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Abstract 
Estimating crowd density has become increasingly important in fields like public safety, event management, 
and urban planning. Accurate detection of crowd density helps in making informed decisions and ensuring 
safety in crowded areas. This study proposes a novel method for crowd density detection using segmentation 
and classification based on a Support Vector Machine (SVM). The method involves two key steps: crowd 
segmentation and density categorization. During segmentation, advanced image processing techniques like 
background removal and region-based segmentation extract crowd sections from input images or video 
frames. These segmented areas are then classified using an SVM model, known for handling complex data. 
The model is trained on a diverse dataset containing images with varying crowd densities. The approach 
captures crucial spatial and contextual information, and extensive testing on various datasets has 
demonstrated its accuracy and resilience in dynamic crowd scenarios. The proposed SVM-based method can 
be implemented in real-time, making it valuable for applications requiring quick decisions. This technique 
offers a reliable and efficient solution for crowd density detection, with significant implications for event 
management, public safety, and urban planning in congested environments. 
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1. Introduction 

The world has undergone rapid urbanization over the past two decades, leading to a significant 
increase in city populations. As cities become more crowded, the need for effective surveillance 
systems has grown, particularly to monitor people's movements and behaviors in public spaces, 
ensuring the safety and security of individuals and their possessions. Surveillance has become an 
integral part of maintaining public safety, with both public and private entities worldwide regularly 
employing video cameras for this purpose. However, traditional surveillance systems heavily rely on 
human operators, whose effectiveness can vary depending on their alertness and the available 
manpower. Given these limitations, modern surveillance is transitioning towards smart systems 
equipped with advanced technologies like intelligent video analysis, which enable automated decision-
making without continuous human intervention. 
Smart surveillance systems can be broadly categorized into two types: visual-based and multimodal. 
Visual-based systems utilize computer vision algorithms to process video data from cameras and 
drones in real time, offering solutions like facial recognition and license plate identification. On the 
other hand, multimodal systems integrate various data sources, including motion and audio sensors, 
alongside video data to provide comprehensive real-time insights. Companies like IBM and Intel have 
pioneered technologies that can detect traffic incidents, optimize routes, and even identify crime-
related events using these advanced surveillance systems. 
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In today’s world, smart surveillance plays a critical role, particularly in monitoring crowds. This 
becomes especially relevant during large public gatherings, where the potential for disasters, accidents, 
or criminal activity increases. Effective crowd control is vital in these scenarios, as seen in airports, 
concert venues, and religious gatherings. As crime, terrorism, and natural disasters rise, smart 
surveillance systems must rely on robust algorithms to manage and predict crowd behavior. 
The analysis of crowd behavior is a key focus of this chapter. It begins by defining different types of 
crowds, highlighting their unique characteristics and behaviors in various contexts. A deeper 
exploration of collective crowd behavior from a psychological standpoint follows, offering insights 
into how crowds react in specific situations. From there, the discussion shifts to the challenges of 
analyzing crowd behavior through video footage, including the complexities involved in cognitive 
modeling for crowd behavior analysis. Ultimately, this chapter sets the stage for understanding the 
motivations behind this research and the primary contributions of the proposed approach. 
 

 
Figure 1. Common applications of smart surveillance 
A crowd is a large group of people gathered in one location, exhibiting a range of behaviors and 
attitudes. Based on movement patterns, crowds can generally be divided into two categories: dynamic 
and stationary. Dynamic crowds are constantly in motion and can be either organized or unstructured. 
In organized crowds, such as marathons or rallies, individuals move in the same direction, maintaining 
consistent behavior over time. In unstructured crowds, such as those seen in airports or stadiums, 
individuals move in various directions with varying spatiotemporal characteristics. Stationary crowds, 
on the other hand, include audiences at rallies, concerts, or plays, where people remain in one place 
for a period of time. 
 

 
Figure 2: Statistics of crowd disasters 
The characteristics of a crowd—such as its size, density, location, and time—are critical in 
understanding its behavior. Crowds can also be categorized into active and passive groups based on 
the behavior of their participants. While passive crowds primarily observe without engaging in 



