
Caching in a Mixed-Criticality 5G Radio Base Station
Emad Jacob Maroun1,*, Luca Pezzarossa1 and Martin Schoeberl1

1Technical University of Denmark, Department of Applied Mathematics and Computer Science

Abstract
Telecommunication is a critical driver of economic and social development. 5G technologies are state-of-the-art in telecommunication,
setting strong and open-ended requirements for implementing systems. Current systems for implementing baseband technologies in
5G depend on hardware separation to ensure high- and low-criticality tasks do not interfere in such a way as to violate guarantees.
To increase performance and lower costs, this paper sets the research direction into future mixed-criticality systems that can handle
both the high- and low-criticality tasks of the baseband unit. We analyze the 5G requirements and the common systems that currently
implement them. We propose using T-CREST as the research platform with a specific architecture targeting mixed-criticality workloads.
We present two cache proposals to reduce the interference of low-criticality tasks on high-criticality tasks but ensure high cache
utilization and efficiency. The first cache proposal uses timeouts to automatically free cache lines reserved for high-criticality tasks.
The second proposal uses contention tracking to limit how much low-criticality tasks may influence high-criticality tasks. Lastly, we
propose a third cache architecture to unify the method and stack caches unique to T-CREST into a single level-2 cache.

Keywords
5g, t-crest, real-time systems, low latency, caches, radio baseband

1. Introduction
Socio-technical evolution is dependent on mobile communi-
cations as a critical driver to allow for economic and social
development [1]. As such, the evolution of communication
technologies is essential in enabling societal development.
5G is state-of-the-art in mobile communication technologies,
promising unprecedented speeds, ultra-low latency, and
massive connectivity capabilities. With its lofty promises,
implementing 5G communication networks is a significant
industrial challenge. Continued investment in 5G technolo-
gies is needed to reach beyond the minimal promises of the
technology. Improvements in technical implementations
will ensure better service characteristics for customers and
users at lower costs.

One critical aspect of telecommunications technology is
the radio base station (RBS), which provides wireless trans-
mission to and from mobile devices. The 5G functionality is
implemented in these RBSs. Continued improvement of the
RBS is critical to staying at the forefront of the industry. As
such, research on how to best implement RBS for optimizing
performance and cost ensures long-term competitiveness
in the industry.

The requirements of 5G introduce a hierarchy of priori-
tized tasks that the RBS has to complete. The RBS, therefore,
becomes a mixed-criticality system [2], where minimum
guarantees are upheld to ensure critical tasks are completed
correctly and in a timely fashion. On the other hand, non-
critical tasks need to be performed as fast as possible; how-
ever, they only need to provide good quality of service (QoS)
on average, so they may be de-prioritized to ensure that crit-
ical tasks meet their deadlines. To ensure non-critical tasks
do not interfere with the critical ones, hardware systems
are divided into several layers with differing responsibili-
ties correlating to the open systems interconnection (OSI)
model [3]. This hardware division makes it easier to con-
trol interference but decreases resource utilization, which

3rd workshop on Resource AWareness of Systems and Society (RAW 2024),
July 2–5, 2024, Maribor, Slovenia
*Corresponding author.
$ ejama@dtu.dk (E. J. Maroun); lpez@dtu.dk (L. Pezzarossa);
masca@dtu.dk (M. Schoeberl)
� 0000-0002-3675-3376 (E. J. Maroun); 0000-0002-0863-2526
(L. Pezzarossa); 0000-0003-2366-382X (M. Schoeberl)

© 2024 Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

hurts performance and price. Therefore, we are interested
in investigating future system designs incorporating mixed-
criticality system research to merge the currently divided
systems into a single platform that can handle the varying
criticality of tasks. While the current heavy use of shared
scratchpads and the phased execution model [4] give high
predictability to systems managing the OSI layer 1, it is
wasteful and difficult to unify with the use of shared caches
in the systems managing the OSI layer 2. Therefore, innova-
tive techniques are needed to facilitate the unification of the
layer 1 and layer 2 systems into a unified hardware system.

This paper addresses the challenge of sharing a level 2 (L2)
cache between different tasks and executing on different
cores while still delivering low-latency execution of critical
tasks. We propose to use the T-CREST platform [5] to ex-
plore different solutions of the challenges around memory
management for mixed-criticality systems by presenting
three distinct caching architectures for future exploration.
All solutions are centered around regulating access to dif-
ferent cache lines for high- and low-criticality jobs. More
specifically, we propose two shared caches that use time-
outs and contention tracking to limit the interference of
low-criticality tasks on high-criticality ones, as well as an
L2 cache that unifies the split caches unique to T-CREST
since they exhibit unique access characteristics that can be
sped up predictably.

The contributions of this paper are: (1) A description of
common 5G RBS technologies and implementations, (2) a
discussion of the challenges future systems face in the pur-
suit of lower cost, higher efficiency, and improved perfor-
mance, and (3) three proposals for caching architectures that
we intend to explore to address the challenges described.

The rest of this paper is structured into four sections. The
following section will provide some background on how
current systems implement 5G and their challenges. Section
3 introduces the T-CREST platform and how it can be used as
a basis for research into a mixed-criticality system. Section
4 discusses the three cache architecture proposals. Section
5 presents related work and Section 6 concludes the paper.

2. 5G Radio Baseband
During the initial phases of the 5G specification, three usage
scenarios were identified as being critical for the future of

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ejama@dtu.dk
mailto:lpez@dtu.dk
mailto:masca@dtu.dk
https://orcid.org/0000-0002-3675-3376
https://orcid.org/0000-0002-0863-2526
https://orcid.org/0000-0003-2366-382X
https://creativecommons.org/licenses/by/4.0/deed.en


Cluster 0
DSP 0

I$ D$
DSP 1

I$ D$

DSP 2
I$ D$

DSP 3
I$ D$

Shared Scratchpad

Cluster 1

Acc 0 Acc 1

Acc 2 Acc 3

Shared Scratchpad

Cluster 2

Acc 4 Acc 5

Acc 6 Acc 7

Shared Scratchpad

Cluster-Shared Scratchpad 1 Cluster-Shared Scratchpad 2

Scheduler

Off-Chip Main Memory DRAM

Figure 1: Hypothetical baseband unit architecture.

mobile communications [1]:
Enhanced Mobile Broadband (eMBB): Focuses on pro-

viding significantly higher data rates and capacity compared
to previous telecommunication generations, enabling ap-
plications such as high-definition video streaming, virtual
reality, and augmented reality. This scenario covers the
day-to-day activities of private users and data-heavy but
less critical industrial applications.
Ultra-Reliable and Low Latency Communications

(URLLC): Emphasizes ultra-reliable and low-latency com-
munication, critical for applications that demand real-time
responsiveness and mission-critical reliability, including
autonomous vehicles, remote surgery, and industrial au-
tomation.
Massive Machine Type Communications (mMTC):

Targets the connectivity of a massive number of devices
using minimal energy, enabling the Internet of Things (IoT)
to scale to unprecedented levels, facilitating applications
such as smart cities, industrial IoT, and environmental mon-
itoring.

