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Abstract

Eye-tracking technology has long been a valuable tool across various domains, and recent advancements in neural networks
have significantly expanded its versatility and potential. However, real-world applications continue to face challenges such as
accommodating users’ natural movements, variations in lighting, occlusions of the eyes, and the limited availability of large,
open-source datasets for training models. To address these issues, we developed a comprehensive pipeline that produces a
lightweight and efficient model, requiring only an RGB camera as external hardware, making it easily deployable on standard
PCs. Key input features include facial images, eye regions, head pose angles, the Eye Aspect Ratio (EAR), and a face grid
that determines the face’s location within the camera’s frame. The model was trained using a custom dataset, in which
participants were instructed to fixate on both randomly positioned points and the standard 9-point grid commonly employed
in eye-tracking calibration. The resulting system was integrated into a real-time application, offering fast and accessible
gaze tracking, making it well-suited for studies requiring rapid gaze assessments across broad regions of the screen, such as
psychometric research and Human-Computer Interaction (HCI) tasks. Its design is particularly advantageous for gaze laterality
studies, which explore hemispheric dominance and attentional bias in cognitive and emotional processing, key concepts
relevant to ADHD and dyslexia. Moreover, the system’s capabilities naturally extend to emotional and decision-making tasks,
where broad-area gaze tracking can support the analysis of preference formation and attentional patterns without the need

for specialized hardware.
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1. Introduction

The human senses gather approximately 11 million bits of
information per second, with about 80% being visual and
the remainder distributed among the other senses. Due to
the dominance of visual perception, Al-based technology
[1, 2, 3, 4, 5] has become a valuable research tool in fields
such as psychology [6, 7, 8, 9], marketing [10, 11], health-
care [12, 13, 14, 15], safety [16, 17], Human-Computer
Interaction (HCI) [18, 19, 20, 21], and Virtual Reality (VR)
and robotics [22, 23, 24]. This technology is particularly
crucial in psychometric applications, facilitating stud-
ies on cognitive functions like focus, emotion recogni-
tion, and decision-making, as well as in gaze laterality
research, where phenomena such as hemispheric domi-
nance and attentional bias are investigated. Historically,
professional systems relied on expensive hardware, such
as scleral search coils [25], electrooculography [26], EEG
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[27, 28], and infrared cameras [29], limiting accessibility.
However, advancements in computer vision and machine
learning, particularly Convolutional Neural Networks
(CNNs), have made eye-tracking technology more acces-
sible, providing fast and reliable gaze tracking without
the need for specialized hardware. Delving more into the
details, several studies have highlighted the broad utility
of these systems, especially in understanding gaze later-
ality and its implications for neurological conditions. For
example, in [30], an eye-tracking system was used to ana-
lyze gaze fixation and variability in children with ADHD,
successfully identifying differences in visual attention
that distinguish ADHD patients from healthy controls.
Similarly, [31] investigated reading performance in chil-
dren with ADHD, providing key insights into how the
condition affects oculomotor control and reading abil-
ity, highlighting its potential for educational and clinical
applications. in [32] a similar approach is used for to diag-
nose autism spectrum disorder. In addition, these systems
have proven effective in detecting dyslexia by capturing
distinctive eye movement patterns during reading tasks.
This approach, powered by CNNs, enables early iden-
tification of dyslexia, allowing for timely interventions
[33].

To summarize, eye-tracking in gaze laterality research
provides a unique window into cognitive processes, al-
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lowing for a deeper understanding of how attentional
resources are allocated across the visual field. For that rea-
son, the motivation behind developing our lightweight
real-time application is to enable more researchers to
study gaze movement patterns without the need to in-
vest in expensive professional eye-tracking systems. By
reducing the cost and complexity, we aim to make this
technology more available for a wider range of studies
focused on cognitive and neurological research. As eye-
tracking becomes more accessible, its application in both
research and clinical environments will continue to grow,
offering new avenues for understanding and addressing
these conditions.

2. Related Works

2.1. Eye-Tracking Approaches

In literature is possible to distinguish among 2 possible
approaches, free from heavy specific instrumentation:
Model-Based, and Appearance Based [34].

