
On computational problems for infinite argumentation
frameworks: Hardness of finding acceptable extensions⋆

Uri Andrews1,†, Luca San Mauro2,∗,†

1Department of Mathematics, University of Wisconsin, USA
2Department of Philosophy, University of Bari, Italy

Abstract
This paper investigates infinite argumentation frameworks. We introduce computability theoretic machinery as
a robust method of evaluating, in the infinite setting, the complexity of the main computational issues arising
from admissible, complete, and stable semantics: in particular, for each of these semantics, we measure the
complexity of credulous and skeptical acceptance of arguments, and that of determining existence and uniqueness
of extensions. We also propose a way of using Turing degrees to classify, for a given infinite argumentation
framework, the exact difficulty of computing an extension in a given semantics and show that these problems give
rise to a rich class of complexities. Finally, we build a single argumentation framework witnessing our hardness
results: this means that solving these problems is not only hard for the class of all argumentation frameworks,
but also is not easier for a single given argumentation framework.

Keywords
infinite argumentation frameworks, computability theory, analytic and co-analytic sets, admissible extensions,
stable extensions, complete extensions, Turing degrees

1. Introduction

Abstract argumentation theory is a fundamental research area in AI, providing a powerful paradigm
for reasoning about knowledge representation and multi-agent systems. Historically, the focus has
predominantly been on finite argumentation frameworks (AFs), leaving the infinite case relatively
unexplored. As noted in [2], this oversight poses significant theoretical, conceptual, and practical
limitations.

Firstly, infinite frameworks align naturally with Dung’s seminal approach [3], whose results do not
presuppose finiteness. Secondly, representing argumentation scenarios in an infinite manner captures
the inherently nonmonotonic nature of argumentation, where arguments can always be challenged
by the emergence of new information, making any fixed limit on the space of arguments somewhat
artificial. Moreover, if one conceives an argumentative scenario with arguments being added as time
proceeds, e.g., the collection of scientific studies, then infinite frameworks naturally emerge as the union
of the argumentation frameworks that we see at each finite time. Thirdly, infinite AFs may arise in
practical contexts, such as logic programming [4] and the logical analysis of multi-agent or distributed
systems [5] (the substantial introduction of [2] provides other concrete examples of applications of
infinite AFs, e.g., to multiagent negotiations).

Fortunately, recent years have seen a growing interest in infinite AFs, with special focus on how the
existence and interplay of various semantics—well-understood for finite AFs—are affected in the infinite
realm (see, e.g., [6, 7, 8, 9, 10]). This increasing recognition underscores the importance of infinite AFs
for a broad understanding of argumentation theory.

However, the literature still lacks a comprehensive framework for systematically exploring all logical
aspects of infinite AFs, particularly regarding their core computational issues. A significant research

8th Workshop on Advances In Argumentation In Artificial Intelligence (AI3 2024), Bolzano, Italy
⋆

An expanded version of this article was submitted to FCR-2024 [1].
∗Corresponding author.
†
These authors contributed equally.
$ andrews@math.wisc.edu (U. Andrews); luca.sanmauro@gmail.com (L. San Mauro)
� https://math.wisc.edu/~andrews (U. Andrews); https://www.lucasanmauro.com/ (L. San Mauro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:andrews@math.wisc.edu
mailto:luca.sanmauro@gmail.com
https://math.wisc.edu/~andrews
https://www.lucasanmauro.com/
https://creativecommons.org/licenses/by/4.0/deed.en

Uri Andrews et al. CEUR Workshop Proceedings 1–13

avenue in finite AFs has been determining the algorithmic complexity of tasks associated with finding
coherent collections of arguments (up to suitable collection of semantics), with numerous complexity
theoretic results highlighting their inherent computational intractability (see, e.g., [11, 12, 13]). To our
knowledge, no analogous study has been conducted for infinite AFs.

This paper addresses this gap by initiating a systematic study of the complexity of computational
problems in infinite AFs. For this endeavor, we bring into the subject of argumentation theory the
machinery of computability theory, which may be regarded as an infinitary companion of computa-
tional complexity theory and abounds with concepts and hierarchies for measuring the complexity
of computing and defining countably infinite objects, providing the appropriate machinery for this
endeavor.

The application of computability theoretic tools outside of mathematical logic is a well-established
idea. Over the past decades, computability theory has been applied to a wide array of mathematical
disciplines, and computability theoretic concepts have found applications in other formal subjects, such
as theoretical computer science, economics, and linguistics (see, e.g., [14, 15]).

The present paper, we argue, provides compelling evidence of the benefits of viewing infinite AFs
through computability theoretic lenses. We assess the complexity of many computational problems—
both established and novel—within our framework, illustrating their undecidability while providing
precise measures of their complexity.

Organization of the paper

Section 2 briefly reviews the main semantic concepts from argumentation theory that are relevant to
this paper, along with the fundamental computational problems associated with them. In Section 3, we
introduce the key notions of computability theory employed in the work and we define the concept
of computable AFs and the computational issues that emerges from it. In Section 4, we determine the
lower bounds of the complexity for our computational problems: a critical technique for achieving
hardness results involves suitably encoding trees into AFs. Finally, in Section 5, we show that our
techniques introduced enable the construction of a single argumentation framework witnessing our
hardness results. Our main results are collected in Tables 2 and 3.

2. Argumentation theoretic background

To keep our paper self-contained, we now briefly review some key concepts of Dung-style argumentation
theory, focusing on the semantics notions considered in this paper and the fundamental computational
problems associated with them (the surveys [16, 17] offer an overview of these topics).