 
 

activities, active crowds may exhibit behaviors ranging from aggression to panic or expressive actions, 
such as cheering at a concert or participating in religious events. 
Analyzing crowd behavior is essential for smart surveillance systems, as it helps authorities 
understand crowd dynamics, develop control measures, and prevent crowd-related disasters. The 
behavior of a crowd is often influenced by the context in which it forms. For instance, in a shopping 
district, people might move peacefully alongside one another, while in a stadium, fans may express 
intense emotions in response to the game. These varying behaviors highlight the need for smart 
surveillance systems capable of monitoring and analyzing different crowd scenarios in real time. 
Crowd behavior is inherently complex, as it depends on the context and setting. Monitoring and 
understanding collective crowd behavior in both regular and emergency situations is challenging, 
particularly when individual identification is difficult in dense crowds. Over time, psychologists and 
sociologists have proposed numerous theories to explain crowd behavior. One of the earliest and most 
popular is Le Bon's Group Mind Theory, which suggests that crowd members lose their individual 
identity and are easily influenced by a leader. Freud’s theories support the notion that individuals in a 
crowd open their unconscious minds, yet maintain control over their actions. McPhail’s Pre-
Disposition hypothesis posits that aggressive behavior in crowds is influenced by individual 
dispositions toward antisocial behavior. In contrast, the Emergent-Norm hypothesis suggests that 
crowds consist of people with common interests, leading to distinctive behavior patterns. These 
collective behaviors can often become impulsive, unpredictable, and volatile. Understanding these 
behaviors is crucial for developing smart surveillance systems that can anticipate and prevent crowd-
related issues. Such systems must account for the social and psychological components of group 
behavior, including how crowd members concentrate their attention on a common cause, exchange 
ideas rapidly, and form homogenous groups based on shared beliefs and behaviors. Machine learning, 
particularly Support Vector Machines (SVM), is a key technology used in crowd behavior analysis. 
SVM models create distinct classes from input data features, enabling the classification of various 
crowd behaviors. Deep learning, especially Convolutional Neural Networks (CNN), is another 
powerful tool for crowd behavior research. CNN mimics the structure of neurons in the human visual 
cortex, allowing for the hierarchical processing of input data. Long Short-Term Memory (LSTM) 
networks, which resemble the brain's short-term memory, are also used to analyze and predict crowd 
behavior based on past events. These advanced AI models enable the system to learn from past 
examples, making it more effective in predicting crowd behaviors and detecting anomalies. This 
research is motivated by the need to develop smart surveillance systems capable of detecting crowd 
anomalies, evaluating behaviors in real-time, and providing timely alerts. The current pandemic crisis 
has also highlighted the importance of monitoring crowd behavior to ensure public safety, especially 
in terms of enforcing social distancing and detecting free-standing conversation groups. By combining 
video, audio, and other sensor data, this study aims to develop a comprehensive crowd behavior 
analysis system that can operate effectively in a variety of challenging scenarios. 
In conclusion, the introduction of cognitive modeling and AI technologies into surveillance systems 
offers the potential to greatly improve crowd management, enhancing public safety and preventing 
disasters in crowded settings. 

Related Works 

Crowd behavior evaluation through computer vision techniques has been explored through various 
research studies, with each contributing to a broader understanding of how anomalies and movement 
patterns in large groups can be detected and analyzed. A review of these works highlights both 
advancements in this domain and the identification of gaps that future research must address. For 
instance, a framework [1] for video event identification that proved essential for high-level video 
indexing and retrieval. This framework addressed challenges such as skewed data distribution and 
loose video structure, automating the determination of crucial thresholds that were typically manually 



 
 

set in conventional Association Rule Mining (ARM) techniques. The reduction in manual intervention 
in video analysis was a critical advancement towards fully autonomous video content analysis. 

The Trajectory Segmentation and Multi-Instance Learning (TRASMIL) framework, which allowed 
for precise and adaptable local anomaly detection. This three-step method was found to outperform 
existing techniques in terms of identifying trajectories with local abnormalities [2]. TRASMIL 
emphasized the importance of trajectory-based anomaly detection for accurately understanding crowd 
movement and behaviors. Similarly, a semantic video [3] segmentation method that relied on One-
Class Classification (OCC) techniques for identifying events through frame-by-frame processing. 
Their work highlighted the effectiveness of OCC in detecting unsupervised events, particularly 
through the use of Temporal Self-Similarity Maps (TSSMs), which were evaluated using a publicly 
available thermal video dataset. The use of OCC for unsupervised event detection opened new avenues 
for handling video data with minimal prior knowledge of the scene. 

A dynamic time interval segmentation technique to improve item anomaly detection. Their 
segmentation approach dynamically validated the time interval length, grouping successive attack 
ratings [4]. While effective, [5] the robustness of anomaly detection methods had received limited 
attention in terms of accuracy and consistency, pointing to a gap that future research must address. 
Meanwhile, [6] contributed by proposing an unsupervised method for scene analysis and anomaly 
detection in traffic video data recorded by stationary security cameras. By using local Hierarchical 
Dirichlet Process (HDP) models, Kaltsa et al. were able to achieve improved accuracy with lower 
computational costs, emphasizing the need for efficient solutions in processing large amounts of traffic 
video data. 

