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Abstract
Approximate computing techniques offer performance improvements by performing inexact computations. Moreover, CUDA programs
written to be executed on GPU devices employ specific features to utilize the parallel computation units of heterogeneous GPU
architectures. While generic software-level approximate computing techniques have been applied to heterogeneous CUDA programs,
CUDA-specific approaches may introduce promising performance improvements by not corrupting the target computations. In this work,
we propose software approximation techniques for CUDA programs: kernel-aware loop perforation, partition-level synchronization,
block-level atomic operations, and warp divergence elimination. We perform source code transformations on target benchmark
programs by applying our techniques. We evaluate performance improvements by trading off accuracy in our target computations. Our
experimental results reveal that CUDA-aware approximation techniques offer significant performance improvements at the expense of
acceptable accuracy loss.
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1. Introduction
Heterogeneous computer systems, combining general-
purpose processors and GPU devices as accelerators, enable
high-performance and energy-efficient executions. How-
ever, the applications from various domains such as AI
acceleration, big-data processing, and high-performance
computing (HPC) with large computing requirements make
power consumption an important concern in these systems
[1]. Since modern GPU architectures employ complex struc-
tures and the target workloads exploit the massively parallel
resources, energy efficiency becomes critical for large-scale
GPU executions [2, 3, 4].

To solve the conflict between performance and energy
efficiency, approximate computing maintains high perfor-
mance and low power consumption for applications that can
tolerate inexact computations. While the architecture-level
approximate computing techniques are enabled by modi-
fying processor units and memory components, software
solutions based on compiler transformations or manual code
modifications also offer approximate computations [5, 6].
While using inexact hardware or voltage scaling maintains
hardware solutions, techniques like loop perforation or re-
laxed synchronization offer performance-accuracy tradeoffs
at the software level.

Since GPU systems aim for applications from different
domains, they employ approximate computing techniques
to improve performance and energy efficiency by trading
with the inaccuracy in the target computations. Besides
inherently error-tolerant graphics and image processing ap-
plications [7], general-purpose GPU programs benefit from
approximations with reasonable incorrect computations [8].
While some works reuse generic techniques like perfora-
tion [9], some methods utilize GPU-specific hardware or
software components to employ approximations [10]. Ad-
ditionally, simulation-based evaluations propose hardware
modifications by either approximate units or supporting the
approximate computations [11, 12].

In this work, we propose software-based approximations
for CUDA programs running on GPU architectures. Not
only do we adapt the existing techniques for the GPU pro-
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grams, but we also propose CUDA-specific methods to tar-
get parallel CUDA threads. Our main contributions are as
follows:

• We propose kernel-aware loop perforation by adapt-
ing the loop perforation technique for CUDA pro-
grams. To reduce the synchronization overhead, we
propose partition-level synchronization and block-
level atomic operations based on CUDA cooperative
groups and CUDA thread scope atomic functions.
Additionally, we eliminate the warp divergence in-
side CUDA kernel functions to prevent serial execu-
tion caused by branch instructions.

• We modify the target codes by inserting compiler
directives enabling our techniques, and generate our
approximate versions based on the given compiler
options.

• We perform an experimental study to evaluate the
impact of the modifications by our approximations.
Our experimental study includes applications from
different domains to observe the performance and
accuracy variations for the target execution. Our ex-
perimental results reveal that CUDA-aware approx-
imation techniques offer significant performance
improvements at the expense of acceptable accuracy
loss.

The remainder of this paper is organized as follows: Sec-
tion 2 presents some background on approximate computing
and the CUDA programming model. We explain our ap-
proximation methods in Section 3. Then, the experimental
results are outlined in Section 4. Section 5 presents relevant
studies about CUDA approximations. Finally, in Section 6,
we summarize the work with some conclusive remarks.