2.1.1. Model-Based Approach

The model-based approach utilizes a 3D geometric model
to determine the direction of the eye’s gaze. This is done
by calculating a vector that connects the 3D positions
of the eyeball’s center and the pupil’s center. These po-
sitions are derived from 2D eye landmarks and the 2D
position of the iris in the image, which are then projected
onto the 3D model. Initially, research in this area focused
on developing accurate geometric models, but more re-
cent advancements have shifted towards improving the
precision of eye landmark detection using machine learn-
ing methods [35, 36, 37, 38, 39, 40].

For example, [41] describes an eye-tracking system
that uses the Kinect v2 sensor. This device, equipped
with RGB and depth cameras, identifies facial landmarks
and computes the 3D gaze vector by combining face ori-
entation with eye direction. Another system, presented
in [42], employs the Supervised Descent Method (SDM)
to detect 2D facial landmarks, while depth information
from the Kinect is used to estimate the user’s 3D head
pose. The eye regions are further processed using the
Starburst algorithm to estimate the pupil center for accu-
rate gaze tracking.

A more recent approach [43] uses a combination of
Unet and Squeezenet networks to significantly improve
the accuracy and memory efficiency of eye-gaze tracking,
making it feasible even on smartphones. Although model-
based techniques offer the advantage of being training-
free and adaptable to various conditions, they can still
face challenges with the precision of landmark detection
and the accurate positioning of the iris.
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2.1.2. Appearance-Based Approach

Appearance-based methods aim to learn a direct mapping
between the input image and the eye-gaze direction with-
out relying on camera calibration or geometric models
[44]. These methods are highly flexible, but they can be
sensitive to head movements. Currently, the most effec-
tive approaches leverage convolutional neural networks
(CNNis) and their variants to create mapping functions.
While CNNs often achieve high accuracy on benchmark
datasets, they can struggle to generalize across different
datasets unless trained on large-scale annotated datasets,
which are time-consuming and complex to create.

Recent works have made significant efforts to over-
come these challenges by creating diverse and compre-
hensive datasets that improve the training and gener-
alization of CNN models. For example, the MPIIGaze
dataset [45] is a widely-used resource that contains over
200,000 images of 15 participants captured in real-world
environments. This dataset helps improve gaze predic-
tion in unconstrained settings, with variations in lighting,
head pose, and other real-world factors.

Similarly, ETH-XGaze [46] provides a large dataset
with high-quality annotations, including images from 110
subjects captured under a wide range of head poses and
lighting conditions. This dataset addresses the limitations
of smaller datasets and enables CNN models to learn
robust gaze estimations in diverse environments.

Additionally, the FAZE dataset [47] is designed specif-
ically to tackle domain generalization problems. FAZE
includes a large number of participants and images across
different devices and environments, aiming to enhance
the generalization of appearance-based gaze estimation
models by incorporating domain adaptation techniques.

For instance, [48] introduced GazeCapture, a dataset of
videos recorded using smartphone front cameras under
varying lighting conditions and head movements. They
used this dataset to train a CNN to predict the screen co-
ordinates a user is looking at on a smartphone or tablet.
The input to the CNN includes segmented images of the
eyes and face, as well as a mask showing the face’s lo-
cation in the image. To enhance real-time performance
(10-15 FPS on modern mobile devices), the authors ap-
plied a technique called dark knowledge to reduce model
complexity.

An alternative approach, proposed by [49], works in a
desktop environment and uses an RGB camera to track
eye movement. The system first segments the eye region,
detects the iris center and the inner eye corner and then
calculates an eye vector representing the eye’s movement.
A second-order polynomial mapping function, combined
with head pose information, is used to map this eye vec-
tor to screen coordinates while compensating for head
movements.

More recent work [50] shifts the focus from traditional
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eye-gaze tracking to time-varying signals such as the
vertical displacement between the iris and the inner eye
corner, which is less affected by head movements. Instead
of a direct mapping function, this method uses a CNN
to track multiple eye feature points, including the iris
center and eyelid positions. These points are then used
to generate eye movement signals, which are fed into a
specialized CNN for user behavior recognition.

