
On the Impact of PowerCap in Haskell, Java, and Python

Luís Maia1,2,†, Marta Sá1,†, Inês Ferreira1,†, Simão Cunha1,†, Luís Silva1,†, Paulo Azevedo1,2,† and
João Saraiva1,2,†

1Department of Informatics,
University of Minho,
Portugal
2HasLab/INESC TEC

Abstract
Historically, programming language performance focused on fast execution times. With the advent of cloud and edge computing, and the
significant energy consumption of large data centers, energy efficiency has become a critical concern both for computer manufacturers
and software developers. Despite the considerable efforts of the green software community in developing techniques and tools for
analysing and optimising software energy consumption, there has been limited research on how imposing hardware-level energy
constraints affects software energy efficiency. Moreover, prior research has demonstrated that the choice of programming language can
significantly impact a program’s energy efficiency.
This paper investigates the impact of CPU power capping on the energy consumption and execution time of programs written in
Haskell, Java, and Python. Our preliminary results analysing well-established benchmarks indicate that while power capping does
reduce energy consumption across all benchmarks, it also substantially increases execution time. These findings highlight the trade-offs
between energy efficiency and runtime performance, offering insights for optimising software under energy constraints.

Keywords
Energy Efficiency, Programming Languages, Benchmark, PowerCap

1. Introduction
Programming languages provide powerful mechanisms to
improve the productivity of their programmers. Modern lan-
guages rely on powerful module and type systems, reusable
libraries, IDE, testing frameworks, etc. Such mechanisms
are built on top of advanced abstraction, thus relying on the
language compiler to produce efficient code.

In the last century, good performance in programming
languages was synonymous of fast code, that is to say, fast
execution time. In this century, this reality has changed be-
cause the cost to run software became higher than the cost
to build that same software [1]. In our age of cloud/edge
computing and large data centers the energy consumption
of software is a key concern for big tech and computer man-
ufacturer companies, programming language designers, and
programmers. Software systems are implemented using pro-
gramming languages. As shown in [2], the energy efficiency
of program can be drastically influenced by programming
language used to develop it.

Although the green software community has done a con-
siderable work on developing techniques and tools to anal-
yse and optimise the energy consumption of software sys-
tems. Such techniques already provide knowledge on the
energy efficiency of data structures [3, 4] and android lan-
guage [5], the energy impact of different programming
practices both in mobile [6, 7, 8] and desktop applica-
tions [9, 10], the energy efficiency of applications within
the same scope [11, 12], or even on how to predict energy
consumption in several software systems [13, 14], among
several other works.

There is also recent work on analysing the energy effi-
ciency of programming languages [15, 2, 16], where 28 of the

RAW’24: 3RD WORKSHOP ON RESOURCE AWARENESS OF SYSTEMS
AND SOCIETY, July 02–05, 2024, Maribor, SI
†

These authors contributed equally.
$ pg47422@alunos.uminho.pt (L. Maia); pg54084@alunos.uminho.pt
(M. Sá); pg53879@alunos.uminho.pt (I. Ferreira);
simaopscunha@outlook.pt (S. Cunha); luis.m.peixoto@gmail.com
(L. Silva); pja@uminho.pt (P. Azevedo); saraiva@uminho.pt (J. Saraiva)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

most known and used programming languages are ranked
according their energy performance. This ranking shows
very interesting results, namely that slower/faster software
languages consume less/more energy. The energy efficiency
ranking, however, was produced assuming no limit on the
energy usage by the operating system nor the hardware
that executed the programs written in the 28 languages.
However, we know that by limiting energy consumption of
hardware we can reduce energy consumption. For example,
a driver when operating a car (the hardware) can reduce
its fuel consumption by defining a limit on the engine Rev-
olutions Per Minute (RPM). Thus, an interesting question
that immediately arises is whether we can reduce the en-
ergy consumption of a program by just defining a limit on
the energy used by the CPU. Energy consumption does not
depend only on execution time, as shown in the equation
𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑇𝑖𝑚𝑒 × 𝑃𝑜𝑤𝑒𝑟 . In fact, this equation shows that
we can reduce energy of program by reducing its execution
time and/or the power it uses.

