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Abstract
Speech and Language Impairments (SLI) affect a large and heterogeneous group of people. With our work, we propose a
novel, easy, and immediate detection tool to help diagnose people who suffer from SLI using speech audio signals, along with
a new dataset containing English speakers affected by SLI. In this work, we experiment with feature extraction methods
such as Mel Spectrogram and wav2vec 2.0, as well as classification methods such as SVM, CNN, and linear neural networks.
We also work on data audio augmentation trying to overcome the very common limitations imposed by data scarcity in the
medical field. The overall results indicate that the wav2vec 2.0 feature extractor, paired with a linear classifier, provides the
best performance with a reasonably high accuracy of over 96%.
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1. Introduction
The rapid development of the use of Artificial Intelligence
(AI) techniques in a broad range of scientific fields has
helped solve real-life problems, in particular, the new ad-
vancements revolutionized a wide variety of areas such as
Natural Language Processing (NLP) [1], computer vision
[2, 3], robotics and many more. Due to the huge volume
of medical data being generated worldwide, there is a
clear need for efficient use of this information to bene-
fit health sectors around the world [4, 5]. The medical
community has taken strong notice of the potential of
these new technologies in AI. Machine learning (ML)
thrives in areas where there are lots of data, therefore
ML is one of the essential and most effective tools in
analyzing highly complex medical data [6]. For example,
analyzing medical data originating from disease diagno-
sis with the aid and benefits given by these tools could
be a lot more financially efficient. In healthcare, it is also
vital that diseases are detected early on during diagnosis
and prognosis. The success of these AI methods has also
spread across other domains, including speech recogni-
tion and the music recommendation task [7]. Due to the
relevance of such systems in our day-to-day lives, there
is an increasing need for effective and efficient audio clas-
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sification systems. Automatic classification technologies
are widely applied in voice assistants [8], chatbots [9],
smart safety devices [10, 11], and in different real-world
environments [12, 13, 14].

Our project aims to conciliate these two worlds and
design a Deep Learning (DL) model that can detect, from
a given audio input, if the speaker could be affected by
a speech and language impairment. Individuals with a
Speech and Language Impairment (SLI), generally, de-
spite normal hearing, normal nonverbal intelligence, ad-
equate social functioning, and no obvious signs of brain
injury represent a heterogeneous group of people with
significant difficulty in learning languages [15]. One of
the defining characteristics of SLI is speech disfluency,
more specifically impaired acquisition of pattern-based
components in language, such as morphology, syntax,
and some aspects of phonology such as stuttering. This
commonly used definition leads to early hypotheses re-
garding the etiology of SLI that an impaired language-
specific learning mechanism underlies language develop-
ment and disorders [16, 17, 18]. This disorder is deemed
“primary” or “specific” when there is no clear explana-
tion for these lags in language skills, a defining charac-
teristic of primary language disorder is that its cause is
unknown [19]. Language disorders are also linked to
a heightened risk for psychiatric concerns, attentional
difficulties, social-behavioral problems, and learning dis-
abilities [20, 21]. Many current trends in audio signal pro-
cessing rely on data-driven machine learning approaches
to achieve state-of-the-art results [22, 23, 24]. However,
the quantity and quality of available data influences heav-
ily the achieved performance for a task. Depending on
the specific task, as for our case study, such data can
often be hard to obtain and costly to label particularly in
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the audio domain. As a consequence, researchers often
have to deal with datasets of insufficient size or quality.
Usually, diagnosis of this type of problem is carried out
with human experts, with special in-loco tests [25, 26]
or with the aid of tools such as electroencephalogram
(EEG) [27]. We want to design an easy and accessible
model that can detect if a person could be affected by
an SLI without having to go through complex and time-
consuming procedures. In this manner, such a model
could also be implemented in robots from a human-robot
interaction (HRI) perspective, allowing the machine to
detect people with SLI and change its behavior and form
of interaction accordingly.

