CEUR-WS.org/Vol-3867/paper3.pdf

C

CEUR

Workshop
Proceedings

Green computing for Erlang*

Gharbi Youssef, Istvan Bozd and Melinda Téth

ELTE, Eotvos Lorand University, Faculty of Informatics, Budapest, Hungary

Abstract

Energy efficiency means to achieve the same result with less energy consumption. By reducing energy consumption, companies can
potentially experience both cost savings and improved software performance. Erlang is heavily used in continuously operating server
applications therefore the energy used by Erlang applications are quite significant. Any change, any reduction of the consumption of
Erlang applications might have significant amount on the total energy used by the servers. This presents a measurement environment
for Windows to be able to analyse the energy usage behaviour of Erlang applications. We used this environment to analyse various
Erlang applications. We present our finding and compare the behaviour of the Erlang BEAM on Windows and Linux.

Keywords

energy consumption, Erlang, green computing, measurements

1. Introduction

Energy consumption is a major concern in every aspect
of our life. Being energy efficient is a crucial factor of the
modern manufacturing process [1]. This also covers the pro-
duction of computer components. In addition to producing
hardware components effectively, we also require efficient
computers.

Computer performance is mostly determined by two fac-
tors. The hardware we employ and the applications we use
on our computers. For decades, people have been designing
and producing ever-more energy-conscious hardware, but it
has only recently became common practice to write energy-
efficient software. Computers are being employed in more
energy-critical systems as a result of their ubiquitous use
and the Internet of Things (IoT).

Since environmental consciousness is growing in popu-
larity [2], it is important to create software that is energy
efficient. Cisco says that 90% of internet traffic goes through
Erlang-controlled nodes [3]. With 5.07 billion internet users
in the world growing by half a million daily [4], today comes
the need to have efficient Erlang code patterns more than
ever.

Our work aims to analyse the energy efficiency of Erlang
applications by identifying language components that use
less energy and to guide the developers to design and write
more energy-efficient code. In our previous work [5, 6, 7] we
created a toolchain to measure the energy consumption of
Erlang language constructs and designed refactoring steps
to transform the code to make it more efficient. The Green-
Erl framework focused on Linux-based measurements and
analysis.

In this paper, we are presenting a framework ' that is
applicable to measure the energy consumption of Erlang
software running on a Windows operating system. We built
the framework on top of Scaphandre [8] and integrated it
with the previous GreenErl framework [5, 9]. We repeated
the measurements from the previous studies [10], analysed
the results and compared the main findings with the Linux-
based results.

This study aims to investigate the trends and behavior
of Erlang/OTP on Windows and Linux as the size of input

3rd workshop on Resource AWareness of Systems and Society (RAW 2024)
Q) ikycue@inf.elte.hu (G. Youssef); bozoistvan@elte.hu (I. Bozo);
tothmelinda@elte.hu (M. Téth)

® 0009-0005-3183-0343 (G. Youssef); 0000-0001-5145-9688 (I. Bozo);
0000-0001-6300-7945 (M. Téth)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
ion 4.0 International (CC BY 4.0).

s: github.com/joegharbi/greenErl

data structures increases. The following research questions
guide our investigation:

1. Runtime Performance Trends: - What are the trends in
the runtime performance of Erlang/OTP when processing
increasingly larger data structures on both Windows and
Linux?

2. Energy Consumption Comparison: - How does the
energy consumption of Erlang/OTP on Windows compare
to Linux as the size of input data structures increases?

Our objective is not to determine which operating sys-
tem is optimal, but rather to observe and analyze how Er-
lang/OTP behaves and trends on each operating system
under varying conditions. By addressing these questions,
we aim to provide a comprehensive analysis of Erlang/OTP’s
performance and energy efficiency on different operating
systems with increasing input sizes.

The rest of the paper is structured as follows. In Section 2
we present the context of our work including details on
the original GreenErl framework and our investigations on
selecting a proper measurement environment for Windows.
Section 3 explains how the Scaphandre-based measurement
environment was built for Windows. Section 4 describes
our measurements and the analysis of the result. Finally,
Sections 5 and 6 presents related works and concludes the

paper.

2. Background

In this paper we would like to investigate the energy be-
haviour of Erlang applications. Therefore in this section we
are summarising the main concepts and tools we rely on.

2.1. Green computing

Green computing is a study and practice of efficient and eco-
friendly computing resources [11]. It involves developing,
designing, engineering, producing, using, and disposing of
computing modules and devices to reduce environmental
hazards and pollution [12].

Green computing become increasingly important in re-
cent years [13] as the world becomes more aware of the
impact of technology on the environment [1, 14] and the
utilization of mobile applications, embedded systems, and
data center-based services increases [15, 16]. One way green
computing can be achieved is through energy-efficient com-
puting by designing computer systems that use less energy
while still providing the same level of performance [17, 18].
Energy-efficient computing can be achieved through various

mailto:ikycue@inf.elte.hu
mailto:bozoistvan@elte.hu
mailto:tothmelinda@elte.hu
https://orcid.org/0009-0005-3183-0343
https://orcid.org/0000-0001-5145-9688
https://orcid.org/0000-0001-6300-7945
https://creativecommons.org/licenses/by/4.0

methods such as using low-power processors [19], optimiz-
ing software code [20], and using virtualization technol-
ogy [21]. Another way green computing can be achieved
is through sustainable computing practices. This involves
using environmentally friendly materials in the production
of computer systems and reducing waste by recycling old
computer systems [22, 23].

Green data centers are another aspect of green comput-
ing [24]. Data centers consume a large amount of energy due
to their high-performance computing requirements. Green
data centers aim to reduce this energy consumption using
renewable energy sources such as solar or wind power. They
also use energy-efficient cooling systems that reduce the
amount of energy required to cool the data center. They also
implement different techniques such as reducing wasted re-
sources by tailoring the resources [25].

2.2. Erlang

Erlang [26] is a general-purpose, concurrent, functional,
high-level programming language [27, 28] that was devel-
oped by Ericsson in the late 1980s. It is used to build mas-
sively scalable soft real-time systems with requirements of
high availability [29, 30]. It can be used for a wide range of
applications, some of its uses are in telecoms [31], banking,
e-commerce, computer telephony and instant messaging.
Erlang’s runtime system, the BEAM, has built-in support
for concurrency, distribution and fault tolerance [30].

Erlang has several features that make it unique among
programming languages and it also can serve as a runtime
system [30]. One of these features as mentioned earlier
is its native support for concurrency and distribution. Er-
lang’s concurrency model is based on lightweight processes
that are isolated from each other and communicate through
message passing. This makes it easy to write concurrent pro-
grams that can run on multiple processors or even multiple
machines.

Another feature of Erlang is its support for fault tolerance.
Erlang programs are designed to be fault-tolerant, which
means that they can continue to operate even if some parts
of the system fail. This makes Erlang an ideal choice for
building systems that require high availability and reliabil-
ity.

Erlang is a dynamically typed language, therefore er-
rors are only raised at runtime once types of functions and
variables are checked at runtime. Additionally, Erlang is
strongly typed, which means there is no implicit type con-
version.

Erlang is usually mentioned as Erlang/OTP. OTP is a set
of Erlang libraries and design principles providing middle-
ware to develop massively scalable soft real-time systems
with requirements on high availability. It includes its own
distributed database, applications to interact with other lan-
guages, and debugging and release handling tools.