In this paper we analyse the impact of limiting the power
of the CPU when executing programs in three different pro-
gramming languages, namely, Haskell, Java and Python.1

For each language we considered well established bench-
mark frameworks, namely NoFib for Haskell [17], DaCapo
for Java [18] and pyPerformance for Python. We executed
each benchmark in two situations: with and without a limit
on energy consumption. In both cases we monitored and
analysed the performance of each benchmark considering
energy consumption and execution time. Our very first
results show that by defining a power cap we do reduce
energy consumption in all benchmarks. On the contrary,
the execution time of the three benchmarks increases sig-
nificantly.

This paper is organised as follows: Section 2 presents
the methodology we follow to conduct our study. It briefly
presents the benchmarks, the use of the Intel’s RAPL and
RAPLCap energy framework, the calibration of the power-
cap and how we executed and measured the benchmarks.
1We considered these three languages because this research originated
from an exercise proposed in a MSc course on green software where
those languages are studied.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pg47422@alunos.uminho.pt
mailto:pg54084@alunos.uminho.pt
mailto:pg53879@alunos.uminho.pt
mailto:simaopscunha@outlook.pt
mailto:luis.m.peixoto@gmail.com
mailto:pja@uminho.pt
mailto:saraiva@uminho.pt
https://creativecommons.org/licenses/by/4.0

In Section 3 we present and discuss the results of the three
benchmarks. In Section 4 we present our conclusions.

2. Methodology

2.1. Benchmarks
In order to analyse the impact of limiting the energy con-
sumption while executing Haskell, Java and Python pro-
grams, we consider well-established and widely used bench-
mark frameworks developed for those three programming
languages. The benchmarks and the compilers/interpreters
used in our study are:

• Haskell language (compiler ghc 9.4.8): The nofib
Benchmark Suite of Haskell Programs [17].2

• Java language (compiler: Java Openjdk 11.0.22): The
DaCapo Benchmark suite [18], version 23.11-chopin.3

• Python language (interpreter: python 3.12.0): The
Python Performance Benchmark Suite, version 1.11.0.4

2.2. Energy Measurements and Cap via
RAPL

For measuring the energy consumption, we used Intel’s
Running Average Power Limit (RAPL) tool [19], which is
capable of providing accurate energy estimates at a very
fine-grained level, as it has already been proven [20]. RAPL
has been used in many studies on green software and was
the energy measurement framework used in defining the
ranking of programming languages [2, 16]. Moreover, the
ranking of languages provides programs/scripts built on top
of RAPL that makes very easy to execute and monitor the
energy consumption of a (executable) program.

In our study we will reuse this (C-based) infrastructure
to execute and monitor the benchmarks and their programs
written in three languages.

Finally, RAPL also support a key ingredient for our study:
the possibility of defining a power limit on the CPU while
executing a program [21]. In fact, RAPLCap5 provides a C
interface for managing Intel RAPL power caps. Thus, we
have extended the ranking energy monitoring infrastructure
to allow the execution of a program under a given power
cap.

2.3. RAPL’s PowerCap calibration
The RAPL and RAPLCap can be configured with different
values to limit the PowerCap of a specific CPU. Thus, when
executing a program it is possible to define the (maximum)
power used by the (intel) CPU. Different values for Power-
Cap can be used. Moreover, different intel CPUs may have
the lowest energy consumption by using different Power-
Cap values. In order to know the value of the PowerCap
that produces the lowest energy consumption in a specific
CPU, we need to compute it. Thus, we consider a calibration
phase where we execute with different RAPLcap values a
computation intensive program and we compute the value
that produce the most energy efficient execution [22, 23].

Thus, we consider the following implementation of the
Fibonacci number in the C language:
2https://gitlab.haskell.org/ghc/nofib. Version available on January,2024.
3https://www.dacapobench.org/
4https://github.com/python/pyperformance
5https://github.com/powercap/raplcap

Figure 1: Power Cap Impact on Fibonacci’s Energy Consumption.

long f i b (in t n)
{ i f (n <= 0) return 0 ;

e l se i f (n ==1) return 1 ;
e l se return f i b (n−1) + f i b (n−2) ;

}

In order to have significant energy and runtime measure-
ments we execute this function to compute Fibonacci of 50.
Furthermore, we executed (ten times) this function using
specific power cap values.