Other researchers have approached the problem from a probabilistic standpoint. A probabilistic 
framework for identifying [7] local spatiotemporal anomalies. This framework allowed for a more 
refined decision-making process by identifying ideal decision-making procedures based on score 
functions obtained from nearby neighbors’ distances. The work emphasized the importance of 
spatiotemporal scales in accurately identifying anomalies. Spatiotemporal anomaly detection using 
scalable aggregation [8] and geolocated text visualization. They proposed a cluster analysis technique 
to automatically discover anomalies and presented these findings through a global map depiction. 
Their work demonstrated how scalable visualization could assist analysts in categorizing and 
evaluating event candidates on a global scale. 

The visualization of social media data with a visual analytics technique [9], which allowed users to 
extract significant subjects from a chosen collection of communications. By applying Latent Dirichlet 
Allocation (LDA) and visualizing topic time series, analysts could better understand abnormal events 
by identifying peaks and outliers in the data. A probabilistic methodology that placed temporal and 
geographical [10] constraints on video volumes, allowing for the identification of abnormal video 
configurations. Their approach, which avoided the need for motion estimation or background removal, 
proved particularly efficient for detecting rare events in video data. 

In a related development, [11] an anomaly detection method that incorporated both spatial and 
temporal contexts. They introduced a region-based descriptor called Motion Context, which proved to 
be more reliable than statistical models when dealing with small training datasets. Their use of 
compact random projections sped up the search process, further enhancing the efficiency of the 
method. A spatiotemporal Laplacian eigenmap [12] technique to model crowd behavior and detect 
anomalies. Their method, which identified both local and global anomalies, showcased the potential 
of regular crowd behavior modeling in accurately detecting abnormal crowd behaviors. 

A different approach by developing a Structural Context Descriptor (SCD) [13] to define crowd 
individuals, utilizing the potential energy function of particles from solid-state physics. Their SCD 
method used the 3-D Discrete Cosine Transform (DCT) to compute crowd SCD fluctuations and 
pinpoint issues through these variations. Focused on anomaly detection [15] in complex crowd 
settings, using a hierarchical activity-pattern discovery framework. Their work factored in both local 
and global spatiotemporal contexts, creating an anomaly energy function that could quantify the 



 
 

abnormality of motion patterns. This method was particularly useful for detecting abnormal activity 
in densely packed crowds [16]. 

Continuing with anomaly detection in video monitoring, [17] an unsupervised statistical learning 
framework for monitoring crowded environments. The method, which relied on clustering and sparse 
coding to learn global and local activity patterns, utilized a multi-scale analysis approach to ensure 
precise anomaly localization. Advanced these techniques by developing a novel crowd video anomaly 
detection [18] method based on spatiotemporal texture analysis. Their approach, designed for real-
time applications, simplified machine learning procedures and demonstrated improved flexibility and 
efficiency compared to existing systems. 

a spatiotemporal architecture for anomaly detection, combining spatial feature representation with 
temporal changes in spatial features [19]. This method proved to be effective for detecting anomalies 
in videos of crowded scenes. An intrusion detection technique that detected normal behavior 
disturbances, signaling potential intentional [20] or unintentional attacks. Their work explored both 
supervised and unsupervised methods for anomaly detection, emphasizing the importance of detecting 
disruptions in normal behavior patterns. 

An anomaly detection approach that utilized a reliable anomaly degree measure to increase the 
separability between anomaly pixels and background pixels [21]. This method divided pixels into 
potential anomaly sections and background sections, followed by discriminative information learning, 
highlighting the significance of feature extraction for accurate anomaly detection. A fresh approach 
to anomaly detection using a difference of convex functions algorithm [22]. This method built a hidden 
Markov anomaly detector that extended the One-Class SVM and demonstrated improved performance 
across various datasets. 

A sparse reconstruction-based method for detecting aberrant behavior, [23] combining low-level 
visual features with causality analysis. By analyzing individual and group behaviors, they were able 
to detect abnormal interactions in multi-object settings. Improving image classification performance 
through convolutional neural network (CNN) ensembles, showing how this approach could 
outperform both single CNN models and regular perceptrons in detecting abnormalities [24]. 