2.3. RAPL

Running Average Power Limit (RAPL) [32] presents in con-
temporary Intel and AMD processors, facilitating the mea-
surement and regulation of power usage across various
components such as CPU cores, memory, and the package.
RAPL grants access to power and energy counters through
model-specific registers (MSRs), which can be accessed by
software applications.

In Linux environments, RAPL is widely utilized for
energy-conscious tasks such as monitoring, profiling, and
improving the energy efficiency of software and hardware.
However, RAPL lacks native support in Windows sys-
tems [33], thereby constraining the utility of RAPL-based
solutions for Windows users and developers. A project
named Windows-RAPL-Driver [34] seeks to bridge this gap
by furnishing a Windows driver enabling the gathering of
RAPL metrics from physical computers. This driver exposes
RAPL data via a device file accessible to user-space applica-
tions.

2.4. GreenErl framework for Linux

The former work on Erlang green computing [5, 9] made
several important contributions, including the development
of GreenErl, a tool designed to measure the energy con-
sumption of Erlang programs. The GreenErl framework was
developed using RAPL [35] to read the energy consump-
tion. GreenErl comprised an Erlang module, a Python-based
graphical user interface, and the rapl-read.c program,
making it user-friendly and effective in analyzing the energy
usage of different language constructs and elements:

« Rapl-read.c is responsible for reading the energy
consumption. The original source file was mod-
ified [32] to measure the energy consumption of
Erlang functions. Now it splits each measurement
function into two parts: one that reads the values
before the Erlang function is run, and one that reads
the values after and calculates the energy difference.

+ The Erlang module, energy_consumption.erl,
communicates with the rapl-read. c program to
measure the energy consumption of Erlang func-
tions. The module has a measure function that
takes various parameters, such as the path to the
rapl-read.c program, the functions to measure,
the inputs for the functions, the number of repeti-
tions, and the log file location. The module can also
generate inputs from input descriptors and measure
all exported functions in a module.

« The Python GUI is a tool that helps to organize
and visualize the measurements. The GUI uses the
Tkinter library to create a user interface, where you
can select the Erlang file, the functions, and the in-
puts to measure. The GUI also allows building the
rapl-read. c program and setting up the measure-
ments. It allows adding multiple measurements to
a queue and running them one by one. After the
measurements are done, you can use the matplotlib
library to plot the results on a graph or export the
results to a latex graph.

These components communicate with each other. The
Python script uses the subprocess library to create the Erlang
shell and run the commands. The Erlang module spawns
the rapl-read. c program and sends signals to start and
stop the measurement. The rapl-read. c program reads
the RAPL registers and sends the measured data back to the
Erlang module. Finally, the Erlang module creates the log
files, which are accessed by the Python script to visualize
the results.

GreenErl was used [5] to examine the energy consump-
tion of various data structures, such as proplists, maps,
and dictionaries and found significant differences in the

energy consumption of various operations. The study also
explored the optimal scenarios for transforming lists into
maps and identified the limits and kinds of operations that
justify such a transformation.

The effect of higher-order functions on energy consump-
tion was also investigated and replacing higher-order func-
tion calls with either a list comprehension or a specialized
recursive function was suggested to decrease energy con-
sumption.

The energy cost of different parallel language constructs
were also examined, particularly the energy consumption
of sending different data structures between processes. The
study found that sending maps instead of lists can decrease
energy consumption and suggested that transforming a list
into a map can be a viable option for minimizing energy
consumption in parallel language constructs.

Finally, some refactorings were proposed
based on the findings, such as replacing calls to
proplists:get_value/2 with the more efficient
lists:keyfind/3, transforming a recursive function
definition that uses a property list as its parameter to use a
map instead, and eliminating higher-order function calls by
replacing calls to the 1ists:map/2 and 1ists:filter/2
functions with either a new recursive function or a list
comprehension, depending on what the user desires. The
RefactorErl [36] framework was used to implement these
transformations [5, 7].

2.5. Selecting the right environment for
Windows

A significant challenge in reducing the energy usage of tech
services is accurately and openly measuring it. However,
most current tools and methods are either too expensive,
too complicated, or not straightforward enough to be widely
used by providers and users. For example, some tools need
special hardware or software that does not work on all
devices. Others use indirect estimates or averages that do
not show the real power use of a particular service or device.

The GreenErl framework was developed using RAPL [35]
to read the energy consumption from the designated regis-
ters. Since Windows does not have APIs that allow access
to the needed model-specific registers [33], we need to find
a similar tool that allows us to reproduce the same mea-
surements and findings on Windows Operating Systems
with keeping in mind different constraints. The most im-
portant constraint was that we would like to measure the
same Erlang modules meaning that we do not want to rede-
fine new function descriptions to have the highest similar
environmental comparison. We also need to consider that
some functions are fast and have low energy consumption
usage so the tool we should choose can handle values in
nano-seconds and micro-watts. The last constraint is that
we need to have the values in a file so that we can plot it in
a graph and make the comparison.

We explored various Windows utilities, such as Powercfg,
CPU-Z, Intel Power Gadget, and Scaphandre, to identify a
tool that satisfies our specific requirements. These criteria
included the ability to accurately measure energy consump-
tion at the process level, maintain a rapid sampling rate,
detect even low levels of energy consumption, and facilitate
data storage in file (or other reusable, persistent storage)
formats. Following this, we proceeded to adapt the Green-
Erl framework for compatibility with Windows, preserving

common elements while integrating the chosen tool into the
system. We then rigorously tested the framework and final-
ized the configuration parameters for optimal performance.
Subsequently, we conducted the measurement procedures
and carefully analysed the results obtained.

A recent open-source tool called Scaphandre [8, 37] en-
deavours to tackle these issues by offering a straightforward,
dependable, and transparent approach to assessing and min-
imizing the energy consumption of technological services.

The fundamental principle behind Scaphandre’s function-
ality lies in integrating two data sources: the proportion
of resources utilized by a process and the total power con-
sumption of the system. The latter relies on RAPL. We
used Windows-RAPL-Driver [34] to provide the required
functionality,

3. The Scaphandre based energy
usage measuring tool-chain for
Windows

Scaphandre presents numerous advantages over other watt
meters concerning platform compatibility, measurement
precision (with sampling rates down to one nano-second),
and data output versatility (JSON format). It is operable
on both Windows and Linux systems and compatible with
processors supporting the RAPL interface. Additionally,
Scaphandre can assess the power consumption of any pro-
cess or application on both physical and virtual hosts. It of-
fers the capability to transmit or expose power consumption
data to various data analysis or monitoring tools for further
processing and visualization, including JSON, Grafana, and
wrap10. Consequently, Scaphandre emerges as a superior
choice for power consumption measurement across diverse
scenarios, including the context of this work, and holds
promise for potential future enhancements.

To be able to run Scaphandre on Windows we needed to
first install Windows-RAPL-Driver [34] to allow access to
metrics and then Scaphandre [38]%.

Upon selecting Scaphandre as the designated tool, we pro-
ceeded to examine the pre-existing Unix-like OS GreenErl
framework [5], experimenting with various implementa-
tions to determine the necessary edits and integration steps
required. In this section, we will detail each component,
outlining the adjustments made and ultimately presenting
the finalized implementation outcome.

GreenErl for Windows implementation Our initial
aim in adapting the GreenErl framework for Windows was
to maintain consistent functionality and input specifications
with the original Linux-based version. This entailed utilizing
the existing Erlang modules as inputs for the Erlang measure
module without necessitating modifications, wherever fea-
sible, as the objective was to conduct a comparative analysis
of energy consumption between the two operating systems.
The process began with the removal of redundant functions
and parameters from the Erlang measure module to create
a streamlined command-line version of GreenErl tailored

“Throughout the installation process, we faced many challenges since
the framework was in an early phase of development. For those who
will try the framework in the future, there is new documentation and
explanation of the Windows-RAPL-Driver installation on the official
website [39] supporting Windows.