2. Background and Motivation

2.1. Approximate Computing
Approximate computing introduces acceptable inaccuracies
into the computing process and promises significant perfor-
mance and energy gains. Some techniques employ the loop
perforation approach, which works by skipping some loop
iterations to reduce computational overhead [9, 13]. Relaxed
synchronization shortens the waiting time of the threads
that wait for the completion of the other threads’ work
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__global__ void vectorAdd(double *a, double *b, double *c, int n)
{

int id = blockIdx.x*blockDim.x+threadIdx.x;

if (id < n)
c[id] = a[id] + b[id];

}

int main(int argc, char** argv)
{

double *d_a, d_b, d_c;
int n;

//... memory allocations and copy operations

int blockSize = 1024;// Number of threads in each thread block
int gridSize = (int)ceil((float)n/blockSize);

vecAdd<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);

//... memory copy and deallocations
}

Listing 1: Vector addition kernel function and its launch in CUDA.

[14, 15]. Reduced precision computation employs fewer
compute cycles with insignificant value modifications for
error-tolerant applications targeting low-precision execu-
tions [16].

2.2. GPU Programming Model
While modern GPU architectures evolve as the requirements
of the target applications change, GPU devices employ SIMT
(Single Instruction Multiple Threads) execution to accelerate
data processing tasks in their parallel execution cores.

A program written in the CUDA programming model
[17], which is a parallel programming model for NVIDIA
GPU devices, starts its execution in a CPU, allocates memory
space on the GPU, transfers data into GPU global memory,
and starts a kernel function execution by creating thousands
of threads. Each thread executes the same program (SIMT)
by processing different parts of the given data. Threads that
execute on the GPU are part of a compute kernel specified
by a function. Besides data-parallel applications that can
benefit from many parallel execution units of GPUs, large-
scale irregular computations utilize the massive degree of
parallelism and the high memory bandwidth provided by
GPUs. Listing 1 presents the CUDA kernel function and ker-
nel launch configuration for the vector addition operation.
For simplicity, we skip the memory allocation and copy op-
erations. The execution launches the vectorAdd function by
specifying the number of blocks and the number of threads
in each block. The hardware scheduler schedules the blocks
into SM (Streaming Multiprocessor) units and thread groups
(warps) into GPU cores inside SMs. Each thread executes
the kernel function and performs the addition operation
based on its global thread identifier.

3. Approximation for CUDA
Programs

We propose three main approximations for target CUDA
programs. Firstly, we exploit loop perforation by adapt-
ing the popular method for loop and loop-similar struc-

tures in the CUDA code. Secondly, we replace synchroniza-
tion primitives with relaxed versions and propose partition-
level synchronization for threads based on CUDA coopera-
tive groups and block-level atomic operations using CUDA
thread scopes. Finally, we remove the warp divergence, a
serial bottleneck in GPU executions.

We evaluate target CUDA source codes and perform code
transformations based on compiler directives. While our ap-
proach requires manual code analysis and modifications to
introduce directives in code segments, the semi-automatic
configuration enables us to generate target codes that em-
ploy approximations selectively by compiling the code with
specific options.

3.1. Kernel-Aware Loop Perforation
While loop perforation skips some loop iterations in a serial
program, the same technique can be applied to CUDA pro-
grams by adapting the perforation accordingly. We consider
three approximation versions derived from loop perforation:

Kernel launch perforation: We skip the iterations of
the loop, which launches one or multiple CUDA kernel
functions at each iteration. The perforation is simply a
regular loop perforation with kernel launches per iteration.
In a code segment given in Listing 2 (Fdtd2d program from
Polybench suite [18]), we reduce the number of iterations
and consequently, the kernel launches by assigning a smaller
upper bound (for _PB_TMAX variable in the example code).

Kernel launch configuration perforation: In data-
parallel CUDA programs, CUDA threads execute implicit
loops in parallel by performing the computations that be-
long to one or more iterations of the serial program loop.
We launch target kernel executions by reducing the number
of threads in the configuration; hence, the original loop in
the serial program is perforated. In a code segment given
in Listing 3 (Convolution2D program from Polybench suite
[18]), we modify the block or grid configuration parameters
of the convolution2D_kernel kernel by reducing the X or Y
dimensions of the grid.