The processor i7-7700hq has a TDP of 45Watts. With this
in mind, there was a first set of power cap variables that
went from -1 to 45 with a spacing of 5 between each value.
The substantially better results were when power cap took
a value between 5 and 20. To further analyse these results,
a second attempt of trying to find the best power cap value
was made, this time with values -1, 20 and all withing 5 and
15, where -1, which is when there is no power cap, and 20
served to compare results with the remaining power caps.
In order to to make the results more robust, each iteration
of a power cap was ran ten times, and were then averaged.

In figure 1 we confirm that the power cap that yields the
best results for our purpose is power cap 12, as it proved to
be the lowest energy consuming. From this moment, the
only two power cap values that will in the following steps
are -1 (No power cap) and 12 (with power cap).

2.4. Program Execution
As we mention before, we will use the ranking of program-
ming languages infrastructure to execute an monitor the
energy consumption of the three benchmarks. Such infras-
tructure has a key feature: there is no need to add intrusive
code, for example calls to RAPL API, to the programs we
would like to monitor energy consumption. This infrastruc-
ture includes a C program, named energy, that uses system
calls to execute the unchanged programs while measuring
the energy and time consumption via call to RAPL (and
the time library). The overhead caused by the usage of a
system call is insignificant as shown in [2, 24, 25].

Thus, to analyse the energy consumption of the bench-
marks, we just use the benchmarks original makefiles to
call the language compilers/interpreters with the defined
optimisation’s flags. Then, we use the energy C program to
execute each of the executable program of each benchmark.
This program is called from the command line as follows:

sudo $ { custom_path } / RAPL / energy " . /
benchmark_execu tab l e " $ (
benchmark_language) $ (benchmark) $
(NTIMES) $ (PowerCap) $

https://gitlab.haskell.org/ghc/nofib
https://www.dacapobench.org/
https://github.com/python/pyperformance
https://github.com/powercap/raplcap

Its first argument is the executable program (of each
benchmark) to be executed and monitored. The follow-
ing two arguments are for naming purposes in the (csv)
results output. Next argument is the number of runs for
each program. The final argument is the value of the power
cap (-1 or 12, as mentioned before).

In our study each benchmark’s program was executed
with and without power cap. Each program was executed
a total of 10 times to grant a good starting set of results.
Moreover, between each iteration, a cool down to the afore-
mentioned mean CPU temperature is taken place to make
sure each benchmark execution starts at the same CPU tem-
perature. In the ranking of programming [2] it was used a 1
second sleep between executions. That may not be enough
for the CPU to be at the same temperature at each execu-
tion [26].

In order to make sure every iteration of each benchmark
starts on equal grounds, the mean temperature of the CPU is
taken, and after every run of a benchmark a cooling process
is executed until the temperature of the CPU cools down
to the point of the mean temperature. Once the CPU is
back to the mean temperature, it is able to execute another
benchmark. As a consequence, each execution of a program
starts with the CPU at the same temperature.

To obtain the mean temperature of the CPU, the library
lm-sensors6 was used in the energy C program.

3. Results
All studies were conducted on a desktop with the follow-
ing specifications: Linux Ubuntu 2.04.4 LTS operating sys-
tem, kernel version 4.8.0-22-generic, with 32GB of RAM, a
Haswell Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz.

3.1. Treatment of the datasets
The RAPL framework is supported by all recent intel CPU
architectures. However, not all intel architectures support
the four energy estimations provided by RAPL [19], namely
Core, DRAM, GPU and Package. In the intel architecture
we conducted our studies, only the Core and Package es-
timations were available. Because the package estimation
includes the consumption of the Core, GPU and other elec-
tronic devices on the chip, we will use this measurement as
a reliable indication of the energy consumption of the CPU.