---Process---»

¥

Spawn

Scaphandre

Figure 1: Workflow diagram of GreenErl on Windows

for Windows (without energy consumption data). Subse-
quently, integration of the Scaphandre component ensued,
alongside modifications to the Python script to facilitate
execution of the Erlang module. Finally, adjustments were
made to the Python script to visualize and export results in
latex format. The revised implementation thus comprised
three key components: an Erlang module, a Python script,
and a Scaphandre command for data collection.

Erlang Module The Erlang module, denoted as
energy_consumption_res.erl, exposes a single
function measure/3. This function receives three argu-
ments: {Module, Functions, InputDescs}, Count,
ResultPath. Its purpose is to measure the energy
consumption across multiple functions, each executed with
various input sets and repetitions. Employing recursive
invocation, it iterates through the list of input descriptions
and utilizes the measureFunctions/3 function to assess
each function with respective input argument lists. Addi-
tionally, it verifies whether the module under measurement
features a function named generate_input, which, if
available, generates input argument lists from provided
descriptions. Otherwise, it treats the input descriptions
directly as argument lists.

The input description follows the format
{value, Count}, where value represents the in-
put value and Count signifies the number of repetitions
for that specific value within the function. We introduced
this capability to operate optionally if included in the input
description, recognizing that certain functions execute
swiftly with minimal energy consumption (approximately
0 Watts). In cases where the pattern {value, Count}
is absent, the default Count specified in the measure/3
parameter is utilized.

Python script Similar to the modifications made to the
Erlang module, we streamlined the graphical user interface
(GUI) components for Windows compatibility, as depicted

Start .
Python script Drav P*L_T”F;:'zlsllh
il B = Ty »! g
)
| %
i ' Create
i Create Im[l:u: t
i | Save

]
i log files
]

Use

in the measurement (Figure 2) and visualization (Figure 3)
figures. Leveraging the Tkinter library for Python, we de-
veloped an intuitive GUI allowing users to select the Erlang
file containing the module for assessment, specify functions
and inputs for measurement, and designate file paths for the
Erlang module and result folders. Upon input completion,
measurements can be queued for execution. Furthermore,
we resolved path disparities between Windows and Linux,
removed redundant packages, and updated the LaTeX ex-
porter. A function was introduced to compute consump-
tion values from JSON files, accepting arguments for folder
path, count, input, and process ID (Pid) to ensure precise
process-level consumption measurements. This function
also handles errors, logging them if encountered. The visu-
alization component (Figure 3) facilitates exporting LaTeX
files and visualizing results, requiring only the path to CSV
files or folders. The interaction between these components
is illustrated in Figure 1.

| # Measure Erlang - O X

Erlang file to measure Select file | No file selected

Erlang module to measure with Select file

Number of measurements 10 ﬁ
Functions to measure
Input descriptions

Result folder name

Add measurement
Start measurement

N

Figure 2: Python GUI to run the tool

The use of Scaphandre We integrated the Scaphandre
tool into the Erlang measuring module. Tracking the module

[§ GreenErlang Visualization — 0 X

| Select files

| Select a directory [v CSV files [~ TXT files
Clear files
v time v core
LogScale: r

|
Draw Selected Figures |

i Draw All Figures }
E Latex Export I

Figure 3: Python GUI to visualize

function and input descriptions was facilitated by specific
names, as illustrated in Figure 4. This code segment handles
the setup for generating the input JSON file name and con-
structing the Scaphandre command. To execute Scaphandre,
we run the wmic process call create command from
Windows Management Instrumentation (WMI) [40], and
parse the output of the command to extract the PID of the
newly spawned Scaphandre process. This PID is crucial
for terminating the Scaphandre process once the function
completes.

We utilize the JSON exporter feature offered by Scaphan-
dre [41] to record the results into a JSON file. We
specify the file path along with its name. For instance,
as illustrated in Figure 5, given a module named map,
a function named recursive, and an input descrip-
tion of 100,000, the resulting JSON filename would be
map_recursive_100000. json. Subsequently, this JSON
file was employed by our Python script to compute the
function’s energy consumption.

Scaphandre offers the default option to collect the con-
sumption data of the top 20 consumers. However, as de-
picted in Figure 5, we specified to gather data for the top 100
consumers explicitly. Through extensive experimentation
with various consumer counts, we found that configuring
it to 100 effectively covered all Erlang functions requiring
measurement.

The final crucial feature for optimizing measurements
and ensuring coherent results was determining the sam-
pling rate. By default, Scaphandre sets this feature to two
seconds [41], which proved inadequate for our requirements,
particularly given the swift execution of some functions ne-
cessitating a larger sampling rate. After experimenting with
various sampling rates, we opted for the highest available
option, which is nano-second sampling, as depicted in Fig-
ure 5. Nano-second sampling provided a significantly higher
granularity of detail in the generated graphs. While this
increased granularity introduced potential fluctuations, we
determined that the benefits outweighed the drawbacks, as
it consistently yielded better results overall.

For experimental validation while determining the opti-
mal configurations, we conducted two distinct implemen-

tations, each repeated 10 times. The consistent success
observed across these iterations serves as compelling ev-
idence of the framework’s robustness and stability. This
outcome confirms its readiness for future measurements,
highlighting its reliability for continued use.

4. Analysing energy consumption

We performed various measurements on Windows to deter-
mine the energy behaviour of Erlang applications.

4.1. The measuring environment

The investigation into energy consumption across various
functions was performed using the GreenErl framework
for Windows, as outlined in Section 3. Each experiment
was repeated 10 times, a choice made based on previous
measurements that indicated a high level of consistency
through analysis of standard deviation and range. Addition-
ally, the runtime of the functions was measured. The data
collected from these experiments were plotted and subjected
to detailed descriptive statistical analysis.

All measurements in this research were performed on a
DELL XPS 13 9370 equipped with an Intel Core™ i5-8250U
CPU @ 1.60GHz 1.80 GHz, 8GB of DDR3 RAM, 64-bit oper-
ating system, x64-based processor, running Windows 11 Pro
operating system Version 22H2. We used Erlang/OTP 23.3.4
for the measurements. The previous Linux measurements
were conducted on a Toshiba Satellite L50 equipped with an
Intel Core i7-4700MQ @ 2.4 GHz, 12GB of RAM, running
Ubuntu 16.04 LTS.

To ensure the accuracy and reliability of our results, we
implemented several additional measures to create a con-
trolled and consistent environment:

Minimization of Processes All non-essential processes
and applications were terminated prior to conducting the
measurements to eliminate any background activities that
could introduce noise and affect the performance analysis.

Hardware Consistency The measurements were con-
ducted on a DELL XPS 13 9370 with the following specifi-
cations: Intel CoreTM i5-8250U CPU @ 1.60GHz 1.80 GHz,
8GB of DDR3 RAM, 64-bit operating system, x64-based pro-
cessor. The Windows environment ran Windows 11 Pro
Version 22H2. Erlang/OTP 23.3.4 was used for the measure-
ments.

Operating System Services Only essential operating
system services were active during the measurements to
avoid any extraneous influence on the results.

Network and Connectivity The WiFi was turned off,
and the laptop was set to airplane mode during all measure-
ments to prevent network-related processes from affecting
the results.