This study proposes an analysis of a novel, yet simple,
approach of using exclusively audio recordings for SLI
detection. Specifically, in Section 2 we start by exploring
the current literature, and then we will talk about the
problems faced in collecting our data and how we handled
them in section 3. After that, in Section 4, we will go
through an analysis of the techniques and models used to
perform the detection, the trials and results we obtained
from them in Section 5, and then we will discuss the
limits of our approach in Section 6. We will finally draw
our conclusions in Section 7.

2. Related Works
In the ever-evolving landscape of computer science and
artificial intelligence, the domains of audio data augmen-
tations and feature extraction are undergoing very rapid
changes and revolutions thanks to groundbreaking re-
search and advancements. In the following sections, we
will delve into the story and explore the state of the art
of these fields.

2.1. Audio Data Augmentation
One of the most important challenges in developing an
efficient and effective audio classification system is ac-
cessing a large and well-annotated dataset. One of the
main obstacles in developing sound classifications is a
lack of a sufficient quantity of labeled data. This is due
to the following main reasons: class imbalance, data pri-
vacy issues, time constraints involved in data collection,
high dependency on expertise for effective annotation,
etc. [28, 29, 30] Data Augmentation (DA) is defined as the
creation of new data by adding deformations to increase
the variety of the data so that these deformations do not
change their semantic value. It is well known that DA can
improve the algorithm’s performance, tackle the issue
of overfitting [31, 32], and improve the generalization
ability of Deep Neural Networks (DNN); this happens be-
cause DA averages over the orbits of the group that keeps
the data distribution invariant, which leads to variance

reduction [33]. DA is key when dealing with problems
regarding audio signals because the Convolutional Neu-
ral Network (CNN) is the most widely used model in
audio applications and when faced with small datasets,
CNN’s capacity for information retention becomes a flaw;
the models memorize the training data and lose perfor-
mance on new data [34, 35]. In addition to increasing
generalization capabilities, the augmentation of data also
allows the designed system to improve data significance,
regardless of the available data samples [36, 37]. These
strategies include methods on raw audio signals, as well
as applying other techniques on samples converted into
spectrograms or even more complex approaches such
as interpolation and nonlinear mixing on the spectrum.
We will now list and briefly explain the most used audio
augmentation techniques.
Pitch Shifting. The tone of each audio signal in the
dataset is lowered or raised by a factor preserving its
duration.
Time Stretching. The audio sample is slowed down or
sped up by a ratio without altering the pitch drastically.
Time Shifting. Time is shifted to the left or to the right
by a random factor or by a predetermined amount.
Volume Adjustment. The volume of the audio file is
altered, there is a change in loudness, or sometimes a
dynamic range compression is applied.
Noise addition. Noise is introduced into the samples,
other than a simple random Gaussian noise there are
many types of noises such as white noise [38], babble
noise, static noise [39], factory noise, etc.
SpeedUp. The signal is resampled at a preset sampling
rate and later returned at the original sampling rate, re-
sulting in a speed change.
Filtering. Several kinds of filters are applied to the
input audio. Most of the common filters are band-pass,
band-stop, high-pass, high-shelf, low-pass, low-shelf, and
peaking filters.

This topic is so important that researchers also devel-
oped and designed methods that generate entirely new
samples, for example with the aid of a Generative Adver-
sarial Network (GAN) in [40] people created new variants
of the audio samples that already existed in their dataset
and then utilized an evolutionary algorithm to search
the input domain to select the best-generated samples, in
this way they were able to generate audio in a controlled
manner that contributed to an improvement in classifica-
tion performance of the original task. One very recent
DA method proposed by Google is SpecAugment [41],
in this method, the two-dimensional spectrum diagram
is treated as an image with time on the horizontal axis
and frequency on the vertical axis. Encoder-decoder net-
works are becoming very popular in fields different from
NLP, this is because they can convert a high-dimensional
input into a lower-dimensional vector in latent space,
researchers in [42] have experimented with a Long Short
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Term Memory (LSTM) based auto-encoder to produce
artificial data.