The energy monitoring C program developed for the en-
ergy ranking of languages and that we are reusing in our
study, however, produces three more measurements: exe-
cution time, memory consumption and temperature. Time
and (peak) memory consumption are provided by the linux
operating system. The temperature measurement, provided
by the lm-sensors C library, gives the value of the
temperature of the CPU after the program execution. Thus
it provides an indication of the energy dissipated as heat
by the CPU. Thus, every single execution of a benchmark
program produces five measurements: core, package, time,
memory and temperature.

In our study we execute each benchmark program 10
times. In fact, we run each program 20 times: 10 times with
power cap and 10 times without power cap. We also used
box plots to analyse outliers. These box plots showed that
the Java and Haskell benchmarks do not have outliers and

6https://github.com/lm-sensors/lm-sensors

although Python benchmarks have outliers they are not
relevant in terms of number or value.

3.2. Haskell nofib Benchmark
To evaluate the impact of power cap on the variables Package
and Time we started by creating two datasets: one with all
the measurements of Haskell benchmarks without power
cap and another with all the measurements of the Haskell
benchmarks with a power cap of 12. Figure 2 presents the
energy and runtime measurements for each program of the
nofib benchmark.7 Thus, for each program we associate two
bars: energy (in joules) on the left and runtime (in seconds)
on the right. Moreover, each bar uses two colours to indicate
the use or not of power cap.

As we can observe in figure 2, all Haskell programs con-
sume less energy when executed with power cap (dark blue
bar) when compared to the same program executed without
a power cap. We can also see that power cap has a consider-
able impact on execution time: all programs increase their
execution time when using power cap (green bar).

Figure 3 shows in more detail the energy reduction ob-
tained by each benchmark program with power cap.

Figure 3: Reduction in energy consumption (package) with
the use of power cap for Haskell benchmarks.

The green, red and dark red lines indicate the average,
maximal and minimal energy gains. The precise values are:

• Average gain: 20.0%
• Maximal gain: 25.4%
• Minimal gain: 15.4%

The reduction on energy consumption comes at a price:
the increase in execution time. Indeed, figure 4 shows neg-
ative results for execution time, only. Thus, meaning that
every benchmark had a worse execution time with a power
cap.

Figure 4: Increase in time with the use of power cap for
Haskell benchmarks.

The average, maximal an minimal increase in execution
time are the following:
7Due to scale issues which will make it difficult to see the results in
figure 2, we omit here the hartel program. That program, however, is
included in the figure 17 available in appendix.

https://github.com/lm-sensors/lm-sensors

Figure 2: Energy consumption (left bar/legend) and execution time (right bar/legend) for each nofib benchmark program
executed with and without power cap.

• Average loss: 53.7%
• Maximal loss: 60.3%
• Minimal loss: 38.0%

Besides analysing the impact of the power cap in execu-
tion time and energy consumption and the gain in this two
aspects, we decided that it would be interesting to analyse
how the values of one column influence the values of other
columns. To do so we used a correlation matrix. A correla-
tion matrix is a statistical tool that shows how strong and
in what direction two or more variables are related. The
correlation coefficient ranges from -1 to +1, where -1 means
a perfect negative correlation, +1 means a perfect positive
correlation, and 0 means there is no correlation between
the variables.

Figure 5: Correlation matrix for Haskell

By analysing the correlation matrix presented in figure 5,
we can conclude that the two columns that present higher

positive correlation are Core and Package followed by Time
and Package and Time and Core. This means that if the
values of a column presented in the pair increase, the values
on the other column of the pair increase too. Is also relevant
to mention that the columns Temperature and PowerLimit
are negatively correlated which, in this case, means that
if the values of a column present in the pair increase the
values on the other column of the pair decrease.

Another aspect that we considered interesting to explore
was how the power cap affects the relation between execu-
tion time and energy consumption. To do so we used the
scatter plot presented in figure 6:

Figure 6: Correlation between Package and Time with and
without power cap.

In figure 6 we observe that we have less energy consump-
tion per time unit when using the power cap. Besides, we
can once again confirm that the energy consumption and
the execution time are positively correlated.

3.3. Java DaCapo Benchmark
The DaCapo benchmark, in its version 23.11-chopin, consists
of 20 real-world, open-source client-side Java benchmarks.