...
for(int t = 0; t < _PB_TMAX; t++)
{

fdtd_step1_kernel<<<grid,block>>>(nx, ny, _fict_gpu, ex_gpu, ey_gpu, hz_gpu, t);
cudaDeviceSynchronize();
fdtd_step2_kernel<<<grid,block>>>(nx, ny, ex_gpu, ey_gpu, hz_gpu, t);
cudaDeviceSynchronize();
fdtd_step3_kernel<<<grid,block>>>(nx, ny, ex_gpu, ey_gpu, hz_gpu, t);
cudaDeviceSynchronize();

}
...

Listing 2: The Fdtd2d code with kernel function calls inside a loop.

...
dim3 block(DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y);
dim3 grid(ceil(((float)NI) / ((float)block.x)), ceil(((float)NJ) / ((float)block.y)));

convolution2D_kernel <<< grid,block >>> (ni, nj, A_gpu,B_gpu);
...

Listing 3: The Convolution2D code kernel launch configuration.

...
__global__ void mean_kernel(int m, int n, DATA_TYPE *

mean, DATA_TYPE *data)
{
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (j < _PB_M)
{

mean[j] = 0.0;

int i;
for(i = 0; i < _PB_N; i++)
{

mean[j] += data[i * M + j];
}
mean[j] /= (DATA_TYPE)FLOAT_N;

}
}
...

Listing 4: The Covariance code with loop structures inside a
kernel function mean_kernel.

Intra-kernel loop perforation: We perform the stan-
dard loop perforation method for the code inside kernel
functions. In a code segment given in Listing 4 (Covariance
program from Polybench suite [18]), we reduce the number
of loop iterations inside mean_kernel kernel (_PB_N variable
in the example code).

We modify each program code by inserting
compiler directives for a set of loop perforation
types. Specifically, we define four directives: KER-
NEL_LAUNCH_PERFORATION, GRID_PERFORATION,
BLOCK_PERFORATION, LOOP_PERFORATION, and compile
the programs by enabling the directives with specific values,
which represent the perforation rate as the reduction ratio
of the target loop. By enabling the chosen perforation
type(s) and rate(s) at compile time, we evaluate the impacts
on the execution.

3.2. Relaxed Synchronization
Multiple CUDA threads require time-consuming synchro-
nization to access shared data or resolve data dependencies,
utilizing atomic operations (like atomicAdd) and barrier op-
erations (like __syncthreads()), respectively. The relaxed
synchronization offers performance gains by synchronizing
fewer threads in exchange for output accuracy loss. We
consider two main relaxations based on CUDA cooperative
groups and CUDA thread scopes:

Partition-level synchronization: CUDA threads within
a block can cooperate by synchronizing their execution
to coordinate memory accesses. The programmer can de-
fine synchronization points by calling the __syncthreads()
function, which acts as a barrier and makes waiting for
all threads. While CUDA employs block-level synchroniza-
tion by __syncthreads() function, __syncwarp() function,
which synchronizes the threads within a warp, has become
available on CUDA 9. This is important for porting code
to modern GPU architectures after Volta, in which threads
within a warp can be scheduled separately. Additionally, the
Cooperative Groups API [19] provides a rich set of thread-
synchronization primitives by forming partitions with a set
of threads. Listing 5 presents different code snippets to or-
ganize groups of threads. While the first group, blockgroup,
represents all the threads in a thread block, warpgroup repre-
sents all the threads in a warp. If we want to synchronize the
threads in those groups, the behavior will be the same with
__syncthreads() and __syncwarp() functions, respectively.

For implementing the approximation, first, we search
for all __syncthreads() function calls in the target kernel
functions and configure the synchronization level for each
synchronization point. Specifically, we either completely
skip __syncthreads() (SKIP) or replace it with a relaxed ver-
sion. For relaxing synchronization, we choose __syncwarp()
(WARP) or utilize cooperative thread groups (the details
are given below). We modify each program code and inject
#ifdef directives to guide the compiler based on user prefer-
ences. For each __syncthreads() code block, we define one
directive and compile the code by specifying one or more
directives.



// Cooperative group for the current thread block
auto blockgroup = cooperative_groups::this_thread_block();

// Cooperative group for each warp in the thread block
auto warpgroup = cooperative_groups::tiled_partition<32>(threadblock);

// Cooperative group for each 16 threads in the thread block
auto subwarp16 = cooperative_groups::tiled_partition<16>(threadblock);

// Cooperative group for all currently coalesced threads in the warp
auto coalescedgroup = cooperative_groups::coalesced_threads();

// Thread block groups can sync
blockgroup.sync();

Listing 5: CUDA cooperative groups [19].