2.2. Audio Feature Extraction and Models
It should be noted that data augmentation is not the only
way to reduce overfitting and improve the generalization
ability of DL models. Model structure optimization, trans-
fer learning, and One-shot and Zero-shot learning are
also known strategies that deal with overfitting from dif-
ferent aspects. We will now focus on the most common
processing flow of audio classification: preprocessing the
original audio data, feature extraction, and feeding the
features into the DL model. Audio signals have very high
dimensionality, so thousands of floating point values are
required to represent a short audio signal, raising the
need for exploring dimensionality reduction and feature
extraction methods. The degree of how great or poor a
model performs is also determined by the choice of fea-
tures used feature representation is crucial to improve the
performance of learning algorithms in the sound classifi-
cation task. One of the first features that comes to mind
when thinking of an audio signal is the spectrogram, its
characteristics have been widely used by previous re-
searchers in different domains of sound classification,
such as heartbeat sounds to detect heart diseases [43].
Another method used to extract features implements the
Mel-Frequency Cepstrum (MFC), which is a representa-
tion of the short-term power spectrum of a sound, based
on a linear cosine transform of a log power spectrum
on a nonlinear mel scale of frequency, where the Mel-
Frequency Cepstral Coefficients (MFCC) were successful
in representing sounds for the detection of respiratory
diseases [44]. Some methods that also use the MFC are
the long-mel [45], mel filter bank energy [46], inverted
MFCC [47], and many more. Although mel spectrogram
and MFCC are commonly used, people also implement
bag of audio words [48], Discrete Gabor Transform (DGT)
audio image representation [49], ZCR, entropy of energy,
spectral centroid, spectral spread, spectral entropy [50],
and so on.

Classification is a common task in ML and pattern
recognition. DL methods applied in these tasks, such as
CNN models, often do not perform as well as more tradi-
tional ML methods such as random forest, Adaboost, etc.,
especially in small data [51]. On the other hand, typical
ML algorithms, such as ensemble classifiers have been
shown to learn features better and adapt more with im-
proved generalization abilities even in the case of small
and imbalanced datasets. Over the past years, differ-
ent ML algorithms have been used for detecting sound
events and medical sounds, and the achieved results were
of great significance. Classifiers, such as Support Vec-
tor Machine (SVM), have shown to be very effective in
sound classification tasks [52], also MultiLayer Percep-

trons (MLP) were very useful in person identification us-
ing speech and breath sounds [53], Hidden Markov Mod-
els (HMM) [54], logistic regression and linear discrimi-
nant analysis [55] and others. Some studies exploited the
effectiveness of multiple simpler methods with ensemble
methods such as random forests [56, 51], XgBoost [57],
and so on. Unfortunately, considering the complexity
of sound and the need to sometimes train an extremely
sensitive classifier that can identify different represen-
tations of sound features, traditional ML still suffers in
these kinds of tasks from having less complex models. In
this case, the choice of DL methods has been proven to be
more efficient. DL methods differ from traditional ones
because they can extract meaningful features from data
through the application of a hierarchical structure [58]
CNNs were able to achieve significant and more accurate
training results [59]. People tried to combine the best of
these two worlds by implementing hybrid methods, for
example, researchers merged an SVM and a GRU-RNN
in [60].

3. Dataset
In the medical field, in particular, regarding specific prob-
lems such as the one presented in this paper, data is not
always freely available or available at all. This is mostly
due to privacy concerns [61, 62]. Another important rea-
son, which is also related in some ways to privacy [62],
lies in the overall low level of digitization of healthcare
information [63]; in fact, according to Gopal G. et al.
[64], healthcare has the lowest level of digital innova-
tion compared to other industries, such as media, finance,
insurance, and retail, contributing to limited growth of
labor productivity. In addition to this, it is also worth
noting that not every dataset containing the desired med-
ical information is also in the desired format, in which
case the only remaining option is to create an entirely
new dataset from scratch, that is what we did.

