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Abstract
Femtosecond laser writing is capable of producing highly localized, volumetric changes within materials, which provide
the foundations for using the material to create 3D photonic structures. The present work deals with the formation of
femtosecond laser-induced tracks in silver containing zinc phosphate glass, for the study of the effect of laser parameters, like
the pulse repetition rate, by varying the parameters from 10, 100 to 500 kHz and pulse energy from 60 to 120 nJ. The changes
in microstructure and optical properties are recorded through optical microscopy in both brightfield and fluorescence modes,
with a specific interest in the dimensions of the laser-written tracks. This study was conducted using an Artificial Neural
Networks (ANN) to predict the width and height of the tracks based on the varying laser exposure parameters. The analysis
includes a comprehensive assessment of prediction accuracy through Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient of Variation of the Root Mean
Squared Error (CVRMSE), and determination coefficient (𝑅2) with expected values denoted as 0.232%, 0.482%, 0.312%, 0.066%,
10.241%, and 0.909 respectively. These metrics do show the effectiveness and reliability of the ANN model in capturing the
complex dynamics of the laser material processing phenomenon. In fact, these resourceful predictions are a mile toward
the real optimization of laser processing techniques in material science—a quantitative tool for the prediction of material
responses under varied laser settings.
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1. Introduction and Literature
Review

The recent breakthroughs in femtosecond laser technol-
ogy have inaugurated a novel paradigm within material
science, facilitating unparalleled control over the manip-
ulation of material properties on the micro and nanoscale
[1, 2, 3]. Similarly, the integration of technologies has
been demonstrated in other fields, such as in telecommu-
nications for enhancing real-time events [4, 5, 6, 7, 8], and
in public health through IoT and computer vision for en-
suring health safety. Femtosecond lasers, distinguished
by their exceptionally brief pulse durations, enable lo-
calized modifications within materials, circumventing
the substantial thermal damage typically observed with
longer pulse durations. It is particularly important for
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Non-Terrestrial Networks (NTNs) [9]. Significant ad-
vancement represents a paramount contribution to the
field of photonics and advanced material engineering,
where the structural integrity and performance char-
acteristics of materials must be rigorously maintained
throughout processing [10]. The realization of nanoscale
structuring with exceptional resolution highlights the
paradigm-shifting potential of this technique [11].

Zinc phosphate glasses containing silver, lauded for
their exceptional potential in photonic applications and
devices, have garnered significant interest as promising
candidates for femtosecond laser processing. The in-
corporation of silver not only serves to augment the
glass’s optical properties, such as its refractive index
and nonlinear optical response, but also unlocks avenues
for groundbreaking advancements in high-density op-
tical data storage and waveguide fabrication [12]. The
meticulous control over material properties achievable
with femtosecond lasers is instrumental in propelling the
application of these materials in next-generation opti-
cal technologies, and emphasizes the crucial need for a
thorough understanding of laser-material interactions
[10, 13]. Contemporaneous investigations into femtosec-
ond laser processing of glasses have unveiled promising
advancements in the microscale manipulation of optical
properties. Shakhgildyan et al. have demonstrably shown
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that femtosecond direct laser writing (DLW) can induce
luminescence, absorption, and generate birefringence
within micron-sized regions of silver-doped zinc phos-
phate glasses, obviating the need for subsequent thermal
treatment [14]. Subsequent in-depth investigations by
Guérineau et al. have significantly enhanced the compre-
hension of these phenomena. Their work has introduced
the concept of Type AC and AN modifications, encom-
passing both silver clusters and nanoparticles, thereby
refining the existing classification system for microstruc-
tural modifications within glasses [15]. This meticulous
control over material properties at the micron scale rep-
resents a critical facet in the development of novel pho-
tonic devices. Alassani et al. have demonstrably achieved
success in inscribing three-dimensional luminescent pat-
terns that achieve co-localization of silver clusters and
rare-earth ions. This achievement underscores the poten-
tial for groundbreaking advancements in novel optical
data storage and sensor applications [16, 17]. Concur-
rently, the research conducted by Lv et al. exemplifies
the fabrication of cladding waveguides in proximity to
the glass surface. This strategic positioning optimizes the
interaction of light with the modified regions, thereby
facilitating enhanced photonic integration [18, 19].