2.2. Challenges and Approach

Despite notable advancements, real-world applications
of eye-tracking technologies continue to face significant
challenges. These challenges arise from environmental
factors such as varying lighting conditions, reflections
in the images (e.g., glare), objects on the face (e.g., eye-
glasses), differences in contrast between the iris and pupil
due to varying iris colors, and individual variations in
eye anatomy. Additionally, the required computational
resources, combined with the limited range of vertical
eye movements, further complicate these implementa-
tions. Furthermore, the end-to-end approach relies on
access to large-scale, publicly available datasets for train-
ing, which presents an additional hurdle. As a result,
despite their potential, these methods have not yet been
widely adopted, often being overshadowed by specialized
eye-tracking equipment designed for specific purposes.

To address these challenges, a comprehensive pipeline
has been developed, encompassing dataset collection,
model architecture design, and real-time testing. The
goal is to utilize Convolutional Neural Networks to cre-
ate an end-to-end gaze prediction system that uses only
images captured from a standard laptop webcam, aiming
to achieve real-time performance.

3. Implementation

This section explores the implementation of the entire
pipeline, from data collection to the architecture and
real-time tracking, expanding the key components.

3.1. Dataset Collection

To develop a robust eye-gaze tracking system using just a
portable computer’s webcam, the dataset is crucial. The
actual available ones present many limitations, such as
the poor amount of data, poor quality data, or less lib-
erty in the disposition and interaction of the user with
the screen and the distance with the camera. Others,
with higher volume data, are based on mobile devices,
not allowing an easy transition from vertical screens
of smartphones to horizontal PC screens, similarly, the
proximity and the relative angle of interaction to the de-
vice itself are drastically different. To overcome these
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Figure 1: Recording points are used to collect the dataset
for eye-gaze tracking. The recording pipeline sequentially dis-
plays each point on the laptop screen for a specified duration,
while the webcam records the user’s response. Each point
corresponds to a key coordinate, capturing the user’s gaze at
nine meaningful cardinal points.

limitations, a brand-new collection of the dataset was
necessary, which was more suitable for the task of inter-
est. To address these challenges a system was designed
to record the user’s gaze on a PC’s screen optimizing the
data to the task of interest.

3.1.1. Recording

Data collection used 15-inch laptops in various environ-
mental and lighting conditions. To mitigate the potential
biases introduced by the use of a single webcam for all the
data, multiple webcams from different computers were
utilized. This strategy ensured the collection of a diverse
set of images, simulating possible real-world applications
and enhancing the robustness and generalization capa-
bility of the model limiting the bias introduction.

The custom dataset was gathered using specially de-
veloped software designed to display nine strategically
chosen key points on the screen. These points included
one at each corner of the screen, one at the center, and
one at each of the four cardinal directions on the screen,
Nord, sud, est, and west, as illustrated in Figure 1. Partici-
pants were instructed to fixate on each point sequentially,
as they were shown, for a predetermined amount of time.
This method allowed the collection of data samples for
each gaze point while permitting participants to natu-
rally adjust their head orientation and position like in a
typical user interaction. Besides these 9 points, a variable
number of random points were also shown on the screen,
one after the other.

Additionally, the data collection process included ses-
sions where participants were asked to wear glasses, to
enrich the dataset with varied and challenging condi-
tions.
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3.2. Data extraction and Annotation
3.2.1. Face, mask grid and eyes

Each video is then processed extracting candidate frames.
Each frame is inspected and the cropped face image is
extracted if available. Face detection is executed using
MediaPipe Face Detection, a lightweight model based on
the BlazeFace architecture, which provides state-of-the-
art techniques optimized for real-time applications. This
model also performs well under challenging conditions
such as partial occlusions, diverse facial orientations,
and varying lighting conditions. The MediaPipe detector
outputs the coordinates (x, y, w, h) of the bounding box
around the detected face, which will be used to generate
the face grid. This grid will provide a spatial map of face
positioning within the video frame, helping the model to
understand where the face is positioned relative to the
entire frame. For each detected face, the bounding box
coordinates (x, y,w, h) are scaled down to fit a grid of
size 25 x 25. The bounding box is then mapped to this
grid, marking cells where the face is 1 and all other cells
as 0. This binary grid serves as one of the inputs to the
model, facilitating the learning of spatial relationships
in the gaze estimation tasks. The pipeline proceeds to
the detection of the eyes, which employs either Haar
cascades or the lib library, depending on which method
yields the most accurate results on the specific conditions,
as determined through a human-in-the-loop evaluation.
While the Haar Cascades already provide a bounding box
to crop the region of interest of the eyes, the dlib uses the
landmark features of the eyes, considers padding around,
and then crops. The eyes are not automatically included
in the dataset, instead, each pair is inspected to ensure
they are successfully recognized and sufficiently open.
This check is crucial for confirming the quality of the
data and that at least the horizontal position of the pupil
can be discerned, excluding instances where the eyes are
fully closed.