3.1. Data Collection
The process of collecting audio data is a pivotal phase
in this research. For our dataset, we aimed to collect a
sufficient amount of pure, non-multimodal, audio data in
a waveform representation. Audio data can be stored in
various formats, each with its characteristics, trade-offs,
and use cases. Common audio formats include Wave-
form Audio File Format (WAV), MPEG-1 Audio Layer
3 (MP3), Free Lossless Audio Codec (FLAC), and more.
These formats differ in terms of compression, quality, and
compatibility. For this study, we opt for the WAV format
[65], which is an uncompressed audio file format, devel-
oped by IBM and Microsoft, that efficiently stores audio
data in a waveform representation without any loss of in-
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Figure 1: Audio sample from our dataset

Figure 2: Audio sample with noise from our dataset

formation. Thanks to its characteristics, which guarantee
the highest amount of information for an audio signal,
WAV is the audio format used as input by wav2vec 2.0
[66], a state-of-the-art speech model developed by the
Facebook AI Research group (FAIR) that is one of the
models used in this work.

The data collection process began with the identifi-
cation of audio samples containing English speakers af-
fected by Speech and Language Impairment (SLI) orig-
inating from different conditions. This diverse dataset
was intentionally curated to optimize the performance
of SLI detection. By including speakers with a range of
impairments, the model is exposed to a broad spectrum
of speech patterns and anomalies, thereby enhancing its
ability to accurately detect SLI in real-world applications.
To source such data, we turned to YouTube, a vast and
user-friendly repository of video and audio content. The
videos found were then converted into audio files in WAV
format using an online converter.

We finally paired the collected data with a subset of
the LibriSpeech dataset [67] containing healthy English
speakers only.

3.2. Data Preprocessing
To feed the waveform signals to the model, we needed
to ensure that they were appropriately prepared and pro-
cessed. Effective data preprocessing is fundamental to
enhancing the model’s performance, as it directly im-
pacts the model’s ability to extract meaningful patterns
and insights from raw input data. This was performed
in different steps. Firstly we identified different time
windows from each audio file to cut out unnecessary in-

Table 1
Dataset samples

Train Test

SLI Healthy SLI Healthy

Non-augmented 1010 1010 124 125
Time-shifted 893 1010 104 125
Time-stretched 1010 1010 124 125
Pitch-shifted 2020 2020 248 250
Noise-addition 1010 1010 124 125

Total 5943 6060 724 750

Dataset 12003 1474

formation from them, keeping just human speech sounds
(with or without background noise). After that, we an-
alyzed the time windows by dividing each one of them
into smaller ones containing the speech of one single
person each. Even if there exist different tools available
to detect human speech, considering the scarcity of data
we suffer, we decided to perform this step manually to
be sure that the quality of our dataset is not affected.

Secondly we split the time windows that we obtained
in 3-second clips. We chose this length as a trade-off be-
tween a sufficient length, to capture fluency information
and a brief duration. Our decision was also based on the
standard approach used in the state-of-the-art working
with wav2vec 2.0 in these kinds of tasks [68, 69]. Then
these clips were saved in two different subsets, creat-
ing the Train and the Test set, ensuring that the same
speakers do not overlap in both datasets.

Finally the acquired data was augmented to increase
its dimension. We applied the following audio augmen-
tations techniques: Time shifting, Time stretching, Pitch
shifting, and Noise addition, using Gaussian noise. To do
so, we used the python library audiomentations [70]. For
Time shifting we resampled the time windows shifting
the starting time further by 1.5 seconds; For Time stretch-
ing we slowed down the speed of the audios by a ratio
of 0.8; For the Pitch shifting we both lowered and raised
the pitch tone by a value of 3, obtaining for each clip two
additional ones; Finally for the Noise addition, we added
a 0.01𝑚 amplitude Gaussian noise. Audio waveforms
before and after noise addition are shown in Fig. 1 and
Fig. 2. All the augmentation techniques were applied on
the original audio; Time shifting was directly applied on
the time windows, while the other ones on the initial 3
seconds clips.