//Replaced code version 1 (4TILE)
thread_group tile32 = tiled_partition(this_thread_block(), 32);
thread_group tile4 = tiled_partition(tile32, 4);
tile4.sync();

//Replaced code version 2 (ACTIVE)
thread_group active = coalesced_threads();
active.sync();

Listing 6: Partition-level synchronization configurations.

For our partition-level approach, we define two thread
partitions (as given in Listing 6): 1) 4TILE: Cooperative
thread groups with four threads in the corresponding warp,
2) ACTIVE: Currently coalesced threads in the warp. When
data-dependent conditional branches in the code cause
threads within a warp to diverge, the SM disables (deac-
tivates) threads that do not take the branch. The threads
that remain active on the path are referred to as coalesced.

Block-level atomic operations: While the atomic opera-
tions in standard C or C++ are uniform, the CUDA program-
ming model offers atomic functions at different scopes. A
thread scope specifies the set of threads that can synchronize
with each other using atomic operations. Atomic functions
with _system suffix (e.g., atomicAdd_system) are atomic at
system scope, where the system refers to the system running
on multiple GPUs and CPUs. Atomic functions without a
suffix (e.g., atomicAdd) are atomic at device scope, where
the device refers to the target GPU device. Atomic func-
tions with _block suffix (e.g., atomicAdd_block) are atomic
at thread block scope, which refers to the synchronization
of the threads executing on the same thread block.

In block-level atomic operations, we target that the
threads perform atomic operations at the largest thread
block scope. Like our synchronization approach, we search
for all atomic functions in the target CUDA code and re-
duce the atomic scope accordingly. For instance, we re-
place atomicAdd function calls with atomicAdd_block, or
we completely remove the function call. Hence, we aim
for atomic operations with fewer threads than the original
code. Similarly, we could replace atomicAdd_system or skip
atomicAdd_block functions.

3.3. Warp Divergence Elimination
CUDA threads are executed in groups of 32 threads (warps),
and all threads in a warp execute the same instruction at

the same time. Due to SIMD execution model, when threads
in the same warp need to perform different operations, the
execution of the different branches is serialized, thus hurt-
ing performance improvement that could be gained from
parallelism. Figure 1 presents an example scenario for warp
divergence. The eight threads (assuming we have an 8-
thread warp size for simplicity) start the kernel execution,
then at Branch point, there is an if statement that causes
different path executions. While four threads execute the
instruction at Path A, the other four continue the execution
at Path B. When the first four threads execute Path A, the
others must wait and perform no operation. The marked
execution prevents full warp utilization by activating only
four threads simultaneously in an 8-thread warp structure.

Figure 1: SIMD Warp Divergence [20].

To eliminate the divergence overhead, as an approxima-
tion method, we execute only one path in case of multiple
paths in a warp. For instance, for the code given in Listing
7 (from Grappolo application [21]), we configure to execute



Path 1, Path 2, or Path 3. Alternatively, we completely skip
the divergent code segment in our evaluations.

...
if (currCId == FLAG_FREE) {

/*Path 1*/
}
if (currCId == (1 + dataItem->cId)) {

/*Path 2*/
}
else
{

/*Path 3*/
}
...

Listing 7: SIMD warp divergence code example.

4. Experimental Study

4.1. Experimental Setup
To evaluate our approximation methods, we select CUDA
applications from Polybench [18] and Gardenia [22] bench-
mark suites and utilize an optimized CUDA implementation
of the Louvain community detection algorithm, namely
Grappolo [21]. While Polybench applications mostly employ
data-parallel computations with multiple loop structures,
Gardenia implements a set of graph algorithms that include
synchronization primitives. Grappolo, with computationally
intensive and complex structures, includes code segments
for our evaluations on relaxed synchronization and warp
divergence-based approximations.

