed. In all these years evaluation has been done only

by the authors of these papers, which, we believe,

ensured the same level of assessment. In this work, we

are focused only on execution time. Since the student

applications execute a single algorithm at a time,

memory usage and scalability are out of the scope of

their projects. In the same semester, they have different

course (Distributed systems) where the main aim is on

scalability and robustness).

2.2. Raw Data Processing

Raw data processing is the basic way to process images

(Figure 3). The programmer should load an array of

bytes from the file and transform them into a meaningful

data structure. The complexity of this task depends on

the file type. For example, uncompressed files like

bitmaps could be directly loaded and converted, while

compressed files, like JPEGs and PNGs, must be

significantly processed.

Project element Maximal

points

Correctness Execution

time

Application

structure

 2 2 n/a

Downsampling 4 2 2

Compression 4 1 3

Basic filter 2 1 1

Convolution

filter

 5 2 3

Displacement

filter

 5 3 2

Advanced topic 6 3 3

Code quality 2 2 n/a

Total 30 16 14

Project

element

2018 2021 2024

B Gamma Grayscale Contrast

C Edge detect Sharpen Dithering

D Pixelate Time-Warp Water

A Trans-domain Histogram Kuwahara

Figure 3: Method invert written as raw data processing.

For bitmaps [15], every byte has its meaning, and the

corresponding piece of information could be extracted.

I.e., in the presented example, 4 bytes started at position

10 in the file defining image height and the next 4 image

weight. The bytes starting from position 54, for images

stored as 24b RGB files, define the image, and knowing

that each pixel is described by three bytes makes the

image processing straightforward.

The implementation based on raw data processing is

suitable only for plain bitmap files since they contain

directly stored pixel-related data. This approach requires

no additional data structures and classes and could be

implemented using the programming language basics

only. In this sense, it requires a bit more organization of

the processing and it could be suitable for the filters with

simpler implementation. This approach could be used in

any programming language, and if properly

implemented, could give excellent execution

performance.

2.3. Processing Based on Framework
Classes

For the most effective use, the framework classes could

be utilized. The most important class for image

processing is the class Bitmap inherited from the more

common class Image [16].

This class offers the easiest, from the programming

point of view, approach. The programmer loads a

picture of any supported type using the Load method.

Once, the image is loaded and converted to a bitmap

object, each pixel can be accessed by GetPixel method.

Figure 4: Method invert written in managed code with

supporting Bitmap class and Color structure.

This method returns an instance of type Color with

Red, Blue, Green, and Alpha components. These values

could be then processed, and new color values now

could be written back to the Bitmap object. From the

logical point of view, the programmer must focus only

on the implementation of processing algorithms,

without the need to take care or pay attention to any

other task in the scope of image processing.

On the other hand, this approach runs fully under

managed code, and it is the slowest way of

implementation. One can say that the programming

comfort is paid by the slowest runtime.

Development using the provided framework classes

[16] is the easiest from the programmer's point of view

(Figure 4). With the simple call of the single method, the

programmer will have a completely structured image

converted to a bitmap object with all the features and

properties directly exposed. The downside of this

approach is that the code execution is the slowest. The

execution time is directly proportional to the size of the

image, and additional time will be spent on locking and

unlocking the memory area for every single execution

of SetPixel function.

The calls of the methods that should get or set the

pixel value must go through the execution virtual

machine and must ensure necessary locking

mechanisms each time. The recommendation for this

approach is to be used in the initial stage of the projects

where the students are setting up their environment and

learning the process of image processing itself. This

approach could be used if the expected size of the picture

will not exceed certain limits, and if it will be used for

previews since they could be easily integrated into Web

routines and technologies such as Blazor.

2.4. The Use of Unsafe/Native Code

There are two options to use unsafe/native/non-

managed code. First, the programmer could write a

method in the native language library and then include

the library in the project (Figure 5). The problem with

this approach is that debugging of such code should be

done in some programming tool, different from the

environment where the main application is written.

Figure 5: Declaration of the external function written in

native code.