The number of samples in the created dataset is shown
in Table 1, while in Table 2 we collect the audio data
augmentation techniques used and their respective pa-
rameters.
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Table 2
Pamateres used for augmentation methods

Augmentations Parameters

Time-shifting shift = +1.5 seconds
Time-stretching ratio = 0.8
Pitch-shifting shift = ± 3 tones
Noise-addition amplitude = 0.01 meters

Figure 3: Log Mel Spectrogram of a sample from our dataset

3.3. Data Management
The dataset contains audio files in the WAV format, its
data is affected not only by its advantages but also by its
drawbacks. The complete dataset, which comprehends
both original and augmented data, was too large to be
loaded in an online manner using the original files. To
overcome this problem we loaded the data in batches
and concatenated them in subsets that were saved in
the .arrow format [71], a columnar memory format for
flat and hierarchical data, organized for efficient analytic
operations. In this way, large data can be saved, loaded,
and processed avoiding memory usage problems.

4. Models and Techniques Used
The best way to approach a problem is to know deeply
every factor that influences it and how the key compo-
nents work, after that, one can tackle it and try to capture
its essence with the maximum capabilities. In the follow-
ing subsections, we present a brief description of the
techniques we used and the models we implemented.

4.1. Log Mel Spectrogram
The way humans hear frequencies in sound is known as
pitch, it is a subjective impression of the frequency. They
do not perceive frequencies linearly, on the contrary, hu-
mans are more sensitive to differences between lower
frequencies than higher ones. For example, the differ-
ence between audios of frequency 100𝐻𝑧 and 200𝐻𝑧
is way bigger than 1000𝐻𝑧 and 1100𝐻𝑧, even though
the absolute difference is the same amount. Humans per-
ceive sounds on a logarithmic scale rather than a linear
scale. The Mel Scale [72] was developed to take this into
account by conducting experiments with a large number
of listeners. It is a scale of pitches, such that each unit
is judged by listeners to be equal in pitch distance from
the next. The human perception of the amplitude of a
sound is called loudness, similarly to frequency, also loud-
ness is heard logarithmically rather than linearly. The
Decibel scale is used to measure the loudness of a sound,
for example, a sound with an amplitude of 20𝐷𝑏 is 10
times louder than one with an amplitude of 10𝐷𝑏. We
can see that, to deal with sound realistically, we need to
use a logarithmic scale via the Mel Scale and the Decibel
Scale when dealing with Frequencies and Amplitudes in
our data. Spectrograms are generated from sound signals
using Fourier Transforms. A Fourier Transform (FT) [73]
is a mathematical formula that allows us to decompose
the signal into its constituent frequencies and displays
the amplitude of each frequency present in the signal.
Spectrograms are generated from sound signals using
FTs. In other words, an FT converts the signal from the
time domain into the frequency domain, and the result is
called a spectrum. A spectrogram consists in dividing the
sound signal into smaller time segments, then applying
the FT to each segment, and finally, the combination of
these segments in a single plot is called spectrogram. A
Mel Spectrogram makes two important changes relative
to a regular spectrogram that plots frequency vs time: it
uses the Mel scale instead of frequency on the y-axis and
uses the Decibel scale instead of amplitude to indicate
color. In Fig. 3 we can see a normalized version of the Mel
spectrogram of one of the audios present in the dataset.