We compile our programs with CUDA 12.1 [23] and run
our approximation experiments in a system with an NVIDIA
GeForce RTX 3050 Ti Mobile GPU device. The GPU device,
built on Ampere architecture [24], has 4 GB GDDR6 mem-
ory.

4.2. Experimental Results
We evaluate our three main approximations for target CUDA
programs separately. We execute both original and approxi-
mated versions, measure GPU execution times, and collect
result outputs. By comparing execution time and output
accuracies, we perform a tradeoff analysis for target com-
putations.

4.2.1. Kernel-Aware Loop Perforation

For our loop perforation techniques, we select six programs
from the Polybench benchmark suite [18]. The programs
have data-parallel characteristics and each employs differ-
ent loop structures. We execute Correlation, Covariance,
Syrk, Fdtd2d with STANDARD input sizes and Jacobi-2D,
and 2DConv with LARGE input sizes to have longer execu-
tion times. We collect GPU execution times and incorrect
computations by comparing them with the original output.
Since the programs work with array structures and compute
array elements as the final output, we evaluate the number
of array elements that are computed incorrectly.

Figure 2 demonstrates performance improvement and in-
accuracy values for the programs when our loop-perforation
methods are applied. For each applicable method, namely,
kernel launch perforation, intra-kernel loop perforation,

grid-level kernel launch configuration perforation, and
block-level kernel launch configuration perforation, we per-
form 90% and 80% perforation rates. If the program does
not support the target approximation (e.g., Correlation does
not have a kernel launch inside a loop), we simply do not
have the corresponding result in our evaluation. The values
in Figure 2 present 1/Speedup and the rate of incorrectly
computed elements. We define the performance in terms
of speedup, the ratio of the compute time for the original
execution to the time for the approximate execution, and
report the 1/Speedup values in our results. For instance,
the execution time for the original Correlation execution is
1.785 milliseconds, and it computes 4194304 array elements.
When we perforate the kernel function loops by 90% (Loop
(90%)), we have 1.302 milliseconds and 793356 incorrect
computations. Therefore, the performance improvement
rate equals 1.302/1.785=0.73, and the rate of the incorrect
computations is 793356/4194304=0.19, shown in Figure 2.
By reporting performance improvement and inaccuracy val-
ues in this way, one can evaluate performance gains and
incorrect results for each approximation and make design
decisions. Based on the program characteristics, each ap-
proximation affects the execution outcome differently. We
can have up to 60% performance improvements (Loop (80%)
for Correlation) in exchange for 40% of the elements incor-
rectly computed. Some approximations offer good tradeoff
points, like grid-level kernel launch configuration perfora-
tions (Grid (90%) and Grid (80%)) in Fdtd2d. We can have
20% and 30% performance improvements by losing 30% and
50% of correct computations. On the other hand, there is
no performance improvement with small inaccuracy values
(like kernel launch configuration perforations in Covariance)
or intolerable output loss with improvement in execution
times (like loop perforations in Syrk).

4.2.2. Relaxed Synchronization

We evaluate the Betweenness Centrality (bc) in the Gardenia
benchmark suite [22], which has four different implementa-
tions. For a sample graph (soc-LiveJournal1 [25]), we execute
each version and select the one with the lowest execution
time. Since the version already employs optimizations, we
apply our approximation methods to that version for fair
comparison. The implementation (i.e., bc_topo_lb) has four
main kernel functions with synchronization primitives (i.e.,
__syncthreads()). We apply our relaxed synchronization
techniques for each seven __syncthreads() function call in
the target kernel functions and perform four specific modi-
fications: 1) SKIP: Remove __syncthreads(), 2) WARP: Syn-
chronize threads in the same warp, 3) 4TILE: Synchronize
four threads in the same cooperative group, 4) ACTIVE:
Synchronize coalesced threads. Finally, we have 28 differ-
ent versions. We execute those versions with 19 different
datasets. We observe execution time and output differences
for only a subset of our executions, specifically, relaxations
for three __syncthreads() function calls on only one kernel
function. For three synchronization points, we also consider
the relaxation of their combinations.