System Initialization Each measurement was initiated
on a fresh startup to ensure a clean state, free from any
residual processes or temporary files that could impact the
results.

InputDesFile = "\"" ++ ResultPath ++ atom_to_list(Module) ++ "_" ++ atom_to_list(Function) ++
" " 4+ integer_to_list(InputDesc) ++ ".json"++ "\"",
io:format("~nCurrently measuring functions with input description ~p~n",[InputDesc]),

% ns sampling

Command = "scaphandre json -s 0 -n 1 -m 100 -f " ++ InputDesFile,
Output = os:cmd("wmic process call create \""++ Command ++"\" | find \"ProcessId\""),

{match, [PidString]} = re:run(Output, "ProcessId

Pid = list_to_integer(PidString),

Figure 4: A code snippet from the Erlang measure module

scaphandre json -t 10 -s 0 -n 1 -m 100 -f
result_path \map_recursive_100000.json

Figure 5: JSON export example

Power Settings The power settings were configured to
’balanced’ mode to provide a consistent energy consumption
environment without favoring performance or power saving
excessively.

Battery and Power Management The laptop was fully
charged and plugged into the AC during the measurements.
Screen brightness was set to the minimum level. The lap-
top was set to test mode as required by Scaphandre, and
the screen and sleeping features were disabled both on the
battery and when plugged in.

User Interaction The laptop was not used during the
measurements to avoid any additional load or interference.

By implementing these measures, we aimed to create a
controlled and consistent environment for conducting the
performance analysis, thereby enhancing the reliability of
our findings.

These detailed conditions ensured that our measurements
were conducted under minimal interference, providing a
clear and accurate representation of the software programs’
energy consumption and performance.

4.2. Types of measurements

The preceding study [5] conducted an original investigation
into the energy consumption of complex algorithms in Er-
lang. Specifically, it compared different implementations of
the N-queens problem and sparse matrix multiplication [6],
employing various techniques including higher-order func-
tions, recursion, list comprehensions, lists, and arrays. Ad-
ditionally, other aspects of the research [5] focused on more
fundamental language elements rather than solely address-
ing complex problems.

In this measurement, we focus on comparing different im-
plementations of the same language element. Our detailed
results can be found in this thesis [10], as it is not feasible
to include all figures here. Additionally, all GreenErl for
Windows framework components can be found in the same
repository *. Based on the previous findings, we selected
the following areas for this analysis:

« Data structures

*https://github.com/joegharbi/greenErl

= ([0-9]+)", [{capture, all_but_first, list}]),

« Higher order functions
« Parallel language constructs
« Algorithmic skeletons

Data structures The objective of this study was to eval-
uate the energy efficiency of various data structures for
storing key-value pairs on Windows. We conducted a se-
ries of experiments to measure the energy consumption of
different operations on these data structures and to analyze
the trade-offs of changing the representation by converting
the data to another format. Furthermore, we compared the
energy performance of alternative methods for executing
the same operation within a given data structure. The data
structures that we investigated in this study were:

« List of tuples (or proplists)
« Map
« Dictionary

The operations we measured on these data structures are
the following:

« Creating/Converting the data structures

« Finding the value belonging to a particular key
+ Inserting a new key-value pair

« Updating the value belonging to an existing key
« Deleting an existing element

Finding an element Among the observations, we found
that map implementations exhibited greater efficiency and
faster execution times. In contrast, all list implementations
consumed more energy and took longer to complete. This
finding is illustrated in the Figure 6.

Higher-order functions We also investigated the influ-
ence of higher-order functions (HOFs) on energy consump-
tion. Based on the findings shown in Figure 7, both named
function and lambda expression, exhibit consistently ele-
vated energy consumption. Conversely, using list compre-
hension proves to be relatively more efficient, regardless of
whether a named function or lambda expression is utilized.

Parallel language constructs Erlang effortlessly sup-
ports extensive concurrency through its simple primitives
for process creation and communication. Each process op-
erates within its own isolated memory space, exclusively
holding its data. To share data between processes, it must be
transmitted as messages. This research measures not only
the energy consumption associated with creating, modi-
fying, and converting various data structures but also the

-10*

— T
—.— map-find/find . map-find/find
15| - list-find/get-value / wl= list-find/get-value /
—e—map-find/find-pattern-match o o~ map-find/find-pattern-match ~
—— list-find /recursive - —*— list-find /recursive
= 1| list-find /keyfind n —— list-find /keyfind
= 40
, 2
5 5
z E
B o5t = 20
0 0
.
01r 0 01 02 03 04 05 06 07 08 09 1 0L 0 01 02 03 04 05 06 07 08 09 1 1.1
Input size (N) 107 Input size (N) 107
Figure 6: Finding an element using GreenErl on Windows
-10%
2 —— filter/filter-fun —e— filter /filter-fun ‘ '
—=- filter/list-comprehension 6 | = filter/list-comprehension /
15| filter/filter-named . filter/filter-named _
T filter /recursive e filter /recursive -
6 @ 4F
e 1 2
=4 =
g B
051 2
0F 0
.)
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 1.1
Input size (N) 107 Input size (N) 107

Figure 7: Higher-order functions using GreenErl on Windows

overhead of sending these structures between processes. We
aimed to determine whether optimizing data representation
before transmission and upon reception could minimize
energy consumption.

We analysed the map/send function initiates a process
that interacts with the main process by exchanging a list
of key-value pairs along with a confirmation message. Sim-
ilarly, the 1ist/send and dictionary/send functions
communicate a list and a dictionary, respectively. We found
that sending a list of tuples proves to be the least efficient
in terms of energy consumption. Conversely, sending maps
demonstrates the highest efficiency, followed by the dictio-
nary (Figures 8 and 9).

Algorithmic skeletons This study aimed to understand
how different parallel algorithmic skeletons impact energy
consumption. These parallel programming patterns are
extensively used due to their ability to simplify the complex-
ities of parallel and distributed applications, highlighting
the importance of investigating their energy usage implica-
tions. In this research, we evaluated fundamental skeletons
such as farm and pipeline skeletons. Additionally, consid-
ering the potential combinations of these patterns, we also
assessed various compositions of skeletons.

For instance, the task farm is a widely used parallel pro-
gramming pattern to parallelise the evaluation of a function
for all elements of an input structure. To implement it, three
key members with distinct roles are defined. The dispatcher
is responsible for managing the input and distributing ele-
ments to the workers. Each worker executes the function
on assigned inputs and forwards the results to the collector

before requesting a new element. Finally, the collector ag-
gregates the results. It is important to note that this skeleton
does not maintain the order of the elements.

4.3. Comparing energy consumption

We aimed to compare the energy behaviour of Erlang appli-
cations on Linux and Windows operating systems. There-
fore, we will explore some of the trends between the two
operating systems.

Data structures A noticeable distinction was observed
between Linux and Windows environments when construct-
ing a dictionary as shown in Figure 10. Linux exhibited a
peak in energy consumption compared to other data struc-
tures, whereas Windows demonstrated a much lower peak.
Interestingly, the remaining functions displayed consistent
behaviour across both operating systems.

On the other hand, we observed that most functions ex-
hibited similar behaviour. For instance, when deleting an
element from a list, as illustrated in Figure 11.