It is important to point out that such an approach is

not a problem per se during the development of real

software systems, but for student projects whose

duration is very limited, and where students have to

cope concurrently with the additional tasks, learning to

use multiple environments could be a challenge up to

some point.

To have the best of both worlds – managed and

unmanaged code, the students are encouraged to use

unsafe blocks in the Windows Forms application [18].

This approach is not common for other development

environments, such is Java, and it is considered more

like an additional than the technology standard.

Working in the unsafe block is close, if not equal to

writing code in the native, C++ environment. The

programmers have under their disposal, complete

pointer arithmetic with the additional requirements to

transform data types from .NET to native classes, and to

take care of garbage collection.

The implementation of the invert operation in an

unsafe environment is displayed in Figure 6. To support

the coding, programmers could use BitmapData [17]

class and its properties. Conversion from Bitmap to

BitmapData is done using LockBits and UnlockBits

methods, which ensure, in addition, uninterrupted

memory management. The area of memory that stores

raw image bytes will be safely locked before the

processing moves to an unsafe environment and then

unlocked when the program flow returns.

Figure 6: Method invert written in unsafe code.

The approach with an unsafe code execution is the

fastest way to perform image processing from the

managed code environment. It is up to some percent

slower combined with direct native applications, but the

comfort of the integrated development seems justified as

the acceptable price.

As can be seen in the previous section .NET

environment offers adequate transformation classes that

help in moving the execution context from managed to

unmanaged. Keeping in mind that the application

development, in the case of the student project, relates

to tight deadlines such an approach proved its value.

2.5. Brief on Implementation
Approaches

As it could be seen each of the approaches has its

benefits and drawbacks. While raw data processing

requires no additional libraries and frameworks, it

requires more attention to organize code, and it is not

useful for complex image types.

Figure 7: An example of the demo picture used for filter

evaluation, taken from the Bing wallpaper site

https://bing.gifposter.com/au/column-41-container-

ship-near-a-commercial-port-in-thailand.html, and then

cropped to 2000x2000

Relying only on the framework based on managed

code will speed up the development process, at the price

of the slowest execution. The integration of externally

developed algorithms brought the fastest execution, but

the development must be split between multiple

projects, development tools, and programming

languages. It requires the highest amount of time for

development.

The approach based on the unsafe code seems like a

promising approach for student projects focused on

image processing algorithms. It offers performance close

to the native code, seamless integration of the native

code in the managed environment, and higher memory

efficiency since it enables precise memory management.

The drawbacks of this approach are the same as with the

native code execution - higher potential for bugs and

higher complexity for maintenance [18]. The images

used for the evaluation are in resolution of 2000x2000

pixels (Figure 7) and higher with different aspect ratios

and color representation.

3. Classes of Image Filters for
Demo

For the application of the mentioned approaches, the

students have the task of implementing several image

filters from the various categories. To make the most

convenient test cases, three diverse types of filters are

checked:

 Basic filters – their implementation requires

only iteration through all pixels in the image.

The only programmer required to translate

managed to native code.

 Convolution filters – the filters where the

values of neighboring pixels affect the

currently processed pixel. Compared to basic

filters they require significantly more

processing, but a similar amount of memory

 Displacement filters – require additional data

structure which needs a comparable amount of

memory as the processed image. Compared to

basic filters they require more memory and

more processing operations

Figure 8: Example of applied contrast filter.

3.1. Basic Filters

As has been mentioned, basic filters are those that

require one pass through the matrix of pixels with an

optional parameter transformation. For our evaluation,

we choose a contrast filter (Figure 8), which is an

example of a common filter with many specific variants

depending on the area of the application [19]. Aside

from this one, the students had a few more as part of the

task - brightness, color, gamma, grayscale, and

conversion to distinct color models [20] – like luma-

chroma (or YUV) or hue-saturation-value (HSV).