An unsupervised Fully Convolutional Network (FCN) for anomaly detection in videos. Their 
approach relied on temporal data and cascaded outlier detection, lowering computational complexity 
and improving both speed and accuracy [25]. A machine learning-based anomaly detection approach 
for detecting fraudulent traffic in Modbus and Transmission Control Protocol (TCP) connections. Their 
use of SVM, Random Forest, K-NN, and K-means clustering allowed for effective anomaly detection in 
an industrial scenario [26]. 

Applied deep learning to behavior detection, using a bag of vision words and the Agglomerative 
Information Bottleneck technique to compress vocabulary and minimize feature dimensions. Their 
sparse representation approach increased detection precision for deviant behavior [27]. Leveraged 
deep learning in social multimedia to detect suspect flows, testing their method on a large-scale 
Carnegie Mellon University (CMU) dataset [28]. The Inception-V3 neural network for feature 
extraction and classification, comparing its performance with traditional models like K-nearest 
Neighbor, random forest, and SVM [29], while a technique focused on maximizing the area under the 
ROC curve for hierarchical abnormal behavior detection, eliminating the need for manual labeling and 
offering a semi-supervised approach [30]. 

The literature on crowd behavior analysis demonstrates the continuous evolution of methods 
aimed at enhancing surveillance through anomaly detection. From trajectory-based techniques to deep 
learning and probabilistic models, researchers have developed increasingly sophisticated approaches 
to ensure real-time, accurate detection of abnormal behavior in crowds. These advancements have laid 
the groundwork for further research into the robustness and scalability of anomaly detection methods, 
while also identifying key areas for future exploration, such as improving computational efficiency 
and addressing issues like occlusion and multi-camera data integration. 



 
 

Mathematical Modeling & Proposed Methodology 

In the realm of image processing, feature extraction is pivotal for enhancing tasks like pattern 
recognition, face detection, and image classification. Features can broadly be divided into two 
categories: general features such as color, texture, and shape, and domain-specific features like object 
detection or human face recognition. The efficiency of image annotation frameworks hinges on the 
ability to represent semantic concepts through low-level image features, which form the foundation 
of multimedia information retrieval, object recognition, and image annotation. In both Content-Based 
Image Retrieval (CBIR) and Automatic Image Annotation (AIA), key image features such as color, 
texture, and shape are employed to extract meaningful data. While CBIR primarily focuses on visual 
aspects of an image, AIA incorporates high-level concepts that better reflect the image content, 
addressing the challenge of locating images in large datasets. Hence, this research integrates both low-
level features and high-level semantic concepts to improve image retrieval, focusing particularly on 
texture and shape as central features for efficient image annotation. Feature extraction is a 
dimensionality reduction process where the image is transformed into a feature set, representing its 
high-level characteristics. By condensing the image data into a feature vector, the system can quickly 
and accurately identify patterns within an image. For computational efficiency, a robust feature 
extraction system is required, and combining low-level and high-level semantic concepts provides 
better retrieval accuracy. The proposed system uses fused feature extraction, employing texture and 
shape features to enhance the accuracy of image retrieval and reduce system complexity. This 
methodology combines multiple features to provide more accurate image information, avoiding the 
errors that might arise from relying on a single feature. In this study, the Haralick and Tamura texture 
features are fused with shape features, significantly improving image retrieval performance and 
reducing processing time. Image feature extraction forms the backbone of image retrieval systems, 
with features classified into two main categories: general features and domain-specific features. 
General features, including color, texture, and shape, describe the overall content of the image, while 
domain-specific features, such as face recognition or object detection, require specialized knowledge 
and fine-tuning. Low-level features like color and texture represent the visual aspects of an image, 
while high-level features correspond to semantic keywords or concepts. 

                    



 
 