Figure 7: Energy consumption (left bar/legend) and execution time (right bar/legend) for each DaCapo benchmark program
executed with and without power cap.

We executed each of this benchmarks with and without
power cap. Figure 7 shows the energy and runtime of each
DaCapo program. As we did for nofib, for each DaCapo
program we associate two bars: energy (in joules) on the
left and runtime (in seconds) on the right. Moreover, each
bar uses two colours to indicate the use or not of power cap.

Figure 8 clearly shows that the use of power cap does
decreases energy consumption, on average a 23.4% while
increasing runtime, on average 101.1%, as shown in figure 9.
This is the case for each of the 20 DaCapo programs, very
much like in the nofib benchmark.

To have a better understanding on the impact that power
cap has on energy consumption, we calculated the gain in
percentage for each benchmark. The results are presented
in figure 8.

Figure 8: Reduction in energy consumption (package) with
the use of power cap for Java benchmarks.

where the average, maximal and minimal values of energy
consumption reduction are:

• Average gain: 23.4%
• Maximal gain: 37.0%
• Minimal gain: 11.9%

The execution time of DaCapo benchmarks increases
when using a power cap, as detailed in figure 9.

Figure 9: Increase in Time with the use of power cap for
Java benchmarks.

In average the runtime in DaCapo increases 100%.

• Average loss: 101.1%
• Maximal loss: 186.4%
• Minimal loss: 14.6%

In order to analyse the correlation between our five mea-
surements, we use the correlation matrix presented in fig-
ure 10.

Figure 10: Correlation matrix for Java benchmarks.

By looking at figure 10 we can conclude that Package and
Core are the most positively correlated columns followed
by Time and Package. Moreover, the attributes Temperature
and PowerLimit are the most negatively correlated features.

Lastly we analyse the relation between Package and Time
with and without power cap using a scatter plot and the
results are displayed in figure 11,

Figure 11: Correlation between Package and Time with and
without power cap for Java DaCapo benchmarks.

By taking a look at figure 11 we can conclude that there
is less energy consumption per time unit with the use of
power cap. Moreover, with the use of power cap the columns
present a stronger correlation.

3.4. Python pyPerformance Benchmark
The pyPerformance benchmark consists of 75 programs,
which we executed with and without power cap by our
energy framework. Of these 75 programs, only 57 were
used due to some benchmarks requiring a python version
above the executed one. This was the case when running
python 3.8 on benchmarks that required python 3.10 or
above. To be able to compare each compiler with each other,
these benchmarks results in other version were discarded.
Figure 12 shows the energy consumption and runtime for
each python program.

As we can see in figure 12 with the use of power cap there
is a decrease in the energy consumption of all programs.
This is shown in more detailed in figure 13.

Figure 13: Reduction in energy consumption (package) with
the use of power cap for Python benchmarks.

In fact, in average the use of power cap reduces energy
consumption in 35%!

• Average gain: 35.3%
• Maximal gain: 60.4%
• Minimal gain: 17.9%

In terms of runtime, however, the results are different.
The red colour shown in several programs of figure 12 do
indicate that some python programs execute faster when a
power cap is defined!

Figure 14: Increase in Time with the use of power cap
Python benchmarks.

• Average loss: 21.5%
• Maximal gain: 22.6%
• Maximal loss: 54.8%

Once we studied the impact of power cap on energy con-
sumption and execution time, we opt to analyse the relations
between different columns values. And we did so using a
correlation matrix presented in figure 15

Figure 15: Correlation matrix for Python benchmarks ver-
sion 3.12.

By analysing the correlation matrix presented above we
can conclude that the two columns that present higher posi-
tive correlation are Core and Package followed by Time and
Package and Time and Core. Is also relevant to mention that
the columns Temperature and PowerLimit are negatively re-
lated once this relation in the correlation matrix presents
such a small number.

Lastly we analysed the relation between energy consump-
tion and execution time, and the results are presented in
figure 16

Figure 16: Correlation between Package and Time with and
without power cap for Python benchmarks ver-
sion 3.12.

Figure 12: Energy consumption (left bar/legend) and execution time (right bar/legend) for each pyPerformance program
executed with and without power cap.