4.2. Wav2vec 2.0
Wav2vec 2.0 [66] is an exceptional tool that learns pow-
erful representations from speech mimicking the human
learning experience. People start, in fact, since the early
stages of their lives comprehending language without la-
beled data, i.e. kids learn from listening to adults around
them. It is also able to outperform state-of-the-art models
while using 100 times less labeled data, thus demonstrat-
ing the feasibility of training without huge amounts of
labeled data which is very hard to achieve in a field deal-
ing with a complex medium such as audio.
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Figure 4: Wav2vec 2.0 pipeline

The model can be visualized in Fig. 4 and next, we will
describe its components.
Multi-layer convolutional feature encoder. It

consists of several blocks containing a temporal con-
volution followed by layer normalization and a GELU
activation function.
Context network. It follows the Transformer ar-

chitecture, differently from a normal Transformer that
uses fixed positional embeddings, a convolutional layer
is used instead, and it acts as a relative positional embed-
ding. The output of the convolution followed by a GELU
is added to the inputs and then a layer normalization is
applied.
Quantization module. It discretizes the output of

the feature encoder to a finite set of speech represen-
tations via product quantization. Product quantization
amounts to choosing quantized representations from mul-
tiple codebooks and concatenating them. The Gumbel
softmax enables choosing discrete codebook entries in a
fully differentiable way.

The feature encoder 𝑓 : 𝑋 → 𝑍 takes as input the raw
waveform 𝑋 and outputs the latent speech representa-
tions 𝑧1, ..., 𝑍𝑡 for 𝑇 time steps, then they are fed to the
transformer 𝑔 : 𝑍 → 𝐶 that captures information from
the entire sequence and outputs context representations.
The output of the feature encoder is also discretized to
𝑞𝑡 with a quantization module to represent the targets
in the self-supervised objective. During the model’s pre-
training a part of the latent speech representations that
are generated from the feature encoder are masked, and
then the model learns the representations of speech au-
dio by solving a contrastive task, which requires iden-
tifying the true quantized latent speech representation
for a masked time step within a set of distractors. After
pre-training on unlabeled speech, the model is fine-tuned
on labeled data with a Connectionist Temporal Classifi-
cation (CTC) loss.

4.3. Classification Methods
Classification is the part that stands out the most in an
entire model because it outputs the labels that are used
to compute the evaluation metrics, even though it is the
most noticeable part of a model, in our case they are just
the final piece of the puzzle since most of the work is
done in the previous steps of the pipeline; still, we want
to pay some attention to the type of classifiers we used
in our work.
Support Vector Machine (SVM) [74] is one of the

first algorithms learned by every ML expert, it is sim-
ple yet it can achieve excellent results, especially with
small amounts of data where other ML algorithms tend
to have some difficulties. The objective of the support
vector machine algorithm is to find a hyperplane in an
N-dimensional space (𝑁− the number of features) that
distinctly classifies the data points. To separate the two
classes of data points, many possible hyperplanes could
be chosen. SVM finds a plane that has the maximum mar-
gin, i.e. the maximum distance between data points of
both classes. Maximizing the margin distance provides
some reinforcement so that future data points can be
classified with more confidence. The biggest difficulty
encountered when testing the SVM is that even with low
amounts of data the model had memory issues, since au-
dio features are extremely large and with multiple classes,
while SVM excels with data that has fewer classes, thus
making it hard to fully exploit SVM’s strengths.

One of the best and most efficient methods to generate
labels from an ML model is adding a linear layer at the
end of the pipeline, that is what we did with our wav2vec
2.0 feature extractor, we have included a linear classifier
𝑓(𝑥𝑖,𝑊, 𝑏) = 𝑊 · 𝑥𝑖 + 𝑏 and we trained its weights to
output two types of labels, one for people affected by a
SLI and one for the others.
Resnet34 is a very famous residual neural network

that was pre-trained on ImageNet-1k and was released
by Microsoft [75], thanks to residual learning and skip
connections this type of model can be much deeper than
normal convolutional neural networks. We decided to
fine-tune this model with the features extracted with the
log mel spectrogram from our dataset.

5. Results
In this section, we will describe the different architectures
that we tested in detail and then we will comment on the
obtained results.