Beyond the conventional structuring of waveguides,
the femtosecond laser has been leveraged to create in-
tricate photonic structures within glass. Tsimvrakidis et
al. have delved into the reversible inscription of waveg-
uides in silver phosphate glasses, thereby paving the
way for the realization of dynamically reconfigurable
photonic circuits [20]. In a similar vein, Guérineau et
al. have documented their success in employing direct
laser writing (DLW) to fabricate subwavelength periodic
structures within mid-infrared glasses. This achievement
signifies a novel level of control over the manipulation
of optical properties facilitated by DLW [21]. Desmoulin
et al. further elucidated this capability of tailoring the
glass’s microstructure at sub-micron scales. Their work
demonstrably showcased selective etching and post-laser
writing surface topography engineering, thereby high-
lighting the potential for intricate surface structuring
in photonic applications [22]. At a foundational level,
the investigations by Bukharin et al. have significantly
augmented the comprehension of the heat accumulation
regime governing femtosecond laser writing. Their work
has meticulously elucidated how adjustments in laser
parameters can exert fine-grained control over modifica-
tions in refractive index and waveguide properties [23].
Collectively, these advancements significantly enrich the
repertoire of tools available to engineers specializing in
the design of cutting-edge optical materials and devices.
This enrichment is driven by the ability to harness the
unique properties of silver-containing glasses, which are
further accentuated through femtosecond laser interac-
tions. Table 1 subsequently presents a succinct compila-

tion of these pivotal studies, offering a concise overview
of the investigated materials and the reported discoveries.

Following a critical examination of the key studies
summarized in Table 1 regarding femtosecond laser writ-
ing in photonic glasses, it becomes apparent that sig-
nificant strides have been made in comprehending and
employing femtosecond laser technologies for micro- and
nanoscale structuring within diverse glass compositions.
However, certain areas warrant further exploration. The
majority of existing research has primarily concentrated
on manipulating physical properties such as refractive
index alterations and the fabrication of luminescent pat-
terns. Conversely, less emphasis has been placed on
the development of predictive models for these changes
and a comprehensive analysis of how varying laser pa-
rameters influence the physical and optical properties of
silver-containing zinc phosphate glasses. Additionally,
while some studies have leveraged Artificial Intelligence
(AI) for pattern inscription and modifications, the appli-
cation of Artificial Neural Networks (ANNs) to predict
outcomes based on laser parameters remains relatively
undocumented in the context of optimizing femtosecond
laser processes.

This lacuna underscores the necessity for a systematic
approach to prognosticate and optimize the properties of
materials processed with femtosecond lasers. This is pre-
cisely where the current research intervenes. The study
meticulously documents the microstructural modifica-
tions induced by varying laser parameters and presents a
pioneering application of ANNs to achieve accurate pre-
dictions of laser-written track dimensions. The following
highlights the paper’s principal contributions:
· Leveraging an Artificial Neural Network (ANN) to

achieve accurate predictions of track dimensions through
comprehensive consideration of diverse laser parameters.
· In-depth investigation of the influence exerted by

pulse repetition rates and pulse energy on track forma-
tion.
· Concurrent implementation of both brightfield and

fluorescence microscopy to evaluate changes, providing
a multifaceted approach to optical characterization.
· Employing a battery of error assessment metrics to

rigorously validate the predictive accuracy of the ANN
model.

2. Experimental Methodology:
Design, Materials and Methods

To investigate the formation of laser-induced tracks in
silver-containing zinc phosphate glass, a detailed experi-
mental setup was employed using a Yb:KGW femtosec-
ond laser system named Pharos SP, Light Conversion Ltd
[26]. with a regenerative amplifier. The laser, operating
at a wavelength of 1030 nm, was precisely controlled to

11



Luttfi A. Al-Haddad et al. CEUR Workshop Proceedings 10–19

Table 1
Summary of key studies on femtosecond laser writing in photonic glasses

Ref. Material Studied Key Findings Experimental AI/Expert System

[14]
Silver-doped zinc phos-
phate glasses

Joint formation of fluorescent silver clusters
and plasmonic silver nanoparticles without
heat treatment.

Yes No

[15] Phosphate glass
Classification of microstructure modifica-
tions in glass (type AC and AN) depending
on laser parameters.

Yes No

[16]
Yb3+ and silver-
containing phosphate
glass

Demonstration of DLW to inscribe 3D lu-
minescent patterns utilizing co-localization
of silver clusters and Yb3+ ions.