These scenarios resulted in a requirement specification
that includes the following criteria [6]:

• Peak Data Rate: 20 Gbit/s download, 10 Gbit/s up-
load. This is only in ideal conditions.

• Transmission Latency: 4 ms for eMBB, 1 ms for
URLLC. This is the latency added by the 5G net-
work to the overall communication latency between
endpoints.

• Device Mobility: up to 500 km/h for rural eMBB, less
for more dense areas.

• Density: up to 1.000.000 devices per square kilometer
in the mMTC scenario.

Note how each requirement applies in specific scenarios and
is not necessary in others. For example, the peak data rate
is unnecessary for scenarios covered by URLLC or mMTC.
Meanwhile, the extreme latency requirement of 1 ms only
applies to URLLC.

An RBS must manage these diverse requirements and,
therefore, becomes a mixed-criticality system. For example,
tasks within the URLLC scenario must be prioritized over
eMMB tasks to uphold the URLLC latency requirements. Not
only do we have a range of priorities, but these priorities
may also change as usage changes. Adapting to ongoing
changes in network usage is, therefore, a critical aspect of
implementing 5G.

2.1. System Architecture
Typical RBS systems are divided into three hardware units:

1. The Remote Radio Unit (RRU). It is immediately con-
nected to the antennas and handles the initial input
stream from the antennas. The antenna streams are
initially processed in this unit and grouped into user
streams (e.g., 8 antenna streams are compressed to
one group) to be sent to the next unit.

2. The Baseband Unit (BBU). It takes the input streams
from the RRU and further processes them. The RRU
and BBU units together constitute the physical layer
of the OSI model (layer 1), handling the physical
aspects of transmitting and receiving wireless 5G
signals [7].

3. The Layer 2 unit handles the data link layer of the
OSI model (layer 2). This includes Medium Access
Control (MAC) and Radio Link Control (RLC) tasks.

The varying characteristics of the workloads of the differ-
ent units result in different hardware designs. While both
the BBU and layer 2 must handle high- and low-criticality
tasks, they do so in different ways. This research aims to
explore a merged system to handle the BBU and layer 2 tasks
in one hardware system. The new system is to be centered
around the design of a BBU but explore technologies that
allow layer 2 tasks to run efficiently.

2.2. Baseband Unit
The BBU system handles physical layer tasks centered
around signal processing of incoming and outgoing trans-
missions. Its design ensures maximum predictability at the
expense of resource utilization efficiency. Figure 1 provides
an overview of the system. It is not meant to be repre-
sentative of any specific system but to give an idea of the
components often present and their interactions.

2.2.1. Hardware

We focus on systems centered around a clustered and hetero-
geneous design. Each cluster contains a set of processors or
accelerators (for illustration, we show four in Figure 1). First,
the general computing capability is provided by digital sig-
nal processor (DSP) cores with high predictability [8]. Each
DSP has a private instruction and data cache and shares a



single scratchpad memory with the other processors in the
cluster.

The other clusters contain acceleration cores for specific
and common workloads. The accelerators in each cluster
also share a scratchpad. The exact architecture of the accel-
erators is out of the scope of this paper.

The clusters may also share scratchpads, two are shown
as an example. These split scratchpads handle different
data with specific access characteristics. For example, some
configuration data might be mostly read and changed rarely,
while user-specific data may be updated continuously.

Lastly, a hardware scheduler can be present to orchestrate
task execution on the relevant cores and movement of data.
We have omitted to describe any other application-specific
devices or connections to peripherals.

2.3. Data Processing
Data processing starts once every millisecond. While the
RRU is processing the antenna streams, the BBU starts with
a set of configuration tasks that prepare for the delivery
of data from the RRU. These configuration tasks must run
on the DSP cores to, e.g., configure the accelerators before
they start executing. This could result in configuration data
initially going to one of the cluster-shared scratchpads, from
where it is moved to the cluster scratchpads as needed. This
data starts in the shared scratchpad of the core running
the job and is off-loaded to the cluster-shared scratchpad
when the configuration job is done. In parallel with the
configuration tasks, the data from the RRU is being loaded
into the cluster-shared scratchpads. When that is ready,
proper processing tasks can begin executing on DSPs or
accelerators as needed.

We consider only strict data access characteristics of the
tasks. All shared data is read-only. User-specific data is
segmented into the relevant tasks and updated only by the
task currently being worked on. At no point are two tasks
working on the same user data. These strict data access
characteristics mean that synchronization and coherence
are not issues we will consider.

2.3.1. Phased Execution

The use of scratchpads in the BBU reduces the variability
in execution times. However, this requires methodical or-
chestration to ensure each job has the needed data. As such,
every job is divided into three phases:

1. Read: Any data a task requires is moved onto its
cluster’s scratchpad from the cluster-shared caches.

2. Execute: The task’s job is executed to completion
without needing to access memory other than the
cluster’s scratchpad.

3. Write: All the data previously fetched for the job,
which has been updated, is written back to the main
memory.

This is a classic implementation of the phased execution
[4, 9], also called the simple-task model [10]. The task sched-
uler ensures that a task’s Execute is only scheduled on a
processor when its corresponding Read has terminated on
the same cluster. Data movement is performed using DMAs,
allowing processors to execute other jobs’ Execute phase
in parallel with data movements.

A cluster’s scratchpad is partitioned so that each running
job has exclusive access to its memory portion. If two tasks

use the same data, the Read of each will load that data
into their respective partitions. This means data might be
duplicated in the cluster scratchpads. However, such shared
data is rarely written to, and synchronization is explicitly
handled at the application level and, therefore, is not an
issue.

2.4. Layer 2 Design
The common computing architectures for layer 2 are
more traditional, with, e.g., superscalar cores and standard
caching. The workload on the system requires less stringent
predictability than the BBU, allowing for a more traditional
design. The tasks also require higher performance, pro-
vided by the more complex design at the cost of predictabil-
ity. To ensure high-criticality tasks meet their deadlines,
the hardware resources can be partitioned by clusters and
intentionally over-provisioned.