Figure 3: Multi-Class SVM classifier 

In CBIR systems, visual similarity is calculated using distance measurements between the feature 
vectors of the query image and images in the database. The user feeds a query image, and the system 
ranks the database images based on similarity, often leading to incorrect results when only low-level 
features are considered. To overcome this issue, AIA systems incorporate semantic concepts based on 
visual content, enabling more accurate retrieval of relevant images. Pre-processing is crucial for 
pattern recognition and image classification, as it enhances the quality of input images by removing 
noise, resizing, and adjusting image features. In this research, the images are normalized through 
rescaling to (128x128) pixels, ensuring uniformity across datasets and improving computational 
efficiency, as shown. Additionally, color conversion to grayscale reduces the inherent complexity of 
the images, facilitating edge detection and pixel-based processing. In this research, edge-based 
segmentation is employed, relying on intensity differences and content. Edge detection using 
techniques such as Sobel, Prewitt, and Canny operators helps identify object boundaries by detecting 
intensity contrasts. Canny edge detection, in particular, is favored for its ability to produce sharp and 
fine edges, as demonstrated.The performance of various segmentation techniques is evaluated using 
metrics such as Root Mean Square Error (RMSE), Signal-to-Noise Ratio (SNR), and Peak Signal-to-
Noise Ratio (PSNR). RMSE measures the average difference between the original image and the 
segmented image, with a higher value indicating greater differences. SNR quantifies the noise present 
in an image, with higher values representing cleaner, noise-free images. PSNR is commonly used to 
measure the quality of edge detection between the original and segmented image, with higher values 
indicating better segmentation accuracy, where RRR is the maximum possible pixel value of the image. 
The performance evaluation results indicate that the Canny operator outperforms other edge detection 
techniques in terms of RMSE, SNR, and PSNR values. In thus section, we provide detailed mathematical 
expressions related to the proposed methodology, including image pre-processing, feature extraction, 
classification, and evaluation techniques. Each expression will be explained to illustrate its role in the 
overall image annotation and retrieval system. To normalize the size of images for consistent 
processing, we perform rescaling. If the original image has dimensions 𝑊𝑊 × 𝐻𝐻 (width 𝑊𝑊 and height  
), and we want to resize it to a fixed siae 𝑤𝑤10 × ℎ0. the rescaling factor 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦 in the 𝑥𝑥 and 𝑦𝑦 
directions can be expressed as: 

𝑆𝑆𝑧𝑧 = 𝑤𝑤𝑛𝑛
𝑊𝑊

,  𝑆𝑆𝑣𝑣 = ℎ0
𝐻𝐻

           (1) 
This ensures the image is resized uniformly for further processing. 

To convert a color image to a gray-scale image, a weighted sum of the red, green, and blue (RG日) 
components is used: 

𝐼𝐼gIn = 0.2989 ⋅ 𝑅𝑅 + 0.5870 ⋅ 𝐺𝐺 + 0.1140 ⋅ 𝐵𝐵       (2) 
Where 𝑅𝑅,𝐺𝐺, and 𝐵𝐵 are the intensities of the red, green, and blue compconents of the image, 

respectively. This formula accounts for the different contributions of each color channel to perceived 
brightness. 
Thresholding is a simple segmentation technique used to separate objects from the background by 
converting an image into a binary format. Given a threshold value 𝑇𝑇, the binary image 𝐼𝐼biuny (𝑥𝑥,𝑦𝑦) is 
computed as 

𝐼𝐼hinary (𝑥𝑥, 𝑦𝑦) = �
1  if 𝐼𝐼(𝑥𝑥,𝑦𝑦) > 𝑇𝑇
0  if 𝐼𝐼(𝑥𝑥,𝑦𝑦) ≤ 𝑇𝑇         (3) 

Where 𝐼𝐼(𝑥𝑥,𝑦𝑦) represents the intensity of the pixel at location (𝑥𝑥,𝑦𝑦). Canny edge detection uses 
gradients to detect edges. The gradient magnitude 𝐺𝐺 at each pixel is calculated using the partial 
derivatives in the 𝑥𝑥 - and 𝑦𝑦-directions, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦 : 

𝐺𝐺 = �𝐺𝐺𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2           (4) 

The direction of the edge 𝜃𝜃 is caloulated as: 
𝐵𝐵 = tan−1 �𝐺𝐺𝑝𝑝

𝐺𝐺𝑥𝑥
�           (5) 



 
 

After calculating the gradient magnitude and direction, non-maximum suppression and double 
thresholding are applied to finalize the edge map. 

The GLCM matrix is a statistical measure to describe texture features. For two picels separated by 
a distance 𝑑𝑑 in a specific direction 𝜃𝜃, the GLCM matrix element 𝑝𝑝(𝑖𝑖, 𝑗𝑗) is defined as: 

𝑝𝑝(𝑖𝑖, 𝑗𝑗) = ∑  𝑁𝑁
𝑥𝑥−1 ∑  𝑁𝑁

𝑦𝑦−1 [1 if 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝑖𝑖 and 𝐼𝐼(𝑥𝑥 + 𝑑𝑑,𝑦𝑦 + 𝑑𝑑) = 𝑗𝑗]     (6) 
Where 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the intensity of the pixel at (𝑥𝑥,𝑦𝑦), and 𝑖𝑖 and 𝑗𝑗 represent gray-level values. 