Yes Yes

[18]
Yb-doped phosphate
glass

Fabrication of cladding waveguides with
controlled light propagation using a fem-
tosecond laser.

Yes No

[20]
Silver metaphosphate
glass

Reversible inscription of waveguides allow-
ing dynamic photonic device configuration.

Yes Yes

[21]
Mid-Infrared Gallo-
Germanate Glass

Embedding subwavelength periodic struc-
tures inside optical materials.

Yes Yes

[22]
Silver-containing phos-
phate glass

Permanent formation of fluorescent struc-
tures and surface topology engineering
through laser structuring.

Yes No

[23] Fused silica and Nd
Studied heat accumulation regime in fem-
tosecond laser writing affecting refractive
index.

Yes No

[24]
Silver-containing sodium-
gallium phosphate
glasses

Influence of glass network structure on
laser-writing properties and photosensitiv-
ity.

Yes No

[25]
Silver-containing sodo-
gallo-phosphate glasses

Investigation of silver species generation
under X-ray and femtosecond laser expo-
sure.

Yes No

emit pulses with a duration of 180 fs at repetition rates
of 10, 100, and 500 kHz. The energy of these pulses was
varied from 60 to 120 nJ using a motorized polarization
attenuator, while a motorized half-wave plate was uti-
lized to align the linear polarization of the laser beam
parallel to the scanning direction.

The focused laser beam was directed into the volume
of a glass plate, measuring 0.4×1.5×2.5𝑐𝑚, positioned
on an air-bearing stage (Aerotech ABL1000). This setup,
synchronized with the laser system via SCA Professor
software, facilitated precise 3D positioning of the glass
sample at a constant scanning speed of 1 mm/s and main-
tained a fixed focus depth of 150 𝜇𝑚. To avoid over-
lapping, a spacing of 200 𝜇𝑚 between the tracks was
maintained throughout the experiment.

The glass used in these experiments was silver-
containing zinc phosphate glass with a composition of
8Ag20, 53ZnO, 39P2O5 (mol%) [27]. This glass was syn-
thesized using a melt-quenching technique from high-
purity precursors (AgNO3, ZnO, H3PO4) [27]. The mix-
ture was heated to 1200 °C in a corundum crucible cov-
ered with a fused silica cap and held for two hours before
being rapidly quenched in a preheated metal mold and

annealed at 325 °C for four hours to reduce mechanical
stresses. The resulting glass block was processed into
optically polished plates suitable for laser treatment ex-
periments.

To characterize the microstructure and optical proper-
ties of the laser-written tracks, optical microscopy was
conducted in both brightfield and fluorescence modes
using an Olympus BX51 microscope equipped with an
Olympus DP73 CCD camera. Brightfield images were
taken to visualize the tracks (Figure 1a), and fluorescence
images were captured under excitation between 400–410
nm, with emission registered in the 455–800 nm range
(Figure 1b). The exposure times for these images were
200 ms for top-view configurations and 100 ms for cross-
section views. Image analysis was performed using Im-
ageJ software to quantify the dimensions and optical
characteristics of laser modifications [28].
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(a) (b)

Figure 1: Composite microscopic analysis of laser-induced tracks in silver-containing zinc phosphate glass: (a) Brightfield
microscopy; (b) Fluorescence microscopy [19]Composite microscopic analysis of laser-induced tracks in silver-containing zinc
phosphate glass: (a) Brightfield microscopy; (b) Fluorescence microscopy [26]

3. AI Expert System

3.1. Artificial Neural Network
The integration of AI technologies has revolutionized
numerous fields, ranging from autonomous driving to
energy production and dispatch, from robotics to person-
alized medicine [29, 30, 31, 32, 33, 34, 35, 36, 37]. Among
these technologies, Artificial Neural Networks (ANNs)
have emerged as a powerful tool for modeling complex
and nonlinear relationships that defy traditional analyti-
cal approaches [38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. ANNs
are widely used across various applications to predict
outcomes, optimize processes, and understand intricate
patterns in data [48, 49, 50]. For this study, an ANN was
employed to predict the dimensions of femtosecond laser-
induced tracks in silver-containing zinc phosphate glass.
The ANN architecture was designed to approximate the
functional relationship between the input laser param-
eters and the resulting track dimensions. The model’s
structure is represented by the following equations 1 to
3:

𝑦 = 𝑓

(︃
𝑛∑︁

𝑖=1

(𝑤𝑖𝑥𝑖 + 𝑏)

)︃
(1)

𝑓 = tanh(𝑥) =
sinh(𝑥)

cosh(𝑥)
=

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2)

𝑤new = 𝑤old − 𝜂∇𝑄(𝑤old, 𝑥𝑖, 𝑦𝑖)] (3)

Where 𝑦 is the output, 𝑤𝑖 represents the weight, 𝑥𝑖

are representing the input values, and 𝑏 is for the bias.
The activation function is represented by 𝑓 , and 𝜂 is the
learning rate. The configuration of the neural network,
as detailed in Table 2, includes two hidden layers with

four neurons in the first layer and two in the second,
utilizing Stochastic Gradient Descent (SGD) as the solver
over 250 iterations. This setup was optimized to capture
the nuances of how varying laser parameters influence
the physical properties of the tracks formed.

Table 2
Parameters for the neural network

Parameter Value
Number of hidden layers 2

Number of neurons in first hidden layer 2
Number of neurons in second hidden layer 4

Solver SGD
Number of iterations 250

3.2. Model Assessment Metrics
Following are several statistics important in the predic-
tive model’s appraisal for accuracy and reliability:
· MSE: The Mean Squared Error is the average of

squares of the errors as equation 4 states. Though differ-
ences of predicted and true values provide some insight
into the magnitude of the errors, this measure can be
very sensitive to outliers.

· RMSE: Root Mean Squared Error is the square root of
MSE computer using equation 5 [51]. It yields a measure
of the same errors in the same units as the response
variable; hence, it is more interpretable.

·MAE: Mean Absolute Error gives the average absolute
difference in predicted and actual values as indication
in the formula 6, and it gives a very direct indication of
the accuracy of the prediction but does not show in what
direction the error is.
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· MAPE: Mean Absolute Percentage Error shows ac-
curacy in percentage as enlisted in equation 7. It gives
a very clear perspective of the size of errors relative to
true values which is very helpful when comparing error
in different datasets of different scales.
· CVRMSE: Coefficient of Variation of the Root Mean

Squared Error is a normalized measure of RMSE as equa-
tion 8 indicates, making it an important and very useful
metric for comparing relative prediction error in different
datasets or models [52].
· 𝑅2: The Coefficient of Determination explains the

proportion of variance in the dependent variable pre-
dicted from the independent variables. It serves as an
indicator of the goodness of fit of the model; a higher 𝑅2

says the model is more capable of capturing variability
in data, it can be calculated using equation 9 [53].

MSE =
1

𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 (4)

RMSE =

⎯⎸⎸⎷ 1

𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 × 100 (5)

MAE =
1

𝑚

𝑚∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖| (6)

MAPE =
RMSE
�̄�

× 100 (7)

CVRMSE =
RMSE
�̄�

× 100 (8)

𝑅2 =
(
∑︀𝑚

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦))2∑︀𝑚
𝑖=1(𝑥𝑖 − �̄�)2 ×

∑︀𝑚
𝑖=1(𝑦𝑖 − 𝑦)2

(9)

These metrics are essential methods to be included in
building evaluation frameworks to test predictive models
and refine them to ensure their practical application.

4. Results and Analysis

4.1. Data Visualization and Experimental
Results

To explore the influence of pulse energy on height, the
experiment systematically varied the pulse energy from
60 nanojoules (nJ) to 120 nJ. Subsequently, the height
parameter ("heightg") was measured in triplicate at each
pulse repetition rate: 10 kHz, 100 kHz, and 500 kHz. To
assess measurement reliability, the mean and percentage
error were calculated for each set of three height mea-
surements. The experiment was then replicated for all
three pulse repetition rates. As illustrated in Figure 2,

a positive correlation between pulse energy and height
was observed.

Following the same methodology, the investigation
was extended to width. The experiment was replicated
with identical pulse energy variations and repetition rates.
As depicted in Figure 3, a corresponding increase in width
was observed with increasing pulse energy and repetition
rate. The percentage error was calculated for each width
measurement.

4.2. Forecasts and Regression Results
In the discussion section of this study, it is imperative
to scrutinize the predictive performance of the ANN as
reflected by the forecasted results detailed in Table 3 and
in Figure 4. The table presents a comprehensive set of
evaluation metrics for both the height and width of the
laser-induced tracks, providing a nuanced view of the
model’s accuracy and effectiveness.