Layer 2, therefore, can have much wastage where high-
criticality tasks are concerned. This unit’s more complex
design makes it challenging to ensure tasks meet their dead-
lines. The only possibility of ensuring the deadlines are
met is to provide the tasks with such an overabundance of
resources that even when low-criticality tasks interfere, the
high-criticality tasks will not be adversely affected. There-
fore, the inefficient use of resources in layer 2 is a supporting
reason for merging the layer 2 subsystem with the BBU sub-
system.

2.5. Challenges
We aim to research new methods for implementing 5G RBS
technologies to achieve better performance at lower cost.
Therefore, the current challenges of increased costs and
lower performance must be alleviated in any future system.
Challenge 1: The primary challenge for the above-

mentioned RBS systems is a divided hardware architecture.
The physical division ensures that high-critical tasks can
maintain their needed deadlines, which increases costs and
reduces overall performance. First, the separation necessi-
tates manufacturing two physical systems, which is costly.
Second, the separation means the two systems cannot share
resources, reducing the efficient use of available resources.
Challenge 2: On the BBU system specifically, there is

also a challenge with efficient use of resources. While us-
ing scratchpads ensures execution-time predictability for
all tasks, it also forces data duplication. If two tasks use
the same data, that data is moved into both tasks’ scratch-
pads partition. This is both a waste of scratchpad memory
and memory bandwidth. This is especially prevalent with
configuration data, which is often shared between many
tasks and does not change often. The data loaded into the
scratchpads is also loaded on a pessimistic basis. Some tasks
may only need some of the data, meaning some data might
be unnecessarily loaded into the scratchpads.

Challenge 3: Memory bandwidth is wasted when depen-
dent tasks use the same data. The Write phase in the BBU
system always runs after the Execute phase. A subsequent
job using the same data must reload it in its Read phase.
This is sub-optimal in cases where the subsequent task can
run on the same cluster as the first task. In such a case,
omitting the Write phase of the first task and the Read
phase of the second task would be better.



3. The T-CREST Platform
We propose to use the T-CREST platform as a basis for
research into future platforms for 5G RBS. This section de-
scribes the platform’s current capabilities and how they
relate to the challenges present in divided RBS systems.

3.1. T-CREST and Patmos
The Patmos processor [11] is designed to serve real-time
systems. Several Patmos cores are combined with a network-
on-chip, a memory arbitration tree, and a memory controller
to the time-predictable multi-core platform T-CREST [5]. As
such, T-CREST provides techniques that make task execu-
tion time more predictable and reduce the worst-case execu-
tion time (WCET). Around the Patmos cores, it builds a plat-
form with time-predictable components to reduce WCET
analysis complexity and increase accuracy. T-CREST uses
networks-on-chips [12, 13, 14] that ensure data is moved be-
tween processing cores with a known maximum latency. For
accessing shared main memory, T-CREST uses the dedicated
arbitration tree-based network-on-chip [15]. Regardless of
how many cores are accessing the memory, each access will
be serviced within a bounded latency.

Patmos uses an in-order pipeline to ensure every instruc-
tion has a known and constant execution time. To exploit
instruction-level parallelism predictably, Patmos is also a
very long instruction-word (VLIW) architecture with a dual-
issue pipeline. VLIW architectures are a predictable way
of increasing performance without increasing complexity
[16, 17]. Patmos executes instructions in bundles of up to
two instructions. The compiler must designate instructions
as part of a bundle by setting a specific bit in the first in-
struction. All Patmos instructions are predicated: Based on
one of eight predicate registers, each instruction is either
enabled or disabled. If the predicate register’s value is true,
the instruction is enabled, meaning it executes normally. If
the value is false, the instruction is disabled and does not
affect registers or memory. It effectively becomes a noop.
However, the execution time of disabled instructions is the
same as when enabled. Predicated instructions allow the
compiler to minimize execution time variability or even
eliminate it entirely [18].

3.2. Predictable Caching
While caching is usually associated with unpredictability
and difficulties for static analysis, T-CREST deploys two pre-
dictable and easily analyzable caches. The first is a method
cache [19] that replaces a traditional instruction cache in
Patmos [20]. the method cache caches whole or parts of func-
tions (sub-functions) such that instruction fetching never
misses except at specific points. The compiler manages this
cache by splitting the code into blocks that fit in the method
cache and inserting cache-fill instructions where needed.
For the Patmos ISA function call and return instructions
ensure that the callee or the caller are in the method cache.
To support sub-function caching Patmos has cache filling
variants of branch instructions. Using a method cache limits
the number of places cache misses can occur to the specific
cache-filling instructions. The method cache is simpler to
model for an analyzer to provide tight WCET bounds [21].

The second unique cache of the T-CREST is the stack
cache [22]. It caches function-local data, often accessed pre-
dictably, and can be loaded at function entry and exit points.

Accessing this data is also done without experiencing cache
misses. The compiler also manages the stack cache, setting
it up and tearing it down at function entry and exits and
using stack-targeting load and store instruction variants.
An analyzer can assume any stack-targeting instruction will
hit in the stack cache. Therefore, the cache size must only
be modeled to account for the stack setup and tear-down
time [23]. Data accesses that are not function-local may still
go through the conventional data cache or circumvent all
caching to target the main memory directly.

These two cache architectures are supported by the Platin
WCET-analyzer [24]. Platin models instruction execution
and tracks which blocks of code are likely to be in the
method cache at a given point. It accounts for this at control-
flow point to know whether a method-cache miss is likely
and how many bytes would have to be loaded. For the stack
cache, it models the program stack’s size at any point and
tracks stack-cache-control instructions added by the com-
piler. At points where the stack must grow, Platin knows
whether the cache has free space or needs to spill some of
the program stack to main memory.

3.3. Missing Capabilities
The T-CREST platform is missing some features and capa-
bilities compared to the BBU system. We will enumerate
these missing capabilities and highlight how we might ei-
ther simulate them using existing capabilities or discuss how
to implement them into the platform as part of the research
project.

3.3.1. Acceleration and Clustering

The specific processing requirements of an RBS means dedi-
cated accelerators can be used for maximum efficiency. The
T-CREST platform does not include anything resembling
these accelerators. Likewise, the T-CREST platform does
not use any clustering, whose benefit is mainly driven by a
multi-layered intermediate memory, which we will discuss
in the next section.