3.2. Convolution Filters

Unlike the basic filters, the convolution filters use the

auxiliary matrix structure, usually called the kernel. The

kernel is a matrix of small size, in most cases 3x3, and is

set up with predefined parameters. In addition, the

convolution filter has two more values - factor and

offset. Some of the example of convolution matrices are

presented in Figure 9.

Figure 9: The examples of convolution filters with

corresponding kernel matrices, offset, and factor values.

Figure 10: Example of the applied convolution filter

The processing works in a way that the submatrix,

of the same size as a kernel, from the picture, should be

extracted. The value of each pixel from the extracted

matrix is multiplied by the corresponding parameter in

the kernel. All these products are then summed up

together, divided by the value provided for factor, and

on top of this value is added offset.

The values in the matrix are important for the

filtering operation itself, while the values for factor and

offset are used to normalize the sum of products into the

required value range. In our case, these are the values

that could be stored in one byte (0 to 255).

Figure 11: Example of displacement time warp filter.

The number of operations needed to perform the

convolution filter is significantly higher than with basic

filters. We can assume that during basic filter execution,

the number of performed steps is the multiplication of

the image resolution, for the convolution filters it is a

multiplication of the image resolution and number of

elementary operations connected with a chosen kernel

matrix. For example, the execution of a sharpened filter

(Figure 10) will execute ten times (nine multiplication

and division with the factor value) more operations than

the execution of a basic invert.

3.3. Displacement Filters

Displacement filters are based on a pre-built

transformation matrix which is the same size as the

targeting picture (Figure 11). Their execution is split

into setup and execution phases. In the setup phase, the

transformation matrix is created using some algorithm,

and in the execution phase, the values from the

transformation matrix are combined with the pixel

values from the picture to achieve the desired effect.

4. Discussion on Students'
Response

We have been teaching courses that partly cover image

processing for longer than a decade and a half. Image

processing was taught as a part of courses such are

Algorithm Complexity, Multimedia Systems, Secure

Software Design, Medical Imaging, and Medical

Informatics. These courses were conducted on diverse

levels of studies with different complexity and structure

of the student projects.

Depending on the subject, we used to point out

different elements of the image processing. Somewhere

the focus is on the algorithm design, somewhere on the

integration in large-scale systems, somewhere on a

minimal alteration of the existing algorithms with a

focus on the execution performance. For the evaluation

of different programming approaches, we used the

subject of Multimedia Software Systems – an electoral

course in the fourth year of bachelor study. In the

evaluated period, the number of students was in the

range from 32 to 70 (2018 57, 2019 35, 2020 44, 2021 47,

2022 50, 2023 49, 2024 70).

The image processing software project is one of the

assignments in the course, and the requirement is to

implement several image processing algorithms of

different complexity with minimal use of processing

power and memory. For the test, the students must

create an application that is comparable to Windows

Forms in a .NET environment which can immediately

display the result after processing is finished.

Table 3
Number of students who finished complete project.

The only limitation that students have is related to

the user interface which has to be fast and responsive

and allow the display of the processed image. There is

no specific request for a certain technology, besides, we

advocate Microsoft .NET. On the other hand, there are

no limitations to the implementation of image

processing algorithms themselves.

Table 3 shows the number of enrolled students per

year together with the number of students who

successfully finished the entire project. Excluding the

years 2019 and 2020, where the lectures were conducted

in online mode, the percentage of the students who

finished the projects was above 80%. During the period

of online classes, this percentage dropped to less than

two-thirds.

In the previous year (2023) we made a slight change

in course organization by moving the image processing

project to be the last in the row, as we considered it more

complex. This gave the students the possibility to work

on it in a period where they had fewer overall tasks

during the school year. This resulted in the highest

percentage of successfully finished projects at 90%. This

year, we will follow the same approach, and, at the

beginning of June, we will have complete data for 2024.

Data in Table 2 and Table 3 show the project

distribution per technology. The projects, by the

implementation technology of image processing

algorithms, could be categorized into four major

categories – managed, native, unsafe, and other. Projects

developed in .NET and Java are considered managed

code-based projects.