Inference The Linux kernel for servers has been specifi-
cally optimized for high throughput and performance [42],
prioritizing processing efficiency over power consumption.
Consequently, Linux distributions tend to consume more
power and battery life compared to Windows and Mac op-
erating systems [43]. Although the aim of this investigation
is not to prove which Operating System is more efficient as

.10

6 | —*— dictionary /send
—=— map/send
5| list/send
— 4
=
%3
2
]
M2
1 / \
r/ \\\
0 4 y
.
0.5 1 15 2 2.5 3 3.5 4
Input size (N) -101
Figure 8: Sending of elements from a container
10| list /send-element
-=— list/send-clements-acc
—— map/send-elements
30 |—— dictionary/send-elements
n —+list-processes/send-clements
\g o list/send-elements-comp
£ 20
b=l
3
~
10
R T —)
0
. .
0.5 1 1.5 2 2.5 3 3.5 4
Input size (N) 101

Figure 9: Sending of elements from a container

stated in the introduction, nevertheless our findings showed
that Windows behaved in a more efficient way than Linux.

As previously mentioned, comprehensive results are doc-
umented in this thesis [10].

5. Related work

We are investigating the related works from different per-
spectives. We are summarising the studies related to func-
tional programming and related to comparisons of operating
systems and programming languages.

1010 Windows
—e— maps:from_ list/1
—=—map pattern match
25| list recursive
—— maps:put /3
2 |—+— dict:from_list/1
= -e- dict:store/3
> 1.5
&6
g
A 1
0.5 s —y
0 ——8 & e + e+ 1
L
0.1 0 01 02 03 04 05 06 07 08 09 1 1.1
Input size (N) 107

1072
—e—dictionary/send
1.5|® map/send
—e— list/send
&
o
g
£
=05
0
I
0.5 1 1.5 2 2.5 3 3.5 1
Input size (N) -10*
-10°
2
15
= —— list/send-elements-rec
2 = list/send-elements-acc
g 1 —— map/send-elements
=) —+— dictionary /send-elements
0.5 ——list-processes/send-elements
o list/send-elements-comp
%
0
. I

1.5 2

Input size (N) -101

Windows versus Linux operating systems To fairly
compare and study the energy consumption differences be-
tween Linux and Windows, we first need to understand the
fundamental key differences between these operating sys-
tems. A detailed study was conducted by Hadeel et al [44]
where they reviewed the history and development of both
systems and their market share and user base. They also
discussed the technical aspects of the systems, such as the
kernel, the file system, the security model, the user interface
and the compatibility with hardware and software. One of
the major differences is the process scheduling, where they
compared the scheduling algorithms used by Linux kernel
2.6 and Windows NT-based versions, and analyzed their

Linux
—— dict:store/3
—=— dict:from_list/1
400 . maps:put/3
——map pattern match
300 \ —— maps:from_list/1
= -e- list recursive
£5 200 |- 1
a
100 - 1
0
0 0.1 02 03 04 05 06 07 08 09 1 1.1
Input size (N) 107

Figure 10: Different behavior of dictionary on Linux and Windows

010 Windows

—e— maps:remove/2
—=— lists:keytake/3
—o— list recursive

Energy (J)

I I I
05 06 0.7

I
04

Input size(N)

0.8

Energy (J)

150

100

50

Linux
+— lists:keytake/3 .-
= list recursive e BN
e maps:remove/2 » » ,\\|
//’
/ -
ay
/
S——d
/ Ty
/o
~ o ‘
i
2
B S S —
0 01 02 03 04 05 06 07 08 09 1 L1
Input size(N) 107

Figure 11: Different behavior of deleting an element on Linux and Windows

trade-offs between fairness and responsiveness. Another
dissimilarity is in memory management, where they evalu-
ated different paging strategies for Linux and Windows and
examined the impact of swap partition and pagefile on disk
fragmentation and system performance.

Another study by Beatriz Prieto et al [45] on the energy
efficiency of personal computers compared to mainframe
computers and supercomputers, where the authors explored
the possibility of running scientific and engineering pro-
grams on personal computers and measuring these systems’
power efficiency. They also showed how the power effi-
ciency obtained for the same workloads on personal com-
puters is similar and sometimes less than that obtained on
supercomputers included in the Green500 [46] ranking. This
study reveals that energy consumption not only can vary
between operating systems but also when using different
makers where they used five different personal computers
with different processors of different generations.

A comparative analysis was performed by Sayed Naj-
muddin et al [47] of the power and battery consumption
of Windows operating systems and modern Linux distribu-
tions, such as Ubuntu, Fedora, Debian, Red Hat, and others.
They argued that one of the main factors that affect the
power management of Linux is the quality of the drivers,
which are often poorly written or incompatible with the
hardware. The researchers also explained that this is due
to the reluctance of hardware manufacturers to share the
details of their products with driver developers, especially
those who work for open-source operating systems. They
also pointed out that some versions of the Linux kernel are
not properly designed and optimized for mobile systems,
as they are mainly intended for desktop platforms. They
concluded by recommending that users should select the
most suitable and efficient kernel for their system as a way
to improve the power and battery performance of Linux.

All of the previously mentioned research proves the fact
that Windows and Linux differ radically from each other.

Programming languages efficiency Rui Pereira
et al [48] presented a study of the energy efficiency of 27
programming languages, using 10 different algorithms. The
authors measured the time, CPU usage, memory usage and
energy consumption of each program execution, and used
statistical methods to rank the languages according to each
objective. They also analyzed the impact of the execution

type (interpreted or compiled) and the programming
paradigm (imperative, object-oriented or functional) on
energy efficiency.

The main findings are that compiled languages are more
energy-efficient than interpreted ones and that functional
languages are more energy-efficient than imperative or
object-oriented ones. The researchers also identified C, Rust,
Ada and Pascal as the most energy-efficient languages, and
Perl, JRuby, Python and Lua as the least energy-efficient
ones. They also found interesting correlations between en-
ergy, time and memory, such as slower languages consum-
ing less energy and memory usage influencing energy con-
sumption such as languages with comparable energy con-
sumption can have significantly different execution times.
For instance, in the binary trees benchmark, Pascal con-
sumed approximately 10% less energy than Chapel, but
Chapel executed about 55% faster than Pascal. This finding
emphasizes the results that we found in this paper, where
the parallel implementation of the identity function with
two workers was the slowest but with the least energy con-
sumption, which was the same finding for the previous
thesis work [5].

The authors used a tool called CodeCarbonFootprint
(CCF) to measure the energy consumption of each language
and problem. The experiments were performed on a desktop
computer with the following configuration: 16GB of RAM,
an Intel® Core™ i5-4460 CPU @ 3.20GHz with a Haswell mi-
croarchitecture, and a Linux Ubuntu Server 16.10 operating
system.

Another important aspect of programming languages
and their energy consumption can be linked to the mis-
use of data structures or engineering solutions. This can
be illustrated in the research done by Meszaros et al [6]
where they measured the energy consumption of Erlang
programs and discovered patterns and relations between
language constructs and power consumption. They cre-
ated a framework to make the measurement user-friendly.
This framework uses RAPL to read the access the energy
consumption values. All measurements were done using
Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz and 8 GB of
DDR3 RAM @ 1600MHz, using Ubuntu 16.04 LTS. They
found that eliminating higher-order functions may result in
a more efficient program. They also found that using naive
parallelisation solutions can result in the worst consump-
tion due to the fact of spawning different processes which

was the case in our results mentioned in this paper and the
thesis containing the details of the work [10].