As this research mainly focuses on the efficient use of
resources, notably memory, we will not investigate or im-
plement any hardware acceleration. Instead, we will use
the Patmos cores as substitutes for specific accelerators. We
will implement clustering into the T-CREST platform so
that each cluster can be designated to be allowed to execute
specific tasks. This will allow us to treat one cluster as a
substitute for a BBU DSP cluster and others for different
types of acceleration clusters.

3.3.2. Hierarchical Memory

The Patmos cores of T-CREST are each paired with private
caches, as described earlier. However, no further hierarchy
of intermediate memory exists. In contrast, the BBU system
contains three levels of intermediate storage: First, each
DSP (or accelerator) has its caches. Second, each cluster has
a shared scratchpad. lastly, cluster-shared scratchpads are
present for a last level of storing various types of data.

A multi-layered memory hierarchy is necessary for the ex-
periments to be representative, especially given the unique
data access characteristics. Therefore, we will build a sec-
ond layer of intermediate memory, which is shared between
the Patmos cores of each cluster. We will omit a last mem-
ory layer, as any methods of managing the second layers



Cluster 0

Core 0
M$ S$ D$

Core 1
M$ S$ D$

Shared Cache

Cluster 1

Core 2
M$ S$ D$

Core 3
M$ S$ D$

Shared Cache

Cluster 2

Core 4
M$ S$ D$

Core 5
M$ S$ D$

Shared Cache

Scheduler

Memory Controller Off-Chip Main Memory SRAM

Figure 2: Proposed T-CREST system for researching novel cache architectures.

we develop can be transferred to the rest of the layers of a
real-world system.

3.3.3. Hardware-Assisted Scheduling

The BBU systems often use hardware to accelerate schedul-
ing. T-CREST does not implement any hardware that can
assist with scheduling. While using a hardware scheduler in
the BBU system ensures that the extreme amount of tasks
gets scheduled in a reasonable time, the smaller scale of
this project’s prototypes can likely handled by software-
managed scheduling.

Therefore, the initial proposed system will not have any
scheduling hardware, but dedicated Patmos cores will re-
place it to handle the scheduling. Software-defined schedul-
ing can be a flexible way to test our scheduling strate-
gies as the system matures. Moving to a hardware sched-
uler should be easily doable at later stages of research,
where the scheduling has been studied and techniques cho-
sen. Patmos already supports adding custom devices and
accelerators[25]. A hardware scheduler is a device that inter-
acts with the rest of the clusters, memories, and processors
and issues commands in the same manner a Patmos core
would.

3.4. Proposed System Architecture
Figure 2 shows a diagram of our proposed system. It com-
prises three clusters, each with a set of Patmos cores with
private split caches (Method, Stack, and Data) and a shared
cluster cache. The cores use the T-CREST memory tree to
access the shared cache, providing us with predictable and
low-latency access. The clusters use the T-CREST memory
tree to connect to the memory controller, which manages
access to the off-chip, main memory. A shared bus (in gray
above the clusters) facilitates cross-cluster and cross-core
communication. This allows a Patmos core or a hardware
device scheduler to issue scheduling commands to the whole
system.

This system architecture will allow research on efficiently
managing the cluster caches. The different clusters can
simulate the DSP or accelerator clusters on the BBU system,
while the cluster-shared scratchpads of that system do not
introduce new challenges. Therefore, limiting ourselves
to the two levels of cache (private and cluster caches) will
allow for fruitful experimentation during the research.

4. Cache Proposals
To start addressing the challenge of merging layer 1 and
layer 2 systems, we focus on the challenge of using a shared
cache in each cluster. As described earlier, the BBU archi-
tecture sacrifices the efficient use of resources to ensure low
variability in execution times. We aim to maximize resource
usage in the proposed system while maintaining low vari-
ability. We propose exploring three caching solutions that
address the challenges of predictable caching: (1) a critical-
ity timeout cache, (2) a contention tracking cache, and (3) a
unified method/stack cache.

4.1. Criticality Timeout Cache
In cases where strict predictability is unnecessary but flex-
ibility and utilization efficiency are essential, we propose
a cache using a partitioning approach based on cache line
timeouts. For that cache, we need an n-way set associa-
tive cache configuration. We can configure the cache at the
granularity of cache ways. Each cache way can be assigned
either a criticality or a task/core ID (we will use criticality
moving forward).

In this proposal, each cache way can be assigned either
to high or low criticality. Cache lines can be used by high-
or low-criticality tasks. However, naturally high-criticality
tasks are preferred. A low-criticality task cannot evict a
high-criticality cache line. Therefore, to avoid starvation of
low-criticality tasks, at least one way must not be assigned
for the high-criticality tasks.

When an access of the high criticality arrives, a cache line
in one high-criticality way is tagged as being occupied by
that criticality, and an associated timeout begins. As long
as the timeout is not reached, accesses of low-criticality
tasks cannot evict the cache line. If there is no access to
the line before the timeout is reached, the line criticality
is downgraded, allowing low-criticality jobs to evict the
line. The cache can either be configured right before each
job starts executing, or the criticalities can be configured
ahead of time to match the tasks that will run on the cluster.
With timeouts, there is no need to explicitly release any
data, as the timeout mechanism will do so automatically.
Configuring the cache is done by setting the criticality of a
cache way. When a way is configured with a criticality, all
its cache lines will prefer accesses from that criticality, as
described above.

A significant drawback of this approach is its unpre-
dictability. Because timeouts might cause a cache line to be
evicted even when it might be used in the future, it can be



difficult for a WCET analysis tool to track which cache lines
have reached the deadline and which have not. The effect
of the timeouts on WCET bounds can be challenging to esti-
mate and would require dedicated analysis. However, it can
also be omitted, as this cache architecture is better suited
for measurement-based WCET estimation. With detailed
testing and measurements, getting a sufficiently safe WCET
bound should be feasible.

This cache architecture is designed for high utilization
and low scheduling complexity. Because it reserves each
cache line, only the necessary subset of a cache way is
reserved at a given time. Cache lines that either timed out or
were not used by the job are free to be used by low-criticality
tasks, increasing the utilization of the cache. In this proposal,
we also do not pre-load data into the cache. This means
only data that is used will be loaded. Therefore, we avoid
both bandwidth wastage and cache space wastage when
loading data that is not used. When a job stops executing,
its associated cache lines will eventually time out and release
their contents automatically. The scheduler, therefore, does
not need to manage the phased execution of jobs, reducing
the pressure on the scheduler.

4.2. Contention Tracking Cache
In this proposal, a combination of contention tracking in
the cache and contention-aware task scheduling will allow
for maximal cache utilization through dynamic partitioning,
with high predictability through cache contention tracking
and mitigation.