The projects marked as “native” are those whose

algorithms are developed in various C++ environments,

regardless of the technology used for the front end. In

the category unsafe are these that follow the suggestion

to include unsafe code blocks in managed projects.

Category other is for the projects implemented in

various Web technologies with different approaches

considering implementations of algorithms both in the

front and back end, using technologies such are various

JavaScript-based frameworks.

After the students uploaded their projects in the

collaborative learning platform, initially it was Moodle

and later switched to Microsoft Teams, the projects were

checked for performance in the demo machine to verify

against the same conditions. The demo machine is an

Intel-based i7-8550U running at 1.8 GHz with 4 cores

and 8 logical processors, supported by 16GB of RAM. It

is important to point out that all projects from the year

2018 until now are run and evaluated under the same

conditions.

The Intel processors which mark ends by the sign U

are not designed primarily for speed, but rather for

energy efficiency. In that sense, such a computer is the

perfect environment for the execution demo since the

differences are better displayed.

The obvious benefit of using native and unsafe

approaches can be seen in Table 6. Comparing execution

time between native and unsafe approaches shows that

native code runs 10 to 20 percent faster. The exact time

varies depending on which moment of implementation

students brought unsafe mechanisms to the project. For

those that start with unsafe functions during data

loading, the results are better than those that use unsafe

mechanisms only for the algorithm execution.

The significant difference is between unsafe and

managed code. The difference is in dozens of

multiplications. Figure 12 shows that the difference is

such, that the logarithmic scale could be easily employed

to display the difference. Other approaches, based on

different Web technologies demonstrate the worst

results in the sense of the execution time. Based on Web

technology, the disadvantage is that considerable time is

required to upload the source picture and then to

download the results, which, makes the situation worse.

What could be seen, during the years, is that

students accept the resource awareness narrative at a

high percent. Besides the higher popularity of Web

applications and JavaScript-based frameworks, this

Year Number of enrolled

students

Students who finished

complete project

2018 57 45 (79%)

2019 35 22 (63%)

2020 44 29 (65%)

2021 47 39 (83%)

2022 50 41 (82%)

2023 64 58 (90%)

2024 70 61 (87%)

approach was not the dominant choice to manage image

processing problems.

Table 4
Distribution of technology used in successful student
projects.

Year Managed Native Unsafe Other

2018 21 8 12 4

2019 14 2 6 1

2020 17 4 6 2

2021 10 11 13 5

2022 6 12 17 6

2023 8 17 27 6

2024 11 12 31 7

Table 5
Distribution of technology used in unfinished student
projects.

Year Managed Native Unsafe Other

2018 1 5 2 4

2019 3 3 4 3

2020 7 5 3 1

2021 0 4 1 3

2022 1 6 0 2

2023 1 2 1 2

2024 4 1 2 2

Projects predicated on managed code predominated

in 2019 and 2020, coinciding with the period when

lectures were delivered online. With the resumption of

conventional in-person lectures and the enhancement of

interactive, hands-on laboratory demonstrations, there

was a discernible shift in preference towards approaches

that are more efficient in terms of performance.

Table 6
Average execution time by technology in benchmark
machine for default image of 2000x2000 resolution in
milliseconds

Approach Simple Convolution Displacement

Managed C# 2054.77 6810.82 15490.77

Managed Java 2955.41 8191.38 18927.35

Native 35.41 124.77 450.20

Unsafe 39.61 146.76 559.44

Other 4850.66 11843.17 41817.93

Table 7
The average number of working days that student
needed for implementation.

Year Managed Native Unsafe Other

2018 7 12 8 9

2019 11 10 10 15

2020 10 11 12 15

2021 7 13 10 11

2022 6 14 9 8

2023 8 12 9 8

2024 7 13 8 9

Figure 12: Comparison of relative execution times for

simple, convolution, and displacement filters.

Student projects are set up for three weeks, which

makes 15 days the maximal amount of time needed for

the execution. During the project, students must

implement several filters that belong to various

categories. The filters that should be implemented are

changed each year. Besides that, the overall project

complexity tends to be kept, in the teachers’ opinion, on

the same level.