More recent research that incorporates hardware mea-
surement setups to evaluate energy consumption is also
noteworthy. Koedijk and Oprescu’s 2022 study, "Finding
significant differences in the energy consumption when
comparing programming languages and programs,’ [49]
presented at the International Conference on ICT for Sus-
tainability (ICT4S), identified substantial variations in en-
ergy usage across different programming languages. Their
results indicated that certain languages, such as C and Rust,
tend to be more energy-efficient compared to higher-level
languages like Python and JavaScript. They also found sig-
nificant variations in energy consumption based on lan-
guage choice and programming techniques. While C and
C++ consistently exhibit lower energy consumption across
the tested programs, they note that energy usage can vary
depending on compiler optimization settings. This study’s
findings provide valuable insights and a more detailed un-
derstanding of the energy efficiency landscape, underscor-
ing the importance of considering hardware-level data and
compiler optimizations in energy consumption analysis for
software development.

Functional languages Luis Gabriel Lima et al [50, 51].
conducted studies specifically targeting the energy effi-
ciency of functional programming languages, focusing
on Haskell. Their research, "On Haskell and energy effi-
ciency" [50], and "Haskell in Green Land: Analyzing the
Energy Behavior of a Purely Functional Language" [51], ex-
amined Haskell’s energy consumption characteristics. They
evaluated various Haskell programs to understand the im-
pact of different language features on energy usage. The
studies revealed that Haskell, due to its purely functional
nature, often exhibited favorable energy consumption pat-
terns compared to other programming languages. They also
found that small changes can make a big difference in terms
of energy consumption. These findings underscore the im-
portance of considering functional languages like Haskell
when analyzing energy efficiency in software development.

6. Conclusion

Green computing is important for all kinds of systems, from
handheld devices to large-scale data centres. It can help
reduce greenhouse gas emissions energy consumption, and
electronic waste. It can also save costs and improve perfor-
mance for technology makers and users. This thesis was
a complementary work to the previous findings of our re-
search team. Previously, the work was only focused on
Unix-like operating systems, thus this thesis was a first step
into bridging the gap between these different platforms.

As a first step, we started by looking for a tool to fill
the gap between the two operating systems since RAPL
is not available in Windows. Thus we used Scaphandre
since it checked all of the boxes for our constraints. We
integrated the tool with the previous GreenErl framework
and measured different Erlang functions.

There were some nice findings about Erlang on Win-
dows. We measured the energy consumption and runtime
of some data structure implementations such as lists, maps
and dictionaries. We evaluated creating, converting, up-
dating, searching and deleting elements from those data
structures where we found that in most cases list is the

worst in terms of energy consumption, the dictionary was
better except while updating all of its elements. We also
measured some higher-order functions like applying a func-
tion on filtered elements where recursive implementations
were the most efficient. Since one of the many strengths
of Erlang is parallelization, We also measured sending data
in different forms. Lastly, we assessed some algorithmic
skeletons such as task farms where we concluded it is better
to spawn as many workers as the number of your physical
processes.

As for the comparison section, we can say the trend in
both operating systems had more similarities than differ-
ences with some exceptions. For example, the dictionary
had a lower consumption on Windows and a noticeably dif-
ferent overall behaviour while being the highest consumer
in Linux except for updating all elements in the dictionary
that resulted in it being as high in Windows as in Linux. We
also noticed that Windows results had higher fluctuating
values compared to Linux, this can be due to the difference
in the sampling rates between RAPL [52] and Scaphandre.

Future work As Scaphandre is still in an early stage, we
think it is a good approach to focus on this tool to create
a cross-platform GreenErl for (Linux, Windows, VMs, and
Containers). Using the same tool to get the values will give
genuine comparable results.

Acknowledgments

This work is partially supported by CERCIRAS COST Action
CA19135 funded by COST Association.

Project no. TKP2021-NVA-29 has been implemented with
the support provided by the Ministry of Culture and Innova-
tion of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA
funding scheme.

References

[1] 1., Whatis green computing?, 2022. URL: https://www.
ibm.com/cloud/blog/green-computing.

[2] A. A. Chien, Computing’s grand challenge for sus-
tainability, Commun. ACM 65 (2022) 5. URL: https:
//doi.org/10.1145/3559163. doi:10.1145/3559163.

[3] S. Unge, How cisco is using erlang for intent-based
networking, 2020. URL: https://codesync.global/
media/how-cisco-is-using-erlang-for-intent-based-/
networking-cbf20/.

[4] A. the, Datareportal - global digital in-
sights, 2013. URL: https://datareportal.com/
global-digital-overview#:~:text=Internet%20use%
20around%20the%20world,million%20new%20users%
20every%20day.

[5] G.N. Aron Attila Mészaros, GreenErl Measuring the
energy consumption of Erlang programs and energy
conscious refactorings, Master’s thesis, E6tvos Lorand
University, Faculty of Informatics, Department of Pro-
gramming Languages and Compilers, 2019.

[6] A.Mezsaros, G. Nagy, I. Bozo, M. Toth, Towards green
computing in erlang, Studia Universitatis Babes-
Bolyai Informatica 63 (2018) 64-79. URL: https://www.
readcube.com/articles/10.24193%2Fsubbi.2018.1.05.
doi:10.24193/subbi.2018.1.05.

https://www.ibm.com/cloud/blog/green-computing
https://www.ibm.com/cloud/blog/green-computing
https://doi.org/10.1145/3559163
https://doi.org/10.1145/3559163
http://dx.doi.org/10.1145/3559163
https://codesync.global/media/how-cisco-is-using-erlang-for-intent-based-/networking-cbf20/
https://codesync.global/media/how-cisco-is-using-erlang-for-intent-based-/networking-cbf20/
https://codesync.global/media/how-cisco-is-using-erlang-for-intent-based-/networking-cbf20/
https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,million%20new%20users%20every%20day.
https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,million%20new%20users%20every%20day.
https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,million%20new%20users%20every%20day.
https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,million%20new%20users%20every%20day.
https://www.readcube.com/articles/10.24193%2Fsubbi.2018.1.05
https://www.readcube.com/articles/10.24193%2Fsubbi.2018.1.05
http://dx.doi.org/10.24193/subbi.2018.1.05

(8]

(10]

(14]

(15]

(19]

[20]

G. Nagy, A. A. Mészaros, 1. Bozd, M. Téth, Tools
supporting green computing in erlang, in: Pro-
ceedings of the 18th ACM SIGPLAN International
Workshop on Erlang, Erlang 2019, Association for
Computing Machinery, New York, NY, USA, 2019, p.
30-35. URL: https://doi.org/10.1145/3331542.3342570.
doi:10.1145/3331542.3342570.

Hubblo, Scaphandre documentation, 2023. URL: https:
//hubblo-org.github.io/scaphandre-documentation/
index.html.

J. T. C. Ortiz, Green computing in Erlang, Master’s the-
sis, E6tvos Lorand University, Faculty of Informatics,
Department of Programming Languages and Compil-
ers, 2017.

Y. Gharbi, Green computing for Erlang, Mas-
ter’s thesis, Eotvos Lorand University, Budapest,
Hungary (Faculty of Informatics, Department of
Programming Languages and Compilers), 2023. URL:
https://github.com/joegharbi/greenErl/blob/main/
papers/YoussefGharbi_ IKYCUE_THESIS.pdf.

I. Ray, Green computing, 2012. URL: https:
//www.researchgate.net/publication/270570843_
Green_Computing.

B. Saha, Green computing, International Journal of
Computer Trends and Technology (IJCTT) 14 (2014)
46-50. doi:10.14445/22312803/1JCTT-V14P112.
L. Ardito, G. Procaccianti, M. Torchiano, A. Vetro,
Understanding green software development: A con-
ceptual framework, IT Professional 17 (2015) 44-50.
doi:10.1109/MITP.2015. 16.