In a multicore system without shared caches, the execu-
tion time of a job is affected by the cache behavior without
that behavior being affected by other jobs. Through cache
analysis, we can bound the execution time attributable to
the cache. This is done by estimating the number of cache
misses that will occur. When the cache is shared, this anal-
ysis is no longer possible, as the interference of other jobs
will cause additional cache misses in a manner that cannot
be estimated. In this proposal, we want to let the task sched-
uler limit the contention that a job is allowed to experience
such that it is guaranteed to meet its deadline.

We give two example types of contention: (1) A job 𝐽1

experiences a contention event if a cache line 𝐶1 it popu-
lated with data 𝐷1 is evicted by an access by another job 𝐽2.
This is because 𝐽1 will experience a cache miss on the next
access to 𝐷1 that it would not have experienced if 𝐽2 had
not interfered. (2) 𝐽1 also experiences a contention event if a
cache miss occurs when accessing 𝐷1 results in the eviction
of a cache line that 𝐽1 also populated in the same cache set
(with data 𝐷2). This event is a contention with any other
job with at least one populated cache line in the same set.
Without the other jobs, 𝐽1 would have populated an empty
cache line instead of evicting one of its other populated lines.
The evicted line will cause a cache miss in the future when
𝐽1 needs to access 𝐷2 again.

We only consider contention between different jobs. Self-
contention also happens in private caches and is, therefore,
already managed in the cache analysis for the private cache.

We limit the maximum allowed contention as defined
above to ensure that a job meets its deadline without inter-
ference from other jobs. The scheduler will configure the
cache with a maximum allowed contention. The cache con-
troller will track contention by checking and counting the
above contention events for each job. When a job reaches
its contention limit, any cache access that would cause a

contention event will be blocked or mitigated. For example,
say 𝐽1 is high criticality, and 𝐽2 is not. As long as 𝐽1 has not
reached its contention limit, the cache treats accesses from
both jobs equally. When the limit is reached, contention
events are mitigated between 𝐽1 and 𝐽2. In the case of the
first event type, accesses from 𝐽2 that would cause an evic-
tion of 𝐽1’s cache lines would be rejected by the cache. The
access must then be rerouted directly to the main memory,
which the system must have support for. In the second event
type, if the default replacement policy would have 𝐽1 evict
its own cache line in the set, it would instead evict a cache
line from 𝐽2.

Setting the contention limit is the responsibility of the
job scheduler. Through traditional static WCET analysis
with the assumption of private caches, jobs get their WCET
bound. Any excess time between the bound and the task
deadline is therefore open to contention. Before the sched-
uler starts a job, it sets the contention limit, ensuring the
WCET of the job, with contention, still meets the deadline.
The contention limit can be static, and it can be calculated
as part of schedulability analysis. It can also be dynamic,
so the scheduler changes it for the runtime condition. If
the task was started early, the contention is increased to
match the slack time available. If the task was started late,
the contention is reduced or set to zero to ensure that the
deadline is still met.

This proposal’s major strength is that it disconnects the
analysis of tasks with differing criticalities. Because of
the contention limit, high-criticality tasks will never be
adversely affected by low-criticality tasks. Therefore, we
just need to ensure that all high-criticality tasks meet their
deadlines with other methods.1 It also does not statically par-
tition or lock the cache. At worst, when a contention limit is
reached, the cache will be dynamically partitioned automat-
ically simply by prioritizing the jobs that have reached the
limit. This maximizes cache utilization. It also allows for
maximizing the performance of low-criticality tasks as long
as it does not adversely affect any high-criticality tasks.

This proposal does increase the complexity of the cache
controller, which needs to track contention events and miti-
gate them for jobs that have reached their contention limit.
Each cache line needs to be associated with a job (or core),
each job needs a contention counter, and logic needs to
ensure the correct mitigation at contention limits. The pro-
posal also increases scheduler complexity. This complexity
can be initially lowered by simply having statically deter-
mined contention limits. However, further work should ex-
plore dynamically determined limits, which would increase
the workload on the scheduler.

4.3. Unified Method/Stack Cache
The Patmos processor on T-CREST uses the special method
and stack caches. While these caches have been researched
for their impact on predictability, and the Platin analyzer
has analysis implementations for them, additional work is
needed to integrate them into a shared L2 cache. Therefore,
we propose investigating a shared L2 cache that integrates
the features of both the method cache and the stack cache.
It is meant to complement either a traditional L2 data cache
or scratchpad, with extended research avenues for a fully
integrated L2 cache that supports the method-, stack-, and

1For example, we could use partitioning between high-criticality tasks
only.



Priority Contention Unified
Timeout Tracking Method/

Stack
All Data ✓ ✓ ✗
Shared ✓ ✓ ✗
Mixed-Criticality ✓ ✓ ✗
Analyzable ✗ ✓* ✓
Needs Scheduling ✗* ✓* ✗
Guaranteed ✗ ✓* ✓

Table 1
Comparison between features of the three cache proposals.

data caches. This proposal can also complement either of
the previous proposals.

The method and stack caches have particular access pat-
terns to their data. The method cache accesses a block of
code at a time, pre-loading a complete block at once. It also
uses a first-in, first-out (FIFO) replacement policy to account
for functions earlier in the call stack being less likely to be
called again soon. On the other hand, the stack cache is
not backed by main memory unless some data is spilled
when the cache is full. This allows the L2 cache to store
the spilled stack data first without sending it to the main
memory. Access to this stored data would have the same
characteristics as access to the stack cache. Additionally,
when space is tight in the L2 cache, the replacement policy
is the same as the stack cache: spill the data furthest up the
stack.

An open question is how to partition the cache between
the method and stack data. Since both have a replacement
policy that depends on reaching the space limit, a policy
is needed for deciding how much of the cache should be
meant for the methods, and how much should be used for
the stack. We should also investigate if this division can be
dynamically configured such that if the stack is not expected
to use much space, then most of the L2 cache should be saved
for the methods and vice versa. A different approach could
be to say that the stack gets priority up to a point. When
the stack needs to store more data, methods are evicted to
make room up to a point (e.g., half the L2 cache size). Any
space not used by the stack cache can store methods. This
can also be done in reverse, where the method data gets
priority.

An open question that would need answering following
the above initial research, would be how to implement a
unified method/stack cache that is also shared between cores.
Since each core has a distinct stack, and is also likely to use
different functions, we need to explore ways for a single
cache to effectively manage multiple stacks and call trees.