Gain And Loss Haskell Java Python

average energy gain 20.0% 23.4 % 35.3%
maximal energy gain 25.4% 37.0 % 60.4%
minimal energy gain 15.4% 11.9 % 17.9%
average runtime loss 53.7% 101.1% 21.5%
maximal runtime loss 60.3% 186.4% 54.8%
minimal runtime loss 38.0% 14.6 % -
maximal runtime gain - - 22.6%
no. programs that
increased energy

0 0 0

no. programs that
decreased runtime

0 0 22

Table 1
Overall Results

After analysing figure 16 we can conclude that we have
less energy consumption per time unit when using the
power cap. Besides that, once again we can confirm that
energy consumption and execution time are positively cor-
related.

3.5. Discussion
When comparing the correlation between Package and Time
in Java and Haskell benchmarks, considering both correla-
tion matrices, one can conclude that correlation is stronger
in the Haskell benchmarks.

From table 1 we can observe that in terms of energy
consumption, regardless the implementation language, ev-
ery program improved their energy consumption. In fact,
Python demonstrates the highest average energy gain
(35.3%), followed by Java (23.4%) and Haskell (20.0%). Python
also demonstrates a higher maximum energy gain (60.4%),
followed by Java (37.0%) and Haskell (25.4%). In terms of

minimal energy gain, Python has the highest (17.9%) com-
pared to Haskell (15.4%) and Java (11.9%).

The impact on the runtime, Java shows a significant av-
erage runtime loss (101.1%), indicating that the programs
are running much slower, on average, when comparing to
Haskell (53.7%) and Python (21.5%). In fact, the maximum
runtime loss is higher in Java (186.4%), followed by Haskell
(60.3%) and Python (54.8%). In terms of minimal runtime loss,
Haskell has the highest (38.0%) compared to Java (14.6%)
and Python, which had a gain of 22.6%.

In contrast to the majority of the benchmarks, when a
power cap is set, certain python benchmarks’ runtime de-
creased, along with their energy consumption. The most
notorious are bm_concurrent_imap, a concurrent model com-
munication benchmark, which uses the Pool that handles
CPU bound job and ThreadPool that handles IO bound jobs,
from the multiprocessing.pool library. Also,bm_logging is
a simple message logging benchmark, that utilises the in-
memory text stream function StringIO from the io library.
As a final example, we have bm_gc_collect benchmark, a
node connected to another node traversal benchmark that is
ran with n cycles, resembling a linked list collection traver-
sal. The first two mentioned benchmarks handle IO related
jobs. Thus, one could argue that execution of these type
of jobs are more sensible to a power cap when compared
to all the benchmarks. Hence, further testing and analy-
sis is required to fully understand the reason behind these
unexpected results.

In summary, Python shows the most balance performance
with substantial energy gains and the potential for runtime
reductions. However, Java programs tend to have a higher
runtime loss, indicating a trade-off where energy savings
may come at the cost of significantly increasing execution
time. Also, Haskell shows a moderate performance in both
energy gains and runtime losses, making it a middle ground

between Python and Java in this analysis.

4. Conclusions
This paper presented a study on the impact of defining a
power cap in three well-established benchmarks: nofib in
Haskell, DaCapo in Java, and pyPerformance in Python. We
executed all programs in these three benchmarks with and
without defining a power cap.

Our first results show that power cap consistently de-
crease the energy consumption of programs written in all
three languages. In average we obtained energy reductions
of 20% in Haskell, 23% in Java, and 35% in Python. This
energy reduction comes at a price: in all languages the ex-
ecution times increases: 22% in Python, 54% in Haskell,
and 101% in Java! Although Python seems to profit more
from power cap it is worth to notice that Python is known
for having poor runtime and energy consumption perfor-
mances [2], and the speedup/greenup that achieves with
power cap does not directly translate to speed/greenness.

Acknowledgements
This work is partially supported by CERCIRAS - Connecting
Education and Research Communities for an Innovative
Resource Aware Society - COST Action CA19135 funded by
COST Association.