Table 7 and Figure 13 show an insight into how

many days students were active on the project. These

numbers represent the difference between the dates

when students downloaded the assignment and the

dates when the solutions were submitted. This is not the

best conceivable way, since there is no exact way to

prove the correctness of this approach, but, on the other

hand, there is no morally acceptable way to measure

how much time students spend working on their

projects. Optionally the survey could be created, but the

answers could be disputable either.

Figure 13: Comparison of relative programming effort

between different programming approaches through

observed years.

Nevertheless, several observations can be discerned.

Primarily, students who commence their assignments

late tend to opt for a managed solution or a JavaScript-

based framework, as these approaches necessitate less

time investment. This trend was particularly

pronounced during the years 2019 and 2020 when

instruction was conducted in an online format.

Most unsuccessful solutions were developed using

the native code, which is logical given its demand for

more time and advanced programming expertise.

Additionally, it is noteworthy that the greatest failure

rate was observed in the “other” category. This may be

attributed to students’ lack of sufficient familiarity with

technologies that appeared promising, yet they lacked

adequate experience to utilize them effectively.

An unsafe approach seemed like a good balance. It

offers the possibility to start with the managed

approach, reach some point in implementation, make

the proof concept of all the algorithms, and then convert

only parts of the project to the native code. Besides the

approach being heavily technology-dependent and even

not easily portable, it is a good example of the hybrid

approach in development and how this kind of approach

could bring overall benefits.

For an average of 15% more time than needed than

for the projects based on managed code, the output runs

only 10% slower compared to the projects in which

image processing algorithms are entirely built in the

native code. Ignoring years 2019 and 2020, the average

time needed for the native approach is around 50% more

than with the managed code.

5. Conclusion

Bringing the concepts of general resource awareness in

programming is yet again important. Besides the rising

popularity of fast-to-build and nice-to-look frameworks,

followed by the constant increase of processing power

and memory volume of all computational devices, one

cannot entirely rely on the easiest solutions.

As could be seen with a managed approach in the

languages based on the execution virtual machine, the

two-line implementation could save time while

programming, but it will result in a fifty times slower

overall execution.

The use of the native environment will, of course,

bring the best possible results, but the price will be

significantly longer development phase. In that sense,

the technology-specific solutions, like unsafe, could be

an extremely good compromise between approaches.

Getting 10% worse results, compared to native code,

with spending around 15% more time compared to a

completely managed approach could be in most cases

optimal way.

However, each of the presented approaches has its

pros and contras, and depending on the type of the

projects, domain of usage, and the expectations

regarding performance and memory usage, could be

voted as optimal. In any case, future programmers must

have a good overview of all the options and be aware of

the appropriate use for the most valuable resource they

choose – either development time or the use of the

execution resources.

In this context, we posit that the incorporation of

resource-awareness principles into the educational

curriculum is crucial, particularly in the concluding year

of study. Our research advocates for an instructional

approach in image-processing education that utilizes

managed code examples instead of pseudocode for

algorithmic elucidation during lectures. Concurrently,

laboratory exercises should employ unsafe and

unmanaged code to elucidate the disparities in execution

velocity, which can be significant in certain instances.

Through this paper, our objective is to convey that

while numerous contemporary technologies offer

considerable programming convenience and efficient

development at the business layer, they should not be

indiscriminately adopted as a panacea for all

programming challenges. Instead, prospective

developers must meticulously analyze the specific

problem domain and judiciously select appropriate

technologies for each component therein.

Acknowledgments

The Ministry of Science, Technological Development

and Innovation of the Republic of Serbia supported this

work [grant number 451-03-65/2024-03/200102].

This work is partially supported by the cost action CA

19135 CERCIRAS (Connecting Education and Research

Communities for an Innovative Resource Aware

Society).

References

[1] M. J. Burge, W. Burger, Digital Image Processing:

An Algorithmic Introduction, Springer

International Publishing AG, 2022

[2] J. R. Jensen, Introductory Digital Image

Processing, Third Edition (Prentice Hall Series in

Geographic Information Science), 3rd. ed., Prentice

Hall, 2004.