4.4. Discussion
The three caching proposals—Criticality Timeout Cache,
Contention Tracking Cache, and Unified Method/Stack
Cache—each address the challenge of predictable caching
in different ways. Table 1 compared the various features
of our proposals. The first big difference is between the
Unified Method/Stack Cache and the two other caches. The
Priority Timeout and Contention tracking caches both sup-
port all program data, whereas the Unified Method/Stack
Cache only supports instruction data (methods) and stack
data. Even more specifically, the traditional stack does not
support all stack data, only that which does not need an
address, as the stack cache is not backed by main memory.

Any data whose address is taken in the program cannot be
put in the stack cache, going instead to the shadow stack,
which is backed by main memory. Another big difference
between the Unified Method/Stack Cache and the others is
that the proposal does not share the cache between multiple
cores, which also means it does not alleviate any challenges
for mixed-criticality systems.

Analyzability is different between all the cache proposals.
The Priority Timeout cache does not support analyzability
very well, as it is difficult for analyzers to track when cache
lines have timed out. The contention cache is analyzable,
but only in the sense that it simplifies mixed-criticality anal-
ysis by disallowing interference between tasks of different
criticalities. For tasks with the same criticality, the cache
does not provide any assistance but does not complicate
the analysis. The Unified Method/Stack Cache is the most
analyzable. Analyzers can reuse the analysis done for the
separate method and stack caches and likely reuse it for
the unified one with different configurations and minor
customization.

The proposals also differ in how much support is needed
from the job scheduler at runtime. The Priority Timeout
Cache can be implemented without scheduler support if the
way-based partitioning is configured ahead of time. If the
partitioning is done dynamically, it would be the scheduler’s
responsibility. The Contention Tracking Cache needs sup-
port from the scheduler to ensure the amount of allowed
contention is within the correct limit. The scheduler needs
to account for when a high-criticality job is started so that
an appropriate contention limit is chosen. A static approach
can also be used where the contention limit is chosen ahead
of time. However, that does not provide much benefit com-
pared to traditional partitioning. The Unified Method/stack
Cache needs no scheduling support at all. The only thing
that might be configurable would be how much of the cache
is prioritized for methods or the stack. However, this could
better be done by the program itself, e.g., through compiler
management of the cache.

Lastly, each cache has different guarantees on its behavior.
The Priority Timeout Cache provides priority guarantees for
only a specific time. If that is not managed such that it does
not run out, programs cannot be guaranteed that a specific
amount of the cache is reserved for them. While giving
no guarantees on partitioning, the Contention Tracking
cache guarantees how much contention could affect a job.
However, this is only contention from lower criticality job
contention, and so does not make any guarantees about
the contention from similar-criticality tasks. However, the
Unified Method/Stack Cache is predictable and guarantees
similar behavior to the split caches.

5. Related Work
Shared caches are a significant challenge for predictability
due to their inherent nature of allowing multiple cores to
access the same cache [26]. This can lead to contention
and unpredictable performance. However, several solutions
have been proposed to address this issue, including cache
partitioning and locking [27].

Partitioning is a technique that divides the shared cache
into several partitions, each dedicated to a specific core [28].
This approach can significantly improve predictability by
reducing contention [29]. Way-based partitioning involves
dividing the cache ways among different cores. Each core is



assigned a specific number of ways in the cache, ensuring
exclusive access to those ways. This method can effectively
isolate the cache activities of different cores, improving pre-
dictability. On the other hand, index-based partitioning
involves dividing the cache sets among different cores. Each
core is assigned specific sets in the cache, ensuring exclusive
access. This method is more flexible than way-based parti-
tioning because the number of sets is usually large, allowing
for finer-grained partitioning. However, a given set maps
to specific address ranges. Therefore, this method requires
more detailed memory management. Page coloring is often
used to partition the cache [30]. The address space is divided
into colors associated with the cache sets. Assigning colors
to tasks/cores provides the partitioning, assuming an assign-
ment that provides the correct memory for each task/core
is found. The cache hardware can also support index-based
partitioning for various benefits [31, 32]. However, some
form of software management will always be needed.

Cache locking is another technique used to improve pre-
dictability in shared caches [33]. With locking, specific
cache lines can be locked to prevent them from being evicted,
ensuring they are always available for the necessary cores.
This can significantly reduce cache misses and improve
predictability. Locking can be costly. Lock management in-
volves tracking the locked cache lines, increasing hardware
complexity. Adding locking to a cache can reduce its ca-
pacity or speed depending on how fine-grained the locking
is. Locking also reduces cache utilization, as any unused
locked content cannot be evicted to free up the cache lines
for needed data.

T-CREST has enabled much research within various as-
pects of real-time systems [5]. Because all of T-CREST’s com-
ponents are predictable, it is possible to implement constant
execution-time code based on the single-path paradigm
[34, 18]. Single-path has an inherently high overhead, neces-
sitating optimizations to reduce executed code [35], make
best use of Patmos’ dual-issue pipeline [36, 17], and use cus-
tom register allocation techniques [37]. The combination of
T-CREST and single-path code has been shown to be com-
petitive with off-the-shelf ARM processors for a real-time
application [38]. Research is also ongoing to port the Lingua
Franca coordination language to T-CREST to enable the cre-
ation of complete real-time systems within one framework
[39, 40].

6. Conclusion
The increasing importance of 5G technologies necessitates
continuous research and development into the hardware
systems implementing the technology. The diverse require-
ment specifications of this new technology necessitate a
system with varying degrees of strictness and performance.
Existing systems were designed with the minimal 5G guar-
antees in mind, ensuring the hard requirements, e.g., low
latency, were met before softer requirements like through-
put. This focus resulted in a divided physical system to
achieve the goals.

To increase future systems’ performance while maintain-
ing the older system’s guarantees, this paper sets the re-
search direction into a mixed-criticality 5G RBS with merged
BBU and layer 2 systems. The system should be able to exe-
cute high-criticality tasks, like those required by the URLLC
5G scenario, and low-criticality, QoS tasks, like those for the
eMMB, in one SoC. By analyzing the 5G requirement speci-

fications and the common system architecture, we propose
using the T-CREST platform as the research platform for fu-
ture mixed-criticality systems. We propose a specific system
architecture that best leverages the existing system archi-
tecture’s strength and increases its performance through
shared caches. We propose three specific research directions
within shared L2 caches for clustered systems. The various
proposals have distinct strengths and weaknesses that will
be further explored in future work.

Acknowledgment
This work is partially supported by the CERCIRAS (Connect-
ing Education and Research Communities for an Innovative
Resource Aware Society) COST Action no. CA19135 funded
by COST (European Cooperation in Science and Technol-
ogy).