The face grid together with the face and eye images
are grouped with the gaze point as in Figure 3 and then
expanded with the additional input features.

3.2.2. Eye Aspect Ratio

If both eyes are correctly detected, the pipeline proceeds
to associate the corresponding Eyes Aspect Ratio. The
EAR is a geometric measure used to quantify the open-
ness of the eyes. It is computed for each eye using six
specific facial landmarks. For the left eye, the EAR is
calculated as follows:
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Figure 2: Facial landmarks provided by DIib’s 68 model, which
detect the face and then the coordinate (x,y) of the 68 total
features, providing information about the aperture of mouth,
eye, and the orientation of the head. The points from 37 to
41 and from 43 to 48 will be leveraged for the computation of
the Eye Aspect Ratio. Points 37 and 46 are leveraged for the
roll pose, points 28, and 9 for the tilt, and the 34, 37, and 46
for the yaw.

Where P37, Psg, ..., Pyg are the landmarks around the
left and right eyes, respectively, according to the Figure 2.
This metric facilitates the identification of eyelid position
and blinks and leverages this information to improve the
robustness of the model.

3.2.3. Roll-Pitch-Yaw

The head orientation is derived from facial landmarks de-
tected in each frame. Roll is determined by the tilt of the
line connecting the outer corners of the eyes (landmarks
37 and 46) relative to the horizontal axis, indicating left
or right head tilt. The pitch measures the vertical tilt of
the head and is calculated from the vertical position of
the top of the nose bridge (landmark 28) relative to the
chin (landmark 9), showing whether the head is tilted
upward or downward. Yaw, indicating left or right head
rotation around the vertical axis, is calculated from the
position of the nose tip (landmark 34) relative to the mid-
point between the eyes (average of landmarks 37 and
46). These three angles provide a comprehensive 3D ori-
entation of the head, enhancing the accuracy of gaze
estimation without necessitating a 3D head model or
extensive computations, making the system adaptable
for real-time applications where the user’s head position
varies.

In the end, this information is paired with the corre-
sponding gaze point on the screen, selected from nine
possible options.

3.3. Training Preprocessing

Some preprocessing steps were performed before feed-
ing the data into the model for training to ensure the
reliability and robustness of the system.
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Figure 3: Sample of the dataset: The first element represents
the cropped face from the frame. The bounding box coordi-
nates of the head are used to create the Face Mask grid by
dividing the entire frame into a grid and labeling the points
occupied by the head. The second and third elements repre-
sent the eyes cropped from the face. All this information is
linked to the gaze position on the screen, measured in pixels.
The images are blurred for privacy reasons.

3.3.1. Image Resizing and Cropping

All images, face and eye regions, were resized to a uni-
form dimension of 64 x 64 pixels to maintain consistency
across the dataset and to be fed into the model.

3.3.2. Histogram Equalization

Histogram equalization was employed to improve feature
extraction. This technique adjusts pixel values in an
image to enhance overall contrast. By redistributing
the intensity levels, it equalizes the histogram of the
output image. This process makes the model more robust
in identifying relevant features under varied lighting
conditions.

3.3.3. Data Augmentation

Several data augmentation techniques were applied to
enhance the robustness of the model. Specifically, a ran-
dom crop was used to simulate limited visibility of the
face or eyes, and Gaussian Blur was employed to mimic
poor image quality or focus. Variability in brightness
and saturation was introduced, along with random rota-
tions and random erasing of portions and filling it with
random values. These techniques help reduce overfitting
and improve the model’s ability to generalize from the
training data to unseen data in real-world applications.

These preprocessing steps, collectively, ensure that the
data fed into the model is of high quality, consistent in
size and format, and varied enough to promote robust
learning and prediction accuracy.