References
[1] W. Voegels, Keynote at AWS re:Invent 2023, 2023. URL:

https://youtu.be/UTRBVPvzt9w?t=3718, accessed:
2024-05-19.

[2] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha,
J. P. Fernandes, J. Saraiva, Energy efficiency across
programming languages: how do energy, time, and
memory relate?, in: Proceedings of the 10th ACM
SIGPLAN International Conference on Software Lan-
guage Engineering, SLE 2017, Association for Comput-
ing Machinery, New York, NY, USA, 2017, p. 256–267.
doi:10.1145/3136014.3136031.

[3] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, J. a. P.
Fernandes, The influence of the java collection frame-
work on overall energy consumption, in: Proc. of the
5th Int. Workshop on Green and Sustainable Software,
GREENS ’16, ACM, 2016, pp. 15–21. doi:10.1145/
2896967.2896968.

[4] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams,
A. Hindle, Energy profiles of java collections classes,
in: Proc. of the 38th Int. Conf. on Software Engineering,
ACM, 2016, pp. 225–236.

[5] W. Oliveira, R. Oliveira, F. Castor, A study on the
energy consumption of android app development ap-
proaches, in: Proceedings of the 14th International
Conference on Mining Software Repositories, IEEE
Press, 2017, pp. 42–52.

[6] D. Li, W. G. J. Halfond, An investigation into energy-
saving programming practices for android smartphone
app development, in: Proceedings of the 3rd Interna-
tional Workshop on Green and Sustainable Software
(GREENS), 2014.

[7] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Ki-
amilev, L. Pollock, K. Winbladh, Initial explorations

on design pattern energy usage, in: Green and Sus-
tainable Software (GREENS), 2012 1st Int. Workshop
on, IEEE, 2012, pp. 55–61.

[8] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, D. Poshyvanyk, Mining
energy-greedy api usage patterns in android apps: an
empirical study, in: Proc. of the 11th Working Conf. on
Mining Software Repositories, ACM, 2014, pp. 2–11.

[9] C. Sahin, L. Pollock, J. Clause, How do code refactor-
ings affect energy usage?, in: Proc. of 8th ACM/IEEE
Int. Symposium on Empirical Software Engineering
and Measurement, ACM, 2014, p. 36.

[10] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fer-
nandes, J. Saraiva, Helping programmers improve the
energy efficiency of source code, in: Proceedings of
the 39th International Conference on Software Engi-
neering Companion, ICSE-C ’17, IEEE Press, 2017, p.
238–240. doi:10.1109/ICSE-C.2017.80.

[11] S. A. Chowdhury, A. Hindle, Greenoracle: estimating
software energy consumption with energy measure-
ment corpora, in: Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories,
MSR, 2016, 2016, pp. 49–60.

[12] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, P. Am-
mann, Ecodroid: An approach for energy-based rank-
ing of android apps, in: Proc. of 4th Int. Workshop on
Green and Sustainable Software, GREENS ’15, IEEE
Press, 2015, pp. 8–14.

[13] S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Esti-
mating mobile application energy consumption using
program analysis, in: Proc. of the 2013 Int. Conf. on
Software Engineering, ICSE ’13, IEEE Press, 2013, pp.
92–101.

[14] M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira,
J. Saraiva, Products go green: Worst-case energy con-
sumption in software product lines, in: Proceedings of
the 21st International Systems and Software Product
Line Conference - Volume A, SPLC ’17, Association
for Computing Machinery, New York, NY, USA, 2017,
p. 84–93. doi:10.1145/3106195.3106214.

[15] M. Couto, R. Pereira, F. Ribeiro, R. Rua, J. Saraiva, To-
wards a green ranking for programming languages, in:
Programming Languages: 21st Brazilian Symposium,
SBLP 2017, Fortaleza, Brazil, September, 2017., 2017.

[16] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha,
J. P. Fernandes, J. Saraiva, Ranking programming lan-
guages by energy efficiency, Science of Computer Pro-
gramming 205 (2021). doi:10.1016/j.scico.2021.
102609.

[17] W. Partain, The nofib benchmark suite of haskell pro-
grams, in: J. Launchbury, P. Sansom (Eds.), Functional
Programming, Glasgow 1992, Springer London, Lon-
don, 1993, pp. 195–202.