References
[1] International Telecommunication Union - Radiocom-

munication Sector, IMT Vision - Framework and over-
all objectives of the future development of IMT for
2020 and beyond, Technical Report M.2083-0, Interna-
tional Telecommunication Union, 2015.

[2] A. Burns, R. I. Davis, Mixed criticality systems-a re-
view:(february 2022) (2022).

[3] ISO/IEC 7498-1:1994(E), Information technology –
Open Systems Interconnection – Basic Reference
Model: The Basic Model, Technical Report 7498-1:1994,
International Organization for Standardization, 1996.

[4] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Cac-
camo, R. Kegley, A predictable execution model for
cots-based embedded systems, in: 2011 17th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium, IEEE, 2011, pp. 269–279.

[5] M. Schoeberl, S. Abbaspour, B. Akesson, N. Auds-
ley, R. Capasso, J. Garside, K. Goossens, S. Goossens,
S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch,
P. Puschner, A. Rocha, C. Silva, J. Sparsø, A. Tocchi,
T-CREST: Time-predictable multi-core architecture for
embedded systems, Journal of Systems Architecture 61
(2015) 449–471. doi:10.1016/j.sysarc.2015.04.
002.

[6] International Telecommunication Union - Radiocom-
munication Sector, Minimum requirements related to
technical performance for IMT-2020 radio interface(s),
Technical Report M.2410-0, International Telecommu-
nication Union, 2017.

[7] Z. Kong, J. Gong, C.-Z. Xu, K. Wang, J. Rao, ebase:
A baseband unit cluster testbed to improve energy-
efficiency for cloud radio access network, in: 2013
IEEE International Conference on Communications
(ICC), IEEE, 2013, pp. 4222–4227.

[8] E. Tell, A. Nilsson, D. Liu, A programmable dsp core for
baseband processing, in: The 3rd International IEEE-
NEWCAS Conference, 2005., IEEE, 2005, pp. 403–406.

[9] J. Arora, C. Maia, S. A. Rashid, G. Nelissen, E. Tovar,
Schedulability analysis for 3-phase tasks with parti-
tioned fixed-priority scheduling, Journal of Systems
Architecture 131 (2022) 102706.

[10] H. Kopetz, Real-Time Systems, Kluwer Academic,
Boston, MA, USA, 1997.

http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002


[11] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber,
D. Prokesch, Patmos: A time-predictable micro-
processor, Real-Time Systems 54(2) (2018) 389–423.
doi:10.1007/s11241-018-9300-4.

[12] M. Schoeberl, F. Brandner, J. Sparsø, E. Kasapaki,
A statically scheduled time-division-multiplexed
network-on-chip for real-time systems, in: Proceed-
ings of the 6th International Symposium on Networks-
on-Chip (NOCS), IEEE, Lyngby, Denmark, 2012, pp.
152–160. doi:10.1109/NOCS.2012.25.

[13] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller,
K. Goossens, J. Sparsø, Argo: A real-time network-
on-chip architecture with an efficient GALS imple-
mentation, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24 (2016) 479–492. doi:10.
1109/TVLSI.2015.2405614.

[14] M. Schoeberl, Exploration of network interface
architectures for a real-time network-on-chip, in:
Proceedings of the 2024 IEEE 27th International
Symposium on Real-Time Distributed Computing
(ISORC), IEEE, United States, 2024. doi:10.1109/
ISORC61049.2024.10551364, 2024 IEEE 27th Inter-
national Symposium on Real-Time Distributed Com-
puting, ISORC ; Conference date: 22-05-2024 Through
25-05-2024.

[15] M. Schoeberl, D. V. Chong, W. Puffitsch, J. Sparsø, A
time-predictable memory network-on-chip, in: Pro-
ceedings of the 14th International Workshop on Worst-
Case Execution Time Analysis (WCET 2014), Madrid,
Spain, 2014, pp. 53–62. doi:10.4230/OASIcs.WCET.
2014.53.

[16] J. Yan, W. Zhang, A time-predictable VLIW proces-
sor and its compiler support, Real-Time Syst. 38
(2008) 67–84. doi:http://dx.doi.org/10.1007/
s11241-007-9030-5.

[17] E. J. Maroun, M. Schoeberl, P. Puschner, Predictable
and optimized single-path code for predicated proces-
sors, Journal of Systems Architecture (2024) 103214.

[18] E. J. Maroun, M. Schoeberl, P. Puschner, Compiler-
directed constant execution time on flat memory sys-
tems, in: 2023 IEEE 26th International Symposium on
Real-Time Distributed Computing (ISORC), 2023, pp.
64–75. doi:10.1109/ISORC58943.2023.00019.

[19] M. Schoeberl, A time predictable instruction cache for
a Java processor, in: On the Move to Meaningful In-
ternet Systems 2004: Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2004),
volume 3292 of LNCS, Springer, Agia Napa, Cyprus,
2004, pp. 371–382. doi:10.1007/b102133.

[20] P. Degasperi, S. Hepp, W. Puffitsch, M. Schoeberl, A
method cache for Patmos, in: Proceedings of the
17th IEEE Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC
2014), IEEE, Reno, Nevada, USA, 2014, pp. 100–108.
doi:10.1109/ISORC.2014.47.

[21] B. Huber, S. Hepp, M. Schoeberl, Scope-based method
cache analysis, in: Proceedings of the 14th Inter-
national Workshop on Worst-Case Execution Time
Analysis (WCET 2014), Madrid, Spain, 2014, pp. 73–82.
doi:10.4230/OASIcs.WCET.2014.73.

[22] S. Abbaspour, F. Brandner, M. Schoeberl, A time-
predictable stack cache, in: Proceedings of the 9th
Workshop on Software Technologies for Embedded
and Ubiquitous Systems, 2013.

[23] A. Jordan, F. Brandner, M. Schoeberl, Static analysis of

worst-case stack cache behavior, in: Proceedings of the
21st International Conference on Real-Time Networks
and Systems (RTNS 2013), ACM, New York, NY, USA,
2013, pp. 55–64. doi:10.1145/2516821.2516828.

[24] E. J. Maroun, E. Dengler, C. Dietrich, S. Hepp,
H. Herzog, B. Huber, J. Knoop, D. Wiltsche-Prokesch,
P. Puschner, P. Raffeck, et al., The platin multi-target
worst-case analysis tool, in: 22nd International Work-
shop on Worst-Case Execution Time Analysis (WCET
2024), Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2024.