S. Podder, A. Burden, S. Kumar Singh, R. Maruca, How
green is your software?, 2020. URL: https://hbr.org/
2020/09/how-green-is-your-software.

L. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan,
C. Sadowski, L. Pollock, J. Clause, An empirical study
of practitioners’ perspectives on green software en-
gineering, in: Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, As-
sociation for Computing Machinery, New York, NY,
USA, 2016, p. 237-248. URL: https://doi.org/10.1145/
2884781.2884810. doi:10.1145/2884781.2884810.
N. Gholipour, E. Arianyan, R. Buyya, Recent Advances
in Energy Efficient Resource Management Techniques
in Cloud Computing Environments, Springer, 2021,
p- 29.

B. S, Predicate path expressions, in: Proceedings of
the UGC Sponsored National Conference on Advanced
Networking and Applications, Advanced Networking
and Applications (IJANA), 2015, pp. 107-112. URL:
https://www.ijana.in/Special%20Issue/file24.pdf.
A.Kaur, D. Gupta, D. Verma, Making cloud computing
more efficient, International Journal of Advanced Re-
search in Computer Science and Software Engineering
4 (2014).

J. Shamir, Energy efficient computing exploiting the
properties of light, in: J. Ojeda-Castaneda, M. J. Yzuel,
R. B. Johnson (Eds.), Tribute to H. John Caulfield,
volume 8833, International Society for Optics and
Photonics, SPIE, 2013. URL: https://doi.org/10.1117/
12.2024487. doi:10.1117/12.2024487.

G. Konduri, J. Goodman, A. Chandrakasan, Energy
efficient software through dynamic voltage scheduling,
in: 1999 IEEE International Symposium on Circuits
and Systems (ISCAS), volume 1, 1999, pp. 358-361
vol.1. d0i:10.1109/ISCAS.1999.777877.

(21]

[25]

(30]

(31]

H. Castro, G. Sotelo, C. O. Diaz, P. Bouvry, Green
flexible opportunistic computing with virtualization,
in: 2011 IEEE 11th International Conference on Com-
puter and Information Technology, 2011, pp. 629-634.
doi:10.1109/CIT.2011.105.

T. V. Kumar, P. Kiruthiga, Green computing -
an eco friendly approach for energy efficiency
and minimizing e-waste 3 (2014) 356-359. URL:
https://www.academia.edu/6943675/Green_
Computing_An_Eco_friendly_Approach_for_
Energy_Efficiency_and_Minimizing_E_Waste.

L. Goldberg, The advent of "green" computer design,
Computer 31 (1998) 16-19. doi:10.1109/2.708445.
D. Cavdar, F. Alagoz, A survey of research on green-
ing data centers, in: 2012 IEEE Global Communica-
tions Conference (GLOBECOM), 2012, pp. 3237-3242.
doi:10.1109/GLOCOM. 2012.6503613.

J. Torres, D. Carrera, K. Hogan, R. Gavalda, V. Beltran,
N. Poggi, Reducing wasted resources to help achieve
green data centers, 2008 IEEE International Sympo-
sium on Parallel and Distributed Processing (2008).
URL: https://ieeexplore.ieee.org/abstract/document/
4536219. doi:10.1109/ipdps.2008.4536219.

F. Cesarini, S. Thompson, Erlang programming,
O’Reilly, 2009. URL: http://shop.oreilly.com/product/
9780596518189.do.

F. Cesarini, S.]J. Thompson, Erlang Programming,
O’Reilly Media, Inc., United States of America, 2009.
J. Armstrong, Programming Erlang: Software for a
Concurrent World, The Pragmatic Bookshelf, United
States of America, 1993.

J. Armstrong, The development of erlang, in: Pro-
ceedings of the Second ACM SIGPLAN International
Conference on Functional Programming, ICFP 97, As-
sociation for Computing Machinery, New York, NY,
USA, 1997, p. 196-203. URL: https://doi.org/10.1145/
258948.258967. doi:10.1145/258948.258967.

J. Armstrong, A history of erlang, in: Proceed-
ings of the Third ACM SIGPLAN Conference on His-
tory of Programming Languages, HOPL III, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2007, p. 6-1-6-26. URL: https://doi.org/10.1145/
1238844.1238850. doi:10.1145/1238844.1238850.
J. Armstrong, S. Virding, Erlang - an experimental
telephony programming language, in: International
Symposium on Switching, volume 3, 1990, pp. 43-48.
doi:10.1109/18S.1990.765711.

V. M. Weaver, Reading en-
ergy measurements from Linux,
http://web.eece.maine.edu/~vweaver/projects/rapl/,
2015.

tools/power/rapl — firefox source docs documenta-
tion, 2023. URL: https://firefox-source-docs.mozilla.
org/performance/tools_power_raplhtml#windows.
Hubblo, Windows driver to get RAPL met-
rics, 2023. URL: https://github.com/hubblo-org/
windows-rapl-driver.

Rapl - powerapi, 2023. URL: https://powerapi.org/
reference/formulas/rapl/.

I. Bozd, D. Horpacsi, Z. Horvath, R. Kitlei, J. Koszegi,
T. M., M. Téth, Refactorerl - source code analysis
and refactoring in erlang, in: Proceedings of the 12th
Symposium on Programming Languages and Software
Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, 2011,
pp. 138-148.

RAPL

https://doi.org/10.1145/3331542.3342570
http://dx.doi.org/10.1145/3331542.3342570
https://hubblo-org.github.io/scaphandre-documentation/index.html
https://hubblo-org.github.io/scaphandre-documentation/index.html
https://hubblo-org.github.io/scaphandre-documentation/index.html
https://github.com/joegharbi/greenErl/blob/main/papers/YoussefGharbi_IKYCUE_THESIS.pdf
https://github.com/joegharbi/greenErl/blob/main/papers/YoussefGharbi_IKYCUE_THESIS.pdf
https://www.researchgate.net/publication/270570843_Green_Computing
https://www.researchgate.net/publication/270570843_Green_Computing
https://www.researchgate.net/publication/270570843_Green_Computing
http://dx.doi.org/10.14445/22312803/IJCTT-V14P112
http://dx.doi.org/10.1109/MITP.2015.16
https://hbr.org/2020/09/how-green-is-your-software
https://hbr.org/2020/09/how-green-is-your-software
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
http://dx.doi.org/10.1145/2884781.2884810
https://www.ijana.in/Special%20Issue/file24.pdf
https://doi.org/10.1117/12.2024487
https://doi.org/10.1117/12.2024487
http://dx.doi.org/10.1117/12.2024487
http://dx.doi.org/10.1109/ISCAS.1999.777877
http://dx.doi.org/10.1109/CIT.2011.105
https://www.academia.edu/6943675/Green_Computing_An_Eco_friendly_Approach_for_Energy_Efficiency_and_Minimizing_E_Waste
https://www.academia.edu/6943675/Green_Computing_An_Eco_friendly_Approach_for_Energy_Efficiency_and_Minimizing_E_Waste
https://www.academia.edu/6943675/Green_Computing_An_Eco_friendly_Approach_for_Energy_Efficiency_and_Minimizing_E_Waste
http://dx.doi.org/10.1109/2.708445
http://dx.doi.org/10.1109/GLOCOM.2012.6503613
https://ieeexplore.ieee.org/abstract/document/4536219
https://ieeexplore.ieee.org/abstract/document/4536219
http://dx.doi.org/10.1109/ipdps.2008.4536219
http://shop.oreilly.com/product/9780596518189.do
http://shop.oreilly.com/product/9780596518189.do
https://doi.org/10.1145/258948.258967
https://doi.org/10.1145/258948.258967
http://dx.doi.org/10.1145/258948.258967
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1109/ISS.1990.765711
https://firefox-source-docs.mozilla.org/performance/tools_power_rapl.html#windows
https://firefox-source-docs.mozilla.org/performance/tools_power_rapl.html#windows
https://github.com/hubblo-org/windows-rapl-driver
https://github.com/hubblo-org/windows-rapl-driver
https://powerapi.org/reference/formulas/rapl/
https://powerapi.org/reference/formulas/rapl/

(42]

(44]

(49]

(51]

scaphandre - rust, 2023. URL: https://docs.rs/
scaphandre/latest/scaphandre/.