Table 1 presents the execution times and the number of
incorrect computations in the observed output for the spec-
ified graphs. We can observe that SKIP, WARP, and ACTIVE
mostly outperform 4TILE, probably due to the overhead of
fine-grained group creation. While relaxing individual syn-
chronization points (i.e., SYNC 1, SYNC 2, SYNC 3) offers
performance gains significantly with non-significant accu-



Figure 2: Speedup-Inaccuracy variation for loop perforation approximation methods.

Table 1
Execution time and incorrect computations (out of given expected correct values) for relaxed synchronization methods for bc
application.

ljournal-2008 socLiveJournal cage15
Time Incorrect Time Incorrect Time Incorrect

(5,363,260) (4,847,571) (5,154,859)
ORIGINAL 61.156 0 57.116 0 47.096 0

SKIP 60.637 954 57.116 276 46.780 28,326
SYNC 1 WARP 60.199 793 53.611 355 47.109 70,611

4TILE 60.579 754 57.205 227 46.939 76,002
ACTIVE 60.205 1113 55.431 292 47.164 71,563
SKIP 59.770 19,888 52.756 1636 47.425 486,970

SYNC 2 WARP 59.314 11,230 52.485 1693 47.811 498,751
4TILE 61.364 14,087 52.300 1522 48.465 303,306
ACTIVE 59.397 8345 52.532 1647 47.850 463,191
SKIP 61.328 64 53.996 36 47.198 15,531

SYNC 3 WARP 60.643 1996 53.774 38 47.843 14,341
4TILE 61.374 137 53.961 34 47.186 13,383
ACTIVE 60.744 160 53.872 32 47.775 13,975
SKIP 56.800 20,137 50.572 1739 46.420 98,691

SYNC 1+2 WARP 56.377 17,035 50.401 1633 46.879 104,232
4TILE 57.779 12,311 51.199 1678 47.217 138,951
ACTIVE 56.195 22,491 50.495 1657 46.908 84,210
SKIP 57.088 20,346 50.871 1729 46.966 85,029

SYNC 1+2+3 WARP 56.747 20,719 50.774 1600 47.320 62,026
4TILE 57.801 14,807 51.513 1649 47.678 59,262
ACTIVE 56.608 17,248 50.880 1556 47.352 87,300

racy loss, the combinations (i.e., SYNC 1+2, SYNC 1+2+3)
further improve the performance without hurting the out-
put quality much. While the accuracy loss depends on the
target dataset, we see the most promising relaxation options
for performance gains (around 8%-10%) with the SYNC 1+2
version.

Since bc has no atomic operations, we consider another
application to observe the impact of our approximation
techniques for atomic operations. We utilize Grappolo code
[21], a highly-optimized CUDA implementation of the Lou-

vain community detection algorithm [26]. Louvain is a
greedy graph processing method that assigns each vertex to
a community, which maximizes the overall Modularity and
generates a new graph in which the communities become
new vertices. Since the output metric, Modularity, does not
present an exact result, trading the output accuracy with
performance improvement can be an interesting evaluation
for the execution. The Modularity metric evaluation de-
pends on the application domain utilizing the community
detection, however, a Modularity value close to 1 presents



Figure 3: Execution time-Modularity values for relaxing atomic operations in Grappolo.

higher quality output. While the Grappolo employs both syn-
chronization and atomic operation primitives, we evaluate
only atomic operations and perform our relaxation methods.
Specifically, for atomicAdd and atomicCAS function calls,
we either replace them with the non-atomic operation or
the block-level atomic function calls (i.e., atomicAdd_block
or atomicCAS_block).

Figure 3 presents execution time and modularity values
as the performance and the accuracy metrics, respectively.
Besides individual atomic operations, we relax the combi-
nations of the atomic operations to see the impact on the
outcome. In our target program, we have five atomicAdd
and three atomicCAS function calls. We label the relaxations
by considering the index and type of the method. Specif-
ically, we use SKIP or BLOCK as the prefix and the order
of the corresponding function as the suffix. For instance,
SKIP_ATOMICADD_1 replaces the first atomicAdd with the
non-atomic operation; BLOCK_ATOMICADD_3 replaces the
third atomicAdd with atomicAdd_block. For the combined
relaxations, we concatenate the index of each operation
such as SKIP_ATOMICADD_1_2. We only select a subset of
the combinations since it is not practical to execute all of
them. While we conduct experiments for 19 datasets, we
include five of them that present the most interesting design
points. All five graphs demonstrate significant performance
improvements with little modularity losses. Depending on
the modularity evaluation of the target domain utilizing the
community detection, one can easily prefer approximated
versions. The executions that have large modularity val-
ues in the original version exhibit significant performance
improvements without hurting the modularity very much.
Especially, SKIP_ATOMIC_ADD_1_2 version promises up to
3x performance gains with 0.01 modularity loss.