5.1. Architectures
Our first approach was to use the wav2vec 2.0 model,
in particular the pre-trained wav2vec2-base model from
HuggingFace [76], to perform Feature Extraction on the
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pre-processed non-augmented dataset and then use a
SVM, the Support Vector Classifier (SVC) model from
scikit learn [77], to perform the classification process tak-
ing the extracted features in input. As it was explained in
the previous section 4, wav2vec2.0 takes a raw waveform
signal as input, 3 seconds clips in WAV format in our
case, then extracts audio features from them following
what it had learned in its previous training. The extracted
features were then standardized using the StandardScaler
from scikit learn, removing the mean and scaling them to
unit variance. The standardization of a dataset is a com-
mon requirement for many ML estimators: they might
behave badly if the individual features do not more or less
look like standard normally distributed data (e.g. Gaus-
sian with 0 mean and unit variance). Finally, we fitted
the SVM using a linear kernel.

Using the SVM model as a classifier was our first at-
tempt to cope with the limited number of samples at our
disposal. Once the dataset was augmented we ceased
to use the SVM due to its intrinsic limitations at work-
ing with large datasets; so we opted for a complete DL
approach.

For our second architecture, we substituted the classi-
fier head with a simple Fully Connected (FC), or linear,
layer, keeping the wav2vec 2.0 model to perform the
Feature Extraction, this time, on the augmented dataset.
We trained the model for 5 epochs through the Trainer
class by HuggingFace on a batch of 32 samples each, set-
ting the learning rate to 2𝑒− 5 after a warm-up period
at a ratio of 0.1 and decreasing its value linearly till the
end of the training.

The last architecture tested was a CNN, more precisely
resnet34, that received as input the logmel spectrogram
of the audios and generated as output the labels of the
given audio. All the procedures to extract the spectro-
gram were carried on with the librosa library, firstly the
sample was resampled with a new rate of 22050, then
the mel spectrogram extracted was normalized and fi-
nally scaled. Regarding the CNN, only the last layer was
modified, it was replaced with a linear layer that had two
output channels and the whole model was fine-tuned
without freezing the previous layers. Training was car-
ried out for 50 epochs, the learning rate started at 2𝑒− 4
and decayed by a factor of 10 every 10 epochs; the loss
function used was the CrossEntropyLoss. All parameters
used to compute the spectrum are shown in Table 3.

5.2. Evaluations
In Table 4 we show the accuracy of our architectures,
compared with others architectures [78] As we can see,
the first model is the one with the lowest score. This
means that, despite the ability of the SVM to avoid over-
fitting on the poor quantity of data provided, it cannot
accurately detect the speakers affected by SLI. This is

Table 3
Parameters used to compute the Spectrogram

Log Mel Spectrum Parameters

Sample rate 22050
Windows length 2048
Hop length 512
N mels 128

Table 4
Architectures Accuracy

Models Accuracy

LASSO (Full Model) [78] 0.84
1NN CHI Strategy [79] 0.8832
LMT BL Strategy [79] 0.9269
MLP BL Strategy [79] 0.9013
NB BL Strategy [79] 0.9269
CNN [80] 0.8421

Our Models Accuracy

Wav2vec2.0 + SVM 0.6627
Wav2vec2.0 + FC 0.9661
Log Mel Spectrogram + CNN 0.9362

probably due to the magnitude of the feature space ex-
tracted by the wav2vec 2.0 model.

Using, instead, an augmented dataset together within
a DL approach we manage to reach a very high value
of accuracy, the highest of our models. The wav2vec
2.0 feature extractor, having enough data to work with,
managed to extract the key features and information
needed to correctly identify which voice belongs to a
healthy speaker or an impaired one.

The CNN model that was fine-tuned with Log Mel
Spectrum features achieved great accuracy in labeling
samples, unfortunately, through a more accurate analysis
of the confusion matrices shown in 5, 6, and 7, we dis-
covered that the number of false negatives is extremely
high compared to the false positives. In the medical field,
especially for tools helping with diagnosis, it is crucial
to have the smallest number of false negatives, since an
undetected disease is much worse than a false positive,
medical operators could be missing a lot of vital anoma-
lies and in time they will lose trust in the system. In
our case recall is way more important than the preci-
sion score, from Table 5 we can see that the CNN model
reaches only a recall score of 0.85, on the other hand
wav2vec 2.0 achieves a better recall and F1 Score.