Hubblo, Scaphandre: Energy consumption metrol-
ogy agent, 2023. URL: https://github.com/hubblo-org/
scaphandre.

Hubblo, Compilation for windows, 2023. URL: https:
//hubblo-org.github.io/scaphandre-documentation/
tutorials/compilation-windows.html.

WMI command-line (WMIC) utility - Win32 apps,
2023. URL: https://learn.microsoft.com/en-us/
windows/win32/wmisdk/wmic.

Hubblo, JSON exporter for Scaphandre,
2023. URL: https://hubblo-org.github.io/
scaphandre-documentation/references/
exporter-json.html.

V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma,
Energy-aware task and interrupt management in linux,
in: Proceedings of the Linux Symposium, volume 2,
2008. URL: http://www.cs.columbia.edu/~nahum/
w6998/papers/ols-2008-srinivasan-energy.pdf.

S. Najmuddin, Z. Atal, R. A. Ziar, Compar-
ative analysis of power consumption of the
linux and its distribution operating systems vs
windows and mac operating systems., Kardan
journal of engineering and technology (2021). URL:
https://kardan.edu.af/data/public/files/KJET-%203.
1-2021-06%20Linux%20Kernel19012022120259.pdf.
doi:10.31841/KJET.2021.21.

H. T. Al-Rayes, Studying main differences between
linux & windows operating systems, IJECS: Interna-
tional Journal of Electrical and Computer Sciences 12
(2012) 25-31.

B. Prieto, J. J. Escobar, J. C. Gomez-Lopez, A. F. Diaz,
T. Lampert, Energy efficiency of personal computers:
A comparative analysis, Sustainability 14 (2022) 12829.
URL: https://www.mdpi.com/2071-1050/14/19/12829.
doi:10.3390/su141912829.

Top500, 2013. URL: https://www.top500.0rg/.

S. Najmuddin, Z. Atal, R. A. Ziar, Comparative
analysis of power consumption of the linux and
its distribution operating systems vs windows...,
2021. URL: https://www.researchgate.net/publication/
361225454_Comparative_Analysis_of Power_
Consumption_of the Linux_and_its_Distribution_
Operating_Systems_vs_Windows_and_Mac_
Operating_Systems.

R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P.
Fernandes, J. Saraiva, Energy efficiency across pro-
gramming languages: how do energy, time, and mem-
ory relate?, Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language En-
gineering - SLE 2017 (2017). doi:10.1145/3136014.
3136031.

L. Koedijk, A. Oprescu, Finding significant differences
in the energy consumption when comparing program-
ming languages and programs, in: 2022 International
Conference on ICT for Sustainability (ICT4S), 2022, pp.
1-12. doi:10.1109/1ICT4S55073.2022.00012.

L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor,
G. Melfe, J. P. Fernandes, On haskell and energy
efficiency, Journal of Systems and Software 149
(2019) 554-580. URL: https://www.sciencedirect.com/
science/article/pii/S0164121218302747. doi:https://
doi.org/10.1016/j.jss.2018.12.014.

L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor,

[52]

G. Melfe, J. P. Fernandes, Haskell in green land: An-
alyzing the energy behavior of a purely functional
language, in: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, 2016, pp. 517-528. doi:10.1109/
SANER. 2016. 85.

K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, Z. Ou,
Rapl in action: Experiences in using rapl for power
measurements, ACM Trans. Model. Perform. Eval.
Comput. Syst. 3 (2018). doi:10.1145/3177754.

https://docs.rs/scaphandre/latest/scaphandre/
https://docs.rs/scaphandre/latest/scaphandre/
https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://hubblo-org.github.io/scaphandre-documentation/tutorials/compilation-windows.html
https://hubblo-org.github.io/scaphandre-documentation/tutorials/compilation-windows.html
https://hubblo-org.github.io/scaphandre-documentation/tutorials/compilation-windows.html
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://hubblo-org.github.io/scaphandre-documentation/references/exporter-json.html
https://hubblo-org.github.io/scaphandre-documentation/references/exporter-json.html
https://hubblo-org.github.io/scaphandre-documentation/references/exporter-json.html
http://www.cs.columbia.edu/~nahum/w6998/papers/ols-2008-srinivasan-energy.pdf
http://www.cs.columbia.edu/~nahum/w6998/papers/ols-2008-srinivasan-energy.pdf
https://kardan.edu.af/data/public/files/KJET-%203.1-2021-06%20Linux%20Kernel19012022120259.pdf
https://kardan.edu.af/data/public/files/KJET-%203.1-2021-06%20Linux%20Kernel19012022120259.pdf
http://dx.doi.org/10.31841/KJET.2021.21
https://www.mdpi.com/2071-1050/14/19/12829
http://dx.doi.org/10.3390/su141912829
https://www.top500.org/
https://www.researchgate.net/publication/361225454_Comparative_Analysis_of_Power_Consumption_of_the_Linux_and_its_Distribution_Operating_Systems_vs_Windows_and_Mac_Operating_Systems
https://www.researchgate.net/publication/361225454_Comparative_Analysis_of_Power_Consumption_of_the_Linux_and_its_Distribution_Operating_Systems_vs_Windows_and_Mac_Operating_Systems
https://www.researchgate.net/publication/361225454_Comparative_Analysis_of_Power_Consumption_of_the_Linux_and_its_Distribution_Operating_Systems_vs_Windows_and_Mac_Operating_Systems
https://www.researchgate.net/publication/361225454_Comparative_Analysis_of_Power_Consumption_of_the_Linux_and_its_Distribution_Operating_Systems_vs_Windows_and_Mac_Operating_Systems
https://www.researchgate.net/publication/361225454_Comparative_Analysis_of_Power_Consumption_of_the_Linux_and_its_Distribution_Operating_Systems_vs_Windows_and_Mac_Operating_Systems
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1109/ICT4S55073.2022.00012
https://www.sciencedirect.com/science/article/pii/S0164121218302747
https://www.sciencedirect.com/science/article/pii/S0164121218302747
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.12.014
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.12.014
http://dx.doi.org/10.1109/SANER.2016.85
http://dx.doi.org/10.1109/SANER.2016.85
http://dx.doi.org/10.1145/3177754

	1 Introduction
	2 Background
	2.1 Green computing
	2.2 Erlang
	2.3 RAPL
	2.4 GreenErl framework for Linux
	2.5 Selecting the right environment for Windows

	3 The Scaphandre based energy usage measuring tool-chain for Windows
	4 Analysing energy consumption
	4.1 The measuring environment
	4.2 Types of measurements
	4.3 Comparing energy consumption

	5 Related work
	6 Conclusion