3.4. Model

In this section will be presented the model, the architec-
ture, and the training. The object was the realization of
an efficient model able to provide good performances and
run in real-time on a real-world application. The core of
the implementation involved developing and training a
convolutional neural network (CNN) to predict the gaze
point based on the processed input features.
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Figure 4: Model Architecture pipeline: The model is organized
in 2 parallel pipelines that work on the eye and face. The first,
in red, takes as input the cropped eye images and the Eye
Aspect Ratio computed with the facial landmarks. The CNNs
that take as input the eyes share the parameters. The second,
in blue, takes as input the cropped face, the Mask grid, and
the head pose. Then the outputs are concatenated to compute
the gazepoint. The images are blurred for privacy reasons.
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3.4.1. Model Architecture

The model architecture draws inspiration from the
iTracker model [48], incorporating modifications to en-
hance performance. These modifications include addi-
tional input features such as head pose angles (yaw, pitch,
and roll), the Eye Aspect Ratio (EAR), and the reorgani-
zation and reduction of the layers, to provide a lighter
model with faster convergence. The complete pipeline is
shown in Figure 4.

The Eye Aspect Ratio incorporation started from the
consideration that, in normal conditions, users will tend
to open their eyes wider when looking at higher points
on a screen and as narrow as they are looking downward
on the screen. The integration of the EAR information
aims to specifically enhance the sensitivity of the model
to vertical gaze shifts, improving the performance of the
model on the vertical axe prediction and better handling
cases in which the pupil is hardly observable by the sim-
ple raw image provided by the webcam.

The integration of head orientation data, along with
the face grid, aims to provide the model with compre-
hensive information about the head’s spatial positioning,
without the necessity for computationally demanding
external 3D models of the head or the eyes. Leverages
the advantages of model-based methods while avoiding
their drawbacks.

The model’s architecture is organized in two distinct
semantic pathways for the eyes and face, each consisting
of several convolutional layers followed by pooling layers,
these layers are designed to capture fine-grained details
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necessary for accurate gaze estimation. The eye pathway
processes separately the eye images with convolutional
layers with shared parameters between the right and left
eye, then the information is integrated with the EAR
of both eyes with a fully connected. The face pathway
processes the entire face region through a similar series
of convolutional layers, then combines this information
with the face grid, and roll pitch yaw angles.

3.5. Loss Function

The choice of an appropriate loss function is extremely
important for the effectiveness of model training. During
development, two primary loss functions were evaluated:
Mean Squared Error (MSE) and Huber Loss.

Huber Loss was used to mitigate the outlier sensitivity
issue with MSE, and the large scale of pixel predictions. It
combines the best properties of MSE and Mean Absolute
Error (MAE), behaving like MSE for small errors and like
MAE for large errors, reducing the influence of outliers
on the model’s training. The Huber Loss is defined as:

Ly -2 for|y—9| <6
Lo(5.3) = ;=9 | o ly -3l <
8y — 91— 55) otherwise

Where §is a threshold parameter that dictates the transi-
tion point between the squared loss and the absolute loss.
This property makes Huber Loss particularly promising
for this application, as it balances the need for robust-
ness with the sensitivity to small errors, critical for the
precise prediction of gaze points. As shown in 5, Huber
Loss provided a significant improvement in model con-
vergence and performance compared to MSE, leading to
more stable training and reduced gradient accumulation

3.5.1. Regularization

To further increase the robustness of the architecture,
were leveraged some regularization techniques. Together
with the already cited data augmentation, working on
the data, on the model side leveraged the dropout, with
a hyperparameter tuning which led to a successful value
of 0.2. The training loop then incorporated a learning
rate scheduler together with an early stopping.

3.6. Real-Time Tracking

The implementation of the real-time tracking functional-
ity represents an essential step for practical applications.
The following section describes the system’s setup, the
operational flow, and the technologies employed.