For the forecasted track height, the model exhibits ex-
cellent predictive accuracy as indicated by the low MSE
of 0.232%. This low percentage highlights the model’s
strong ability to predict height with minimal deviation
from the actual measurements. The RMSE at 0.482% fur-
ther supports this, indicating that the model’s predictions
are consistently close to the true data points. The MAE
of 0.312% and the MAPE of 0.066% both reinforce the
model’s high precision, with the MAPE, in particular,
showing very small deviation in terms of percentage,
which is crucial for ensuring the practical applicability
of the predictions in real-world settings. The CVRMSE
at 10.241% provides a normalized measure of the RMSE,
illustrating a relatively low spread in the error relative
to the magnitude of the data being predicted. The 𝑅2 for
height is 0.909, signifying that a substantial proportion
of the variability in track height is effectively captured
by the model.

In contrast, the forecasted results for track width show
a slightly higher level of error across the metrics, though
they still indicate strong predictive performance. The
MSE for width is notably higher at 2.601%, suggesting
more variability in the model’s predictions for width
compared to height. Similarly, the RMSE at 1.613% and
the MAE at 0.923% are higher than those for height, im-
plying that the predictions for width are less consistent.
However, these values still demonstrate a high level of
accuracy overall. The MAPE for width is slightly higher
at 0.116%, but it remains low, affirming the model’s util-
ity in practical applications. The CVRMSE at 12.141% is
higher than that for height, indicating a greater relative
spread in the error for width predictions. The 𝑅2 value
for width, at 0.902, remains high, which confirms that
the model successfully captures a large portion of the
variability in track width. The regression line and error
histogram for the height and width forecasted features
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[!ht] (a) (b)

Figure 2: Pulse repetition rate and energy track height results: (a) Height; (b) Error percentage.

(a) (b)

Figure 3: Pulse repetition rate and energy track width results: (a) Width; (b) Error percentage.

are depicted in Figures 5 and 6, respectively.
The comparative analysis between the metrics for

height and width forecasts suggests that while the model
is slightly more accurate and consistent in predicting
height, its performance in predicting width is commend-
ably high. Both sets of metrics underscore the ANN
model’s robustness and its potential as a predictive tool
in laser material processing. These results validate the
model’s capability to assist in optimizing processing
parameters for femtosecond laser applications, partic-
ularly in settings where precision and repeatability are
paramount.

[htbp]

Figure 4: Assessment metrics depiction.
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Table 3
Forecasted results

Forecasts MSE (%) RMSE (%) MAE (%) MAPE (%) CVRMSE (%) 𝑅2

Height 0.232 0.482 0.312 0.066 10.241 0.909
Width 2.601 1.613 0.923 0.116 12.141 0.902

(a) (b)

Figure 5: Height forecasts: (a) Regression line; (b) Error histogram.

(a) (b)

Figure 6: Forecasts of width: (a) Regression line; (b) Error histogram.

5. Conclusions and Future
Directions

This study successfully implemented an ANN to pre-
dict the dimensions of femtosecond laser-induced tracks
in silver-containing zinc phosphate glass. The model
demonstrated high accuracy, as evidenced by low MSE
and RMSE values, particularly in predicting the height of
laser-written tracks. The MAE and CVRMSE further val-
idated the precision of the predictions. Significantly, the
𝑅2 indicated that a substantial portion of the variance
in both height and width of the tracks was captured by
the ANN model. These results underscored the capabil-
ity of advanced machine learning techniques to enhance
the predictability and optimization of laser processing
applications.

Future studies can carry out the preliminary investiga-
tion set by this work using more input variables in the
model, such as material variability and ambient condi-

tions, for deeper accuracy in prediction. Experimenting
with various network architectures and deep-learning
models, one could further shed more insights into the
complex interaction within the laser processing domain.
More interesting, practical, and real-time implementa-
tion of the developed ANN model can be achieved for the
better results of the laser manufacturing process. Further,
the developed models can be used to predict other fam-
ilies of glasses and other types of lasers. From another
point of view, this work will contribute to the general
scope of materials engineering in as much as it makes fur-
ther development of much finer and more reliable laser
fabrication methods possible.
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