The contrast, a texture feature that describes the intensity contrast between a pixel and its neighbor 
over the whole image, is computed as 

 Contrast = ∑  𝑁𝑁−1
𝑖𝑖=0 ∑  𝑁𝑁−1

𝑗𝑗=0 (𝑖𝑖 − 𝑗𝑗)2 ⋅ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)        (7) 
Where 𝑝𝑝(𝑖𝑖, 𝑗𝑗) is the element in the GLCM matrix coeresponding to the gray-level ca-occurrence 

between 𝑖𝑖 and 𝑗𝑗. Entropy measures the randomness or complexity of the texture, and is given by: 
 Entropy = −∑  𝑁𝑁−1

𝑖𝑖=0 ∑  𝑁𝑁−1
𝑗𝑗=0 𝑝𝑝(𝑖𝑖, 𝑗𝑗) ⋅ log 𝑝𝑝(𝑖𝑖, 𝑗𝑗)       (8) 

Entropy measures the randomness or complexity at the texture, and is grven by: 
 Entropy = −∑  𝑁𝑁−1

𝑖𝑖=0 ∑  𝑁𝑁−1
𝑗𝑗=0 𝑝𝑝(𝑖𝑖, 𝑗𝑗) ⋅ log 𝑝𝑝(𝑖𝑖, 𝑗𝑗)       (9) 

This value indicates the level af disorder or unpredictability in the texture of the image. Coarseness 
measures the texture's roughness, where large differences in pixel intensities indicate coarser textures. 
The coarseness feature is calculated as 

𝐶𝐶 = 2𝑘𝑘 ,  𝑘𝑘𝑢𝑢𝑢𝑢 = arg max
𝑘𝑘
 �∑  𝑁𝑁

𝑥𝑥−1  ∑  𝑁𝑁
𝑦𝑦−1  �𝐴𝐴�𝑥𝑥 + 2𝑘𝑘 ,𝑦𝑦� − 𝐴𝐴(𝑥𝑥,𝑦𝑦)��                (10) 

Where 𝐴𝐴(𝑥𝑥,𝑦𝑦) is the intensity at pixel (𝑥𝑥,𝑦𝑦) and 𝑘𝑘𝑢𝑢𝑢𝑢 is the scale that maximizes the intensity 
difference. 
In Support Vector Machines (SVM), the goal is to find a hyperplane that separates data points of 
different classes. For a linear SVM, the decision boundary is given by: 

𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏 = 0                      (11) 
Where 𝑤𝑤 is the weight vector, 𝑥𝑥 is the imput feature vector, and 𝑏𝑏 is the bias term. The hyperplane 

is defined such that it maximizes the margin between the two classes.  
The margin 𝑀𝑀 is the distance between the hyperplane and the closest data points, and is defined as 

𝑀𝑀 = 2
∥𝑤𝑤∥

                       (12) 

The objective is to maximize 𝑀𝑀, which is equivalent to minimizing ∥ 𝑤𝑤 ∥2 - For non-linearly 
separable data, kernel functions transform the input space into a higher dimensional space. The 
polynomial kernel is given by: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = �𝑥𝑥𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗 + 1�2                     (13) 
Where 𝑑𝑑 is the degree of the polynomial, and 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are input vectors. 

RMSE measures the difference between the original and predicted values, after used in evaluating edge 
detection. RMSE is computed as: 

RMSE = �1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1  (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2                    (14) 

Where 𝑂𝑂𝑖𝑖 is the original image, 𝐸𝐸𝑖𝑖 is the processed (e.g, edge-detected) image, and 𝑁𝑁 is the total 
number of pixels.PSNR is used to measure the quality of an image after compression or transformation. 
It is defined as: 

PSNR = 10log10 � 𝑅𝑅2

MSE
�                     (15) 

Where 𝑅𝑅 is the maximum pixel value (e.g, 255 for 8 -bit imoges) and MSE is the Mean Squared Error 
between the original and processed image. 

These mathematical expressions and their explanations provide a foundation for understanding the 
various components of the proposed image annotation and retrieval system, from feature extraction 
to classification and evaluation. Each formula plays a critical role in enhancing the accuracy and 
efficiency of the averall system. In the proposed methodology, the focus is on automatic image 
annotation using machine learning, specifically the Multi-Class Support Vector Machine (MCSVM) 



 
 

classifier. Automatic image annotation is a classification task where an image is automatically labeled 
with semantic keywords based on its visual content. Traditional binary SVM classifiers have 
limitations in handling multi-class problems, which are common in image annotation tasks. MCSVM 
extends the binary SVM approach to handle multiple classes by training classifiers for each class and 
combining their outputs to classify new images. 