3.6.1. System Setup

For the real-time application, the system uses standard
laptop webcams, 1280 x 720p, to capture video frames
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Figure 5: Model Training Plot: The mean absolute error (MAE)
for pixel coordinates (x,y) is illustrated, with training data in
blue and validation data in orange. The green and red lines
represent the MAE for the x and y coordinates in the training
data, while purple and brown depict these in the validation
data. Notably, the MAE for the x coordinates is consistently
higher than for the y coordinates, likely due to the larger pixel
scale on the laptop screen.

of the user looking at the laptop screen 15-inch, main-
taining consistency with the dataset. These frames are
captured at a standard video frame rate of 30 frames per
second, usually provided by commonly available web-
cams, which balances between providing smooth video
and the computational load on the system. Each captured
frame undergoes a series of preprocessing steps like in
the training phase to maintain consistent data and to
enhance the model’s performance.

3.6.2. Calibration

The application allows to perform an optional calibration
step to improve the results on the actual user of the eye-
tracking. To perform the calibration, the system proceeds
to show 9 points on the screen, in the 9 main representa-
tive points, for each collects the prediction provided by
the model and compares it with the actual ground truth.
Then leverage the difference between the two values to
improve further predictions of the actual user.

3.6.3. Feature Extraction

The system offers flexibility in selecting the method for
extracting eye patches from images, with options includ-
ing the dlib68 and the eye cascade approaches. Following
this it calculates the Eye Aspect Ratio and head angles.
Then the model uses this information to predict the gaze
point in screen coordinates in real-time. This step is com-
putationally intensive and is optimized to run efficiently
on standard consumer hardware without significant de-
lays. The predicted gaze point is immediately displayed
on the user’s screen, providing real-time feedback.
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4. Results

The proposed eye-tracking system demonstrates signif-
icant and promising improvements in gaze estimation
compared to existing methods, excelling not only in pre-
diction accuracy but also in efficiency—an essential fac-
tor for real-time applications. These gains are largely
attributed to model optimizations that resulted in a more
lightweight design. Specifically, the system performed
smoothly on a laptop GPU, achieving a frame rate of
50 frames per second under optimal visibility and en-
vironmental conditions. On a laptop CPU, the model
also maintained commendable performance, consistently
delivering 30 frames per second without any drop in accu-
racy. This places the system on par with state-of-the-art
models but with fewer parameters, making it more effi-
cient.

To validate the model’s effectiveness, a real-time appli-
cation was developed. This application captures the live
video feed from the webcam, processes it through the
model to predict the user’s gaze point, and then displays
the predicted point on the screen, providing immediate
feedback. To further assess performance, the model was
compared with several state-of-the-art architectures on
a common task, where the screen was divided into cells
to track accuracy. The system showed promising re-
sults in terms of both inference time for real-time deploy-
ment and prediction accuracy, performing competitively
against the benchmark models.

4.1. Comparison tasks

To evaluate the eye-tracking recordings and benchmark
model performance, the real-time eye-tracking system
was leveraged to perform a Fixation-Zone task [51].
To maintain consistency, all the experiments were per-
formed on a laptop with an incorporated camera and
a 15-inch screen. The approach performs a zone-wise
classification accuracy, aggregated over the participants,
where the users are instructed to fixate on specific regions
of the screen, which turn green for a certain amount of
time, free to move, as long as their gaze is constrained
within the boundaries. The experiments instructed to
perform a total of 3 tasks, where each aimed to enforce
and study the model performances to specific behavior
and compare this information with other SOTA archi-
tectures like the MPIIGaze, ETHXGaze, and the FAZE.
In the first one, the screen was divided into 4 grid cells,
determining the overall behavior of the model, and ob-
serving the general performances of eye-tracking all over
the screen. The second task has 2 grid cells that split
vertically the screen on two sides, this allows to better
focus on the architecture capability to recognize the hor-
izontal movement of the gaze. In the last task, which
divided the screen into two grid cells horizontally, one
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above the other, the main focus was paid to the vertical
movement recognition of the eyes, a critical aspect in the
eye-tracking field.

The comparison of the model with the MPIIGaze,
ETHXGaze, and FAZE pointed out a series of consid-
erations about the performances of the models. The com-
parison focused on the zone classification accuracy in a
grid setup of the screen (Figure 6),

4.1.1. Four Cell Grid task

Our model showed an overall accuracy of 88.5% with pre-
cision of 0.887 and recall of 0.885, excelling particularly in
the top left grid cell while showing weaker performance
in the bottom right grid cell. This shows a promising
overall behavior, with room for improvement due to the
unbalanced result in the four cells. Interestingly, the
proposed architecture, compared to the other models,
showed a slightly better understanding of the top left and
top right cases, rather than the lower one.