[25] C. Pircher, A. Baranyai, C. Lehr, M. Schoeberl, Acceler-
ator interface for patmos, in: 2021 IEEE Nordic Circuits
and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC),
2021.

[26] B. C. Ward, J. L. Herman, C. J. Kenna, J. H. Anderson,
Making shared caches more predictable on multicore
platforms, in: 2013 25th Euromicro Conference on
Real-Time Systems, IEEE, 2013, pp. 157–167.

[27] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröh-
lich, R. Pellizzoni, A survey on cache management
mechanisms for real-time embedded systems, ACM
Computing Surveys (CSUR) 48 (2015) 1–36.

[28] S. Mittal, A survey of techniques for cache partitioning
in multicore processors, ACM Computing Surveys
(CSUR) 50 (2017) 1–39.

[29] X. Vera, B. Lisper, J. Xue, Data caches in multitasking
hard real-time systems, in: RTSS 2003. 24th IEEE
Real-Time Systems Symposium, 2003, IEEE, 2003, pp.
154–165.

[30] T. Lugo, S. Lozano, J. Fernández, J. Carretero, A survey
of techniques for reducing interference in real-time
applications on multicore platforms, IEEE Access 10
(2022) 21853–21882.

[31] A. Chousein, R. N. Mahapatra, Fully associative cache
partitioning with don’t care bits for real-time applica-
tions, ACM SIGBED Review 2 (2005) 35–38.

[32] M. Lee, S. Kim, Time-sensitivity-aware shared cache
architecture for multi-core embedded systems, The
Journal of Supercomputing 75 (2019) 6746–6776.

[33] S. Mittal, A survey of techniques for cache locking,
ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES) 21 (2016) 1–24.

[34] P. Puschner, A. Burns, Writing temporally predictable
code, in: Proceedings of the The Seventh IEEE In-
ternational Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002), IEEE Computer
Society, Washington, DC, USA, 2002, pp. 85–94. doi:10.
1109/WORDS.2002.1000040.

[35] E. J. Maroun, M. Schoeberl, P. Puschner, Constant-
Loop Dominators for Single-Path Code Optimization,
in: P. Wägemann (Ed.), 21th International Work-
shop on Worst-Case Execution Time Analysis (WCET
2023), volume 114 of Open Access Series in Informat-
ics (OASIcs), Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2023, pp. 7:1–7:13.
URL: https://drops.dagstuhl.de/opus/volltexte/2023/
18436. doi:10.4230/OASIcs.WCET.2023.7.

[36] E. J. Maroun, M. Schoeberl, P. Puschner, Compiling for
time-predictability with dual-issue single-path code,
Journal of Systems Architecture 118 (2021) 1–11.

[37] E. Maroun, M. Schoeberl, P. Puschner, Two-step reg-
ister allocation for implementing single-path code,
in: Proceedings of the 2024 IEEE 27th International

http://dx.doi.org/10.1007/s11241-018-9300-4
http://dx.doi.org/10.1109/NOCS.2012.25
http://dx.doi.org/10.1109/TVLSI.2015.2405614
http://dx.doi.org/10.1109/TVLSI.2015.2405614
http://dx.doi.org/10.1109/ISORC61049.2024.10551364
http://dx.doi.org/10.1109/ISORC61049.2024.10551364
http://dx.doi.org/10.4230/OASIcs.WCET.2014.53
http://dx.doi.org/10.4230/OASIcs.WCET.2014.53
http://dx.doi.org/http://dx.doi.org/10.1007/s11241-007-9030-5
http://dx.doi.org/http://dx.doi.org/10.1007/s11241-007-9030-5
http://dx.doi.org/10.1109/ISORC58943.2023.00019
http://dx.doi.org/10.1007/b102133
http://dx.doi.org/10.1109/ISORC.2014.47
http://dx.doi.org/10.4230/OASIcs.WCET.2014.73
http://dx.doi.org/10.1145/2516821.2516828
http://dx.doi.org/10.1109/WORDS.2002.1000040
http://dx.doi.org/10.1109/WORDS.2002.1000040
https://drops.dagstuhl.de/opus/volltexte/2023/18436
https://drops.dagstuhl.de/opus/volltexte/2023/18436
http://dx.doi.org/10.4230/OASIcs.WCET.2023.7


Symposium on Real-Time Distributed Computing
(ISORC), IEEE, United States, 2024. doi:10.1109/
ISORC61049.2024.10551362, 2024 IEEE 27th Inter-
national Symposium on Real-Time Distributed Com-
puting, ISORC ; Conference date: 22-05-2024 Through
25-05-2024.

[38] M. Platzer, P. Puschner, A real-time application with
fully predictable task timing, in: 2020 IEEE 23rd Inter-
national Symposium on Real-Time Distributed Com-
puting (ISORC), IEEE, 2020, pp. 43–46.

[39] E. Khodadad, L. Pezzarossa, M. Schoeberl, Towards
lingua franca on the patmos processor, in: Proceedings
of the 2024 IEEE 27th International Symposium on
Real-Time Distributed Computing (ISORC), 2024.

[40] M. Schoeberl, E. Khodadad, S. Lin, E. J. Maroun,
L. Pezzarossa, E. A. Lee, Invited Paper: Worst-Case
Execution Time Analysis of Lingua Franca Applica-
tions, in: T. Carle (Ed.), 22nd International Work-
shop on Worst-Case Execution Time Analysis (WCET
2024), volume 121 of Open Access Series in Informat-
ics (OASIcs), Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2024, pp. 4:1–4:13.
doi:10.4230/OASIcs.WCET.2024.4.

http://dx.doi.org/10.1109/ISORC61049.2024.10551362
http://dx.doi.org/10.1109/ISORC61049.2024.10551362
http://dx.doi.org/10.4230/OASIcs.WCET.2024.4

	1 Introduction
	2 5G Radio Baseband
	2.1 System Architecture
	2.2 Baseband Unit
	2.2.1 Hardware

	2.3 Data Processing
	2.3.1 Phased Execution

	2.4 Layer 2 Design
	2.5 Challenges

	3 The T-CREST Platform
	3.1 T-CREST and Patmos
	3.2 Predictable Caching
	3.3 Missing Capabilities
	3.3.1 Acceleration and Clustering
	3.3.2 Hierarchical Memory
	3.3.3 Hardware-Assisted Scheduling

	3.4 Proposed System Architecture

	4 Cache Proposals
	4.1 Criticality Timeout Cache
	4.2 Contention Tracking Cache
	4.3 Unified Method/Stack Cache
	4.4 Discussion

	5 Related Work
	6 Conclusion