[18] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, B. Wieder-
mann, The DaCapo benchmarks: Java benchmark-
ing development and analysis, in: OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Lan-
guages, and Applications, ACM Press, New York, NY,
USA, 2006, pp. 169–190. doi:http://doi.acm.org/
10.1145/1167473.1167488.

https://youtu.be/UTRBVPvzt9w?t=3718
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/2896967.2896968
http://dx.doi.org/10.1145/2896967.2896968
http://dx.doi.org/10.1109/ICSE-C.2017.80
http://dx.doi.org/10.1145/3106195.3106214
http://dx.doi.org/10.1016/j.scico.2021.102609
http://dx.doi.org/10.1016/j.scico.2021.102609
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488

[19] M. Dimitrov, C. Strickland, S.-W. Kim, K. Kumar,
K. Doshi, Intel® power governor, https://software.intel.
com/en-us/articles/intel-power-governor, 2015. Ac-
cessed: 2015-10-12.

[20] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, Z. Ou,
Rapl in action: Experiences in using rapl for power
measurements, ACM Trans. Model. Perform. Eval.
Comput. Syst. 3 (2018). doi:10.1145/3177754.

[21] C. Imes, H. Zhang, K. Zhao, H. Hoffmann, CoPPer:
Soft real-time application performance using hard-
ware power capping, in: 2019 IEEE International Con-
ference on Autonomic Computing (ICAC), 2019, pp.
31–41. doi:10.1109/ICAC.2019.00015.

[22] A. Krzywaniak, P. Czarnul, J. Proficz, Extended in-
vestigation of performance-energy trade-offs under
power capping in hpc environments, in: 2019 Interna-
tional Conference on High Performance Computing &
Simulation (HPCS), 2019, pp. 440–447. doi:10.1109/
HPCS48598.2019.9188149.

[23] A. Krzywaniak, P. Czarnul, J. Proficz, Depo: A
dynamic energy-performance optimizer tool for au-
tomatic power capping for energy efficient high-
performance computing, SOFTWARE-PRACTICE &
EXPERIENCE 52 (2022) 2598–2634.

[24] M. Hähnel, B. Döbel, M. Völp, H. Härtig, Measur-
ing energy consumption for short code paths using
RAPL, SIGMETRICS Performance Evaluation Review
40 (2012) 13–17.

[25] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, R. Geyer, An Energy Efficiency Feature
Survey of the Intel Haswell Processor, Proceedings -
2015 IEEE 29th International Parallel and Distributed
Processing Symposium Workshops, IPDPSW 2015
(2015) 896–904. doi:10.1109/IPDPSW.2015.70.

[26] B. Santos, M. H. Kirkeby, J. P. Fernandes, A. Pardo,
Compiling Haskell for energy efficiency: Empirical
analysis of individual transformations, in: Proceed-
ings of the 39th ACM/SIGAPP Symposium on Applied
Computing, ACM, 2024, pp. 1104–1113. doi:10.1145/
3605098.3635915.

Appendice
Figure 17 includes all programs of the nofib benchmark.

https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
http://dx.doi.org/10.1145/3177754
http://dx.doi.org/10.1109/ICAC.2019.00015
http://dx.doi.org/10.1109/HPCS48598.2019.9188149
http://dx.doi.org/10.1109/HPCS48598.2019.9188149
http://dx.doi.org/10.1109/IPDPSW.2015.70
http://dx.doi.org/10.1145/3605098.3635915
http://dx.doi.org/10.1145/3605098.3635915

Figure 17: Relation between Haskell’s benchmarks and the variables Package and Time with and without power cap.

	1 Introduction
	2 Methodology
	2.1 Benchmarks
	2.2 Energy Measurements and Cap via RAPL
	2.3 RAPL's PowerCap calibration
	2.4 Program Execution

	3 Results
	3.1 Treatment of the datasets
	3.2 Haskell nofib Benchmark
	3.3 Java DaCapo Benchmark
	3.4 Python pyPerformance Benchmark
	3.5 Discussion

	4 Conclusions