4.1.2. Vertical Dual-Grid Task

The second task aimed to inspect the model’s capabil-
ity of recognizing horizontal movement, and the model
demonstrated a good 93% overall accuracy, with 0.935
precision and 0.912 recall, quite struggling with the right
section. This result comes from the previous considera-
tions on the 4-grid task, in which, the bottom-right case
was shown to be responsible for a drop-down in the pre-
diction performances, making suffering this lack also to
this other task when needed to correctly identify the
gaze-point into the right part of the screen.

4.1.3. Horizontal Dual-Grid Task

The third task focused on evaluating the model’s ability
to identify vertical eye movement accurately. Here, the
model achieved an accuracy of 91%, precision of 0.925,
and recall of 0.899, in correctly recognizing the vertical
grid cell observed. While it is apparent that other models
experience a significant decline in performance transi-
tioning from horizontal to vertical eye movement tasks,
the proposed model exhibited only a slight drop in per-
formance. It still significantly outperformed the other
models, especially in the top cell case. Unfortunately,
the bottom cell exhibited a slightly lower precision of
the model when the gaze point approached the screen’s
center, leading to some misclassifications that slightly
exceeded the bottom grid cell boundary and resulted in
errors.

Unfortunately, many misclassification cases were also
linked to unfavorable user visibility or environmental
conditions. These factors made predictions more chal-
lenging for the model, highlighting areas for improve-
ment and the potential to surpass existing architectures.
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Our System MPIlIGaze ETHXGaze

97.2% | 89.0% | 95.5% | 94.0% 97.5%|98.2%

|
89.2% ™
90.9%

Figure 6: Comparison of gaze predictions of our network
with state-of-the-art models MPIIGaze, ETHXGaze, and FAZE
on zone classification accuracy. The first row represents the
4-cell task, where our system outperforms the other models
in the Upper cells. The second row depicts the horizontal
task, in which our model achieves good results, though it
struggles with the right side, partly due to lower accuracy
from the bottom right cell in the previous task. The third row
illustrates the vertical task, showing that the developed model
experiences a smaller performance drop compared to other
models, although it still struggles with the bottom cell due to
some imprecision near the center of the screen.

98.5%

84.1%

5. Conclusions

This work presented an end-to-end eye-tracking solution
designed to be lightweight, utilizing only a standard we-
bcam, while maintaining high accuracy and low resource
requirements. The results indicate that the proposed
system can be effectively applied in various real-world
scenarios, achieving robust performance in both vertical
and horizontal gaze detection. This versatility makes it a
practical tool for studies in areas such as psychometrics
and Human-Computer Interaction (HCI), especially those
focused on gaze laterality and cognitive assessments for
broad regions of the screen. Interestingly, the model
demonstrated significant robustness in detecting verti-
cal gaze movements, likely due to its high sensitivity to
eye aperture ratio, making it particularly adept at distin-
guishing between upper and lower gaze positions. This
capability was confirmed during task evaluations, where
the system showed better precision in upper-screen po-
sitions compared to lower ones. Some imprecision was
noted in central areas of the screen, particularly in dis-
tinguishing between center-up and center-low positions,
likely due to the natural tendency for the eyes to be more
open in upper gaze positions. Despite these challenges,
the model maintained efficiency even on smaller laptop
screens and at greater distances, contrasting with typical
close-range setups required by mobile devices. Future
work could focus on enhancing the system’s robustness
under diverse lighting conditions and user poses by en-

39

riching the dataset with more varied samples and a wider
range of user demographics. Increasing the number of
fixation points during data collection could also provide
a more comprehensive understanding for the model, im-
proving precision across all screen areas. Additionally,
modifying the model to focus solely on the eye regions,
rather than the entire face, could improve its performance
in situations where face visibility is limited or when only
one eye is visible. This refinement would not only make
the model more efficient but also help it handle challeng-
ing conditions such as medical constraints or occlusions
more effectively. In summary, the proposed system repre-
sents a significant advancement in making eye-tracking
technology more accessible and practical for a wide range
of everyday applications, reducing the need for expen-
sive specialized hardware and offering a versatile tool for
research and clinical environments.
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