4.2.3. Warp Divergence Elimination

We utilize Grappolo for our warp divergence elimination
method due to its complex structure that employs branch
instructions inside kernel functions. We work with two
kernel functions and perform different divergence elimina-

tion. Firstly, we execute only one path out of three, but
our execution does not end (infinite loop) with each path
choice. Then, we apply a different strategy by eliminating
the code in the target path executions and returning the
previously computed value with no computation. For this
method, our execution is completed in a shorter time with
lower Modularity values.

Table 2 presents execution time and modularity values for
the original execution and our approximate version. While
we can see a decrease in all execution times, the approx-
imation also destroys modularity values with one excep-
tion, namely the wb-edu dataset. Since this approximation
completely eliminates some code segments, accuracy loss
becomes inevitable for most cases, and it requires a more
rigorous analysis of the target code.

5. Related Work
SAGE [7] presents a static compiler that generates a set of
approximated CUDA kernels and a runtime system that em-
ploys selective discarding of atomic operations, data pack-
ing, and thread fusion optimizations. It yields 2.5× speedup
with less than 10% quality loss for machine learning and
image processing kernels. While SAGE proposes approxi-
mations for CUDA computations and significantly improves
performance, it relies on generic approximation methods
instead of CUDA-specific techniques.

Freytag et al. [27] propose efficient executions for sci-
entific simulation applications by building multiple kernel
implementations with different precision levels. They exe-
cute approximated kernel versions by switching from one
version to another at runtime based on Target Output Qual-
ity (TOQ) scenarios. By employing execution configurations
based on an analysis of the accuracy loss, the experiments
reveal high-performance and energy-efficient executions for
target precision levels. While the authors build application-
layer approximations for the target code, they modify the
precision levels of the target code while not introducing
CUDA-specific methods.



Table 2
Execution time and Modularity values with warp divergence elimination for Grappolo.

Original Approx.
Dataset Time Modularity Time Modularity

relat9 1.206 0.491 0.616 0.254
cage15 1.341 0.893 1.077 0.727
rel9 1.094 0.458 0.446 0.253

ljournal 2.034 0.759 1.573 0.588
rgg23 1.295 0.991 1.206 0.718

soc-LiveJournal1 2.042 0.753 1.606 0.603
wb-edu 3.468 0.995 1.621 0.980

Liu et al. [28] present cuSpAMM, the CUDA adaptation
of the Sparse Approximate Matrix Multiply algorithm, by
utilizing thread parallelism, memory tiling, and the tensor
cores in multiple GPU devices. While the proposed work
implements an approximation algorithm by considering
GPU-specific features, the implementation, rather than ap-
proximation, relies on GPU optimization techniques.

6. Conclusions and Future Work
In this work, we propose CUDA-specific approximation
methods based on loop perforation, relaxed synchroniza-
tion, and warp divergence elimination. We define approxi-
mations as compiler directives and enable them for target
executions. Our experimental results demonstrate that our
approximation techniques promise good performance im-
provements without hurting output accuracy significantly.

Our approximations are enabled based on compiler direc-
tives. While the directives offer some level of automation,
we can extend our work by building a fully automated tool
that performs source-to-source compiler transformations.
Thus, we can easily generate our approximated versions.
Moreover, a design space exploration technique potentially
helps to choose the best design points considering perfor-
mance improvements and inaccuracy values.

While approximate computing offers performance im-
provements, it is essential to evaluate the power consump-
tion of the target execution. We can extend our work by
including energy measurements for GPU devices and in-
clude that criterion as our resource-aware evaluation.
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