The proposed system incorporates the Semantic Keyword Transfer (SKT) algorithm to bridge the 
gap between low-level image features and high-level semantic concepts. Image classification involves 
training a model to recognize patterns in labeled images and applying this model to classify new 
images. Classification techniques such as Minimum Distance Classifier (MDC), K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Trees (DT) 
are commonly used in image processing. 

The SVM classifier is particularly effective in high-dimensional data classification due to its ability 
to create optimal class boundaries by maximizing the margin between classes. In the context of image 
annotation, MCSVM is used to classify images with multiple objects or regions.  

The proposed methodology for automatic image annotation combines fused features (texture and 
shape) with the MCSVM classifier and SKT algorithm. This approach bridges the semantic gap 
between low-level image features and high-level semantic concepts, resulting in improved image 
retrieval accuracy. The integration of Haralick and Tamura texture features with shape features 
provides a comprehensive representation of image content, while the MCSVM classifier efficiently 
handles multi-class image annotation tasks. The evaluation results demonstrate that the proposed 
system outperforms existing methods in terms of retrieval accuracy, making it a promising solution 
for automatic image annotation and retrieval tasks. 

Results and Analysis 

This research proposes and examines a simple algorithm to perform this crowd behavior analysis. 
Given an aerial image of a crowd, the algorithm segments the image into crowd and non-crowd 
regions. On a large scale, we expect a crowd to contain some repetitive visual elements or textures 
that are significantly different from that of a non-crowd region. The proposed algorithm uses multiple 
Gabor filters to capture these different textures in an image and uses improved pre processing and 
support vector machines to segment the image into 2 groups corresponding to crowd and non-crowd 
regions. This research attempts to detect crowds of humans in still images. Given an image, the 
proposed algorithm segments out the regions that the crowd occupies.  The data set consists of 1200 
aerial images of crowds taken from the internet. Each images are tagged with a range 5 properties. By 
testing the algorithm on a range of images with varying properties, this research aims to choose a 
good set of parameters that can detect crowd well despite the diverse characteristics of crowds. 

The ratio 𝜎𝜎/𝜆𝜆 determines the spatial frequency bandwidth and hence the number of parallel 
excitatory and inhibitory stripes in the Gabor filter. The half-response spatial frequency bandwidth 𝑏𝑏 
(in octave) related to the ratio 𝜎𝜎/𝜆𝜆 as follows: 

𝑏𝑏 = log2 
𝜎𝜎
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ln (2)
2

𝜎𝜎
𝜆𝜆𝜋𝜋−�

ln (2)
2

 ,  𝜎𝜎
𝜆𝜆

= 1
𝜋𝜋
�ln (2)

2
2𝑏𝑏+1
2𝑏𝑏−1

.                   (16) 

In order to capture the repetitive texture of a crowd from many perspectives, we use 6 orientations 
with orientation separation angles of 𝑑𝑑𝜃𝜃 = 30∘ : 

𝜃𝜃: 0∘, 30∘, 60∘, 90∘, 120∘, 150∘                    (17) 
We also use a range of wavelengths, evenly spaced in log2-space, ranging from some minimum 

wavelength to the radius of the image (or half its diagonal length). The choice of the minimum 
wavelength is adjusted when we apply the algorithm to some initial images. The general formula for 
the chosen wavelengths is 

𝜆𝜆: 𝜆𝜆min × 2𝑘𝑘 ,𝑘𝑘 ∈ ℕ                      (18) 
For example, if we choose both 𝜆𝜆min and 𝑟𝑟𝜆𝜆 equal to 2 for a 288 × 512 image, there would be a 

total of 42 Gabor filters used from 6 orientations and 7 wavelengths. 
In this work we set the value of the bandwidth 𝑏𝑏 by default to 1 octave. In that case, the Equation gives 
the approximation 



 
 

 𝜎𝜎 = 0.5 × 𝜆𝜆                      (19)  
For each filtered image, we use a Gaussian smoothing function given by: 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 1
2𝜋𝜋𝜎𝜎2

exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
�                    (20) 

where 𝜎𝜎 is the standard deviation that determines the windown size. The ratio 𝜎𝜎/𝜎𝜎𝑔𝑔 (where 𝜎𝜎𝑔𝑔 is 
the standard deviation parameter of Gabor filter) is estimated and adjusted when we apply the 
algorithm to some initial images. We first test them on minimum wavelength λmin = 3 and the 
gaussian vs gabor standard deviation ratio σ/σg = 3. The resulting segmentation is in Figure 5. 