6. Limitations and Future Works
It is of critical importance to examine our achievements
and acknowledge the constraints that affect our work.
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Table 5
Architectures overall performances

Model F1 Score Precision Recall

Wav2vec2.0 + SVM 0.6316 0.6923 0.5806
Wav2vec2.0 + FC 0.9655 0.9641 0.9668
Spectrogram + CNN 0.9187 0.9983 0.8508

While our research has given promising results, the fol-
lowing section delves into the limitations that shape our
results and sets a base for future possible improvements.

6.1. Limitations
The lack of data quantity and quality is one of our major
constraints. The problem of data scarcity has already
been addressed in section 3 so we will now talk about
quality.

In the realm of ML and DL, it has been well docu-
mented that the issue of low-quality data and disparities
in data collection methodologies exacerbate the inherent
biases within the data when utilized for training algo-
rithms, a clear example is given by the societal or political
biases reflected in word embeddings or large language
models [81, 82]. This concern arises when the data col-
lected for training purposes exhibits significant varia-
tions in quality and collection techniques, resulting in
a heightened vulnerability to intrinsic biases within the
data. Such biases can subsequently propagate through
the training process, influencing the performance and
fairness of ML and DL algorithms leading to further dis-
parities and discrimination in the real world, due to the
accessibility to such tools [83, 84]. Particularly, in our
work, the collection of English speakers affected by SLI
presents the limitation of containing mostly speakers
with American accents. In real-world applications this
can have negative effects on the model performance, for
example, the algorithm could achieve higher and better
results with American people rather than with Mexican
ones, or other English-speaking minority ethnic groups
of people whose accent differs from the standard Ameri-
can one [84].

Another limitation of our dataset is that it does not
contain children speakers. This is because finding such
materials on the web is often difficult, and it is more
difficult to create them from scratch due to the small
number of certified children affected by SLI and, since
they are minors, due to more strict privacy concerns.
The most used dataset in this field [85] consists of one
second clips of Czech speaking children, both healthy or
affected by SLI. Although this dataset could be useful for
the detection of SLI, it is limited to the Czech language
and children speakers. This kind of limitation is common
in the healthcare field, especially in SLI detection.

Healthy SLI
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93 32

52 72

Figure 5: Wav2vec 2.0 + SVM confusion matrix

6.2. Future Works
Future works should focus on the creation of a new
dataset comprising people speaking different languages,
since it is not yet known, to our knowledge, whether flu-
ency problems can be generalized in all languages and a
wide age range, knowing that the features and the overall
characteristics of the voice between children and adults
change in general, due to their anatomical differences
[86].

Given the technological advancement in the field of
generative audio with astonishing tools such as the au-
dio manipulation software produced by ElevenLabs [87],
which can clone voices, generate new ones, translate
them into other languages, and make them read texts,
new kinds of audio enhancement can be experimented
with, and although they cannot be used now, because
they cannot replicate stuttering or other kinds of fluency
features that characterize people affected with SLI yet,
they are promising tools to take into consideration for
the near future.

7. Conclusions
This work proposes a novel approach to Speech and Lan-
guage Impairment (SLI) detection, based solely on audio
and AI audio-based techniques, together within an en-
tirely new dataset composed of English speakers affected
by SLI. The results show that, even with some limitations
related to the scarcity of data available, Deep Learning
methods can achieve accurate estimations on healthy
or impaired speakers. In particular, wav2vec 2.0, with a
Fully Connected layer as the classification head, reaches
an accuracy of over 96% on our test set. Our findings also
confirm that data audio augmentation techniques are fun-
damental to training Deep Learning models adequately.
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Figure 6: Wav2vec 2.0 + FC confusion matrix
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Figure 7: Log Mel Spectrogram + CNN confusion matrix
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