[3] B. Jähne, Digital Image Processing: Concepts,

Algorithms, and Scientific Applications, Springer

London, Limited, 2013.

[4] D. Sage and M. Unser, "Teaching image-processing

programming in Java," in IEEE Signal Processing

Magazine, vol. 20, no. 6, pp. 43-52, Nov. 2003, doi:

10.1109/MSP.2003.1253553.

[5] L. de O. Alves, L. F. Cruz, P. T. M. Saito, and P. H.

Bugatti, "Towards Practical Computer Vision in

Teaching and Learning of Image Processing

Theories," 2019 IEEE Frontiers in Education

Conference (FIE), Covington, KY, USA, 2019, pp. 1-

7, doi: 10.1109/FIE43999.2019.9028645.

[6] Gil, P., García, G. J., Puente, S. T., Mateo, C. M.,

Alacid, B., & Mira, D. (2016). Teaching image and

video processing with a practical cases-based

methodology at the University of Alicante. In

EDULEARN16 Proceedings (pp. 6067-6077).

IATED.

[7] V. Monga, Y. Li, Y. C. Eldar, Algorithm Unrolling:

Interpretable, Efficient Deep Learning for Signal

and Image Processing, IEEE Signal Process. Mag.

38.2 (2021) 18–44. doi:10.1109/msp.2020.3016905.

[8] J. Tang, G. Liu, Q. Pan, A Review on

Representative Swarm Intelligence Algorithms for

Solving Optimization Problems: Applications and

Trends, IEEE/CAA J. Autom. SIn. 8.10 (2021) 1627–

1643. doi:10.1109/jas.2021.1004129.

[9] University of Niš, Faculty of Electronic

Engineering, Course Catalog, English. URL:

https://www.ni.ac.rs/en/studies-and-

admission/studies/course-

catalogue/courses?task=download.send&id=

6594&catid=666&m=0.

[10] RGB24 pixel format for digital imaging, URL:

https://www.theimagingsource.com/en-

us/documentation/icimagingcontrolcpp/Pixelfor

matRGB24.htm.

[11] Windows Forms for .NET 7 documentation. URL:

https://learn.microsoft.com/en-

us/dotnet/desktop/winforms/?view=netdesktop-

8.0.

[12] Managed Execution Process - .NET. URL:

https://learn.microsoft.com/en-

us/dotnet/standard/managed-execution-process.

[13] Bartyzel, Krzysztof. "Adaptive kuwahara filter."

Signal, image and video processing 10 (2016): 663-

670.

[14] Unsafe code, pointers to data, and function

pointers - C#. URL:

https://learn.microsoft.com/en-

us/dotnet/csharp/language-reference/unsafe-

code.

[15] Bitmap Image File (BMP), Version 5. URL:

https://www.loc.gov/preservation/digital/formats

/fdd/fdd000189.shtml.

[16] Bitmap Class (System.Drawing). URL:

https://learn.microsoft.com/en-

us/dotnet/api/system.drawing.bitmap?view=dotn

et-plat-ext-8.0.

[17] BitmapData Class (System.Drawing.Imaging).

URL: https://learn.microsoft.com/en-

us/dotnet/api/system.drawing.imaging.bitmapdat

a?view=dotnet-plat-ext-8.0.

[18] G. Chobanyan, A Comprehensive Guide to Unsafe,

Unmanaged Code and Pointers, 2023. URL:

https://itnext.io/a-comprehensive-guide-to-

unsafe-unmanaged-code-and-pointers-

b8e143867b3e.

[19] Hiary, Hazem, et al. "Image contrast enhancement

using geometric mean filter." Signal, Image and

Video Processing 11 (2017): 833-840.

[20] Ibraheem, N. A., Hasan, M. M., Khan, R. Z., &

Mishra, P. K. (2012). Understanding color models:

a review. ARPN Journal of science and technology,

2(3), 265-275.