 

 
Figure 5: Test image of moderate crowd scenario 

 
Figure 6: Labeling of images in moderate scenario 

 
Figure 7: Segmentation of crowd scenario 



 
 

 
Figure 8: Test image of high crowd scenario 

 
Figure 9: Plot of confusion matrix 
 
Table 1  
Analysis of performance parameters 

Scenario Precision Recall   F1-Score 
1 1 0.98 0.99 
2 0.98 0.95 0.97 
3 1 0.98 1 
4 1 0.99 1 
5 0.97 0.95 0.95 

 
The algorithm does decently well with both of the picture. For both images, it pinpoints the correct 

regions where the crowds of people are. In the first image, it seems slightly over estimate the size of 
each crowd on the left and right. But the crosswalk stripes do not seem to confuse the algorithm. With 
the second image, the algorithm does a slightly worse job, as the shadow makes it overestimates the 
regions that the crowd occupies, and there are quite a few people who are not captured as belonging 
to the crowd. 

 
Table 2  
Comparative analysis of proposed methodology 
Parameter Previous Work Proposed Work 
Type of Detection Segmentation Segmentation and 

Classification 
Type of Analysis Single Level Scenario Multiple Scenario 
Performance Parameter F Score Precision, Recall and F Score 



 
 

Implementation Complex Simple 
Computational Time Average Faster 

 
In order to lessen the algorithm’s overestimation and be able to detect more people in a scattered 

crowd, we will reduce the value of both the minimum wavelength and the standard deviation ratio. 
The goal is that the algorithm can pick up smaller details in the picture and thus segment more 
precisely all the regions of the crowd. 

In the second trial, we change the minimum wavelength to 2 and the standard deviation ratio to 
1.6. The algorithm seems to improve for both images. For the first image, the algorithm seems to reduce 
the algorithm overestimation, although it seems to confuse a tiny part of the crosswalk stripes as parts 
of the crowd. For the second image, the algorithm seems to no longer include the majority of the 
shadow as parts of the crowd, and there are only 1-2 people who are no included as belonging to the 
crowd. As a result, we choose minimum wavelength equal 2 and standard deviation ratio equal 1.6 as 
the parameters for our algorithm, in addition to the other parameters 

There are some defects inherent in Matlab average filters such as Gabor and Gaussian. In particular, 
they assume that pixels out of the image has intensity of 0, and thus it is possible the algorithm does 
not work well for pixels at the circumference of images. This problem did not arise with the 16 images 
in this data set, but it is a problem that may be needed to deal with when applying to more images in 
different circumstances. This program worked reasonably fast, needed from 20.839009 to 31.543316 
seconds for each image of size 288 × 512. However, the time does add up when we want to process all 
the images multiple times when testing for different parameters. Crowd image segmentation and 
detection play a significant role in various computer vision applications, including crowd monitoring, 
crowd behavior analysis, and public safety. This work presents a comprehensive study on the use of 
Gabor filters and Support Vector Machine (SVM) for crowd image segmentation and detection. The 
Gabor filter is employed to extract discriminative features from crowd images, and SVM is used as a 
classifier to distinguish between crowd and non-crowd regions. The results demonstrate the 
effectiveness of this approach in accurately segmenting and detecting crowds in complex visual scenes. 
This  research concludes by discussing the potential applications of crowd image segmentation and 
detection using Gabor filters and SVM in real-world scenarios. 

Conclusion 

This research presents a novel approach to crowd behavior analysis using a combination of Gabor 
filters and Support Vector Machines (SVM) to detect and segment crowds in still images. The algorithm 
effectively segments an image into crowd and non-crowd regions by identifying repetitive textures 
that differentiate the crowd from the background. Through the use of multiple Gabor filters, the 
method captures various orientations and scales of these textures, enhancing the detection of crowd-
specific characteristics. The SVM classifier is used to cluster the regions based on these features, 
ensuring that crowd regions are distinguished from non-crowd areas. The ability to detect crowds in 
public spaces is crucial for preventing congestion, ensuring safety, and enforcing social distancing 
measures. This research successfully demonstrates that crowd segmentation is a vital preprocessing 
step for more complex tasks such as crowd density estimation and behavior analysis. The algorithm's 
robustness is tested on a dataset of 1200 aerial images with varying properties, including crowd 
density, background variation, and lighting conditions, resulting in reliable crowd detection.Despite 
some limitations, such as overestimation in regions affected by shadows, the proposed methodology 
improves the precision and accuracy of crowd detection. By adjusting key parameters like the 
minimum wavelength and standard deviation ratio, the algorithm's performance was optimized, 
providing precise crowd segmentation. This research highlights the potential for further 
advancements in crowd detection, with applications in public safety, event management, and urban 
planning, offering a foundation for real-time crowd analysis systems in diverse environments. 
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