An argumentation framework (AF) F is a pair (AF , RF) consisting of a set AF of arguments and an
attack relation RF ⊆ AF ×AF . If some argument a attacks some argument b, we may write a ↣ b
instead of (a, b) ∈ RF . Collections of arguments S ⊆ AF are called extensions. For an extension S, the
symbols S+ and S− denote, respectively, the arguments that S attacks and the arguments that attack
S:

S+ = {x : (∃y ∈ S)(y ↣ x)};
S− = {x : (∃y ∈ S)(x ↣ y)}.

S defends an argument a, if any argument that attacks a is attacked by some argument in S (i.e.,
{a}− ⊆ S+). The characteristic function of F is the following mapping fF which sends subsets of AF
to subsets of AF :

fF (S) := {x : x is defended by S}.

All AFs investigated in this paper are infinite.
A semantics σ assigns to every AF F a set of extensions σ(F) which are deemed as acceptable. A

huge number of semantics, fueled by different motivations, have been proposed and analyzed. Here,

2

Uri Andrews et al. CEUR Workshop Proceedings 1–13

we focus on three prominent choices, whose computational aspects are well-understood in the finite
setting: admissible, complete, and stable semantics (abbreviated by ad, stb, co, respectively).

Let F = (AF , RF) be an AF. Denote by cf(F) the collection of extensions of F which are conflict-free
(i.e., S ∈ cf(F) iff a ̸↣ b, for all a, b ∈ S). Then, for S ∈ cf(F),

• S ∈ ad(F) iff S is self-defending (i.e., S ⊆ fF (S));
• S ∈ co(F) iff S is a fixed point of fF (i.e., S = fF (S));
• S ∈ stb(F), iff S attacks all arguments outside of it (i.e., S+ = AF ∖ S).

In discussing the complete extensions, we will also briefly mention the grounded extension, which is
the unique smallest fixed point of fF ; in any AF, the grounded extension always exists [3, Theorem 3].

For a given semantics σ, the following are some well-known computational problems related to σ:

• Credσ (for credulous acceptance) is the decision problem whose accepting instances are the pairs
(F , a) so that a ∈ S for some S ∈ σ(F);

• Skeptσ (for skeptical acceptance) is the decision problem whose accepting instances are the pairs
(F , a) so that a ∈ S for all S ∈ σ(F);

• Existσ is the decision problem whose accepting instances are the AFs F so that σ(F) ̸= ∅;
• NEσ is the decision problem whose instances are the AFs F so that σ(F)∖ {∅} ≠ ∅;
• Uniσ is the decision problem whose accepting instances are the AFs F so that |σ(F)| = 1.

In formal argumentation theory, evaluating the computational complexity of the aforementioned
problems for various semantics has been a noteworthy research thread for more than 20 years[17]. Table
1 collects known complexity results for the admissible, stable, and complete semantics. This analysis
refers only to finite AFs. In the next section, we introduce our computability theoretic perspective that
allows us to tackle complexity issues concerning infinite AFs.

σ Credσ Skeptσ Existσ NEσ Uniσ
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

Table 1
Computational problems for finite AFs. C-c denotes completeness for the class C.

3. Computational problems for AFs through the lens of computability
theory

In this section, we introduce computable AFs and we revisit the computational problems of the last
section through the lens of computability theory. We aim at conveying the main ideas without delving
into too many technical details. A more formal and comprehensive exposition of the fundamentals
of computability theory can be found, e.g., in the textbooks [18]. We begin by establishing standard
notation and terminology for some combinatorial notions that appear frequently in our proofs.

3.1. Sequences, strings, and trees

As is common in computability theory, we denote the set of natural numbers by ω. Since there is no
risk of ambiguity, we simply refer to the elements of ω as numbers. The symbol ωω denotes the set
of all functions from ω to ω. For our purposes, it is convenient to represent elements of ωω as infinite
sequences of numbers (where the i+ 1th bit of π ∈ ωω will be the output of the function π on input i).
We denote by 0∞ the infinite sequence consisting of only 0’s (or, equivalently, the constant function to
0). The restriction of an infinite sequence π ∈ ωω to its first n bits is denoted by π ↾n.

3

Uri Andrews et al. CEUR Workshop Proceedings 1–13

We use standard notation and terminology about strings: The set of all finite strings of numbers is
denoted by ω<ω . The symbol λ denotes the empty string. The concatenation of strings σ, τ is denoted
by σ⌢τ . The length of a string σ is denoted by |σ|. If there is ρ so that σ⌢ρ = τ , we say that σ is a
prefix of τ and we write σ ⪯ τ . Similarly, if π ∈ ωω and σ = π ↾n for some n, we write σ ≺ π.

In order to formulate our problems as subsets of ω, it will be convenient to encode pairs of numbers
into single numbers. The pairing function does this. Fix p : ω × ω → ω to be a computable bijection.
We adopt the common habit of denoting p(x, y) by ⟨x, y⟩.

The encodings discussed in Section 4 heavily rely on the difficulty of calculating paths through trees.
As is common in computability theory, we say that a tree is a set T ⊆ ω<ω closed under prefixes. We
picture trees growing upwards, with σ⌢i to the left of σ⌢j, whenever i < j. A path π ∈ ωω through a
tree T ⊆ ω<ω is an infinite sequence so that π ↾n ∈ T , for all numbers n. The set of paths through a
tree T is denoted by [T]. T is well-founded if [T] = ∅ and otherwise is ill-founded. Note that we follow
the standard terminology in computability theory requiring that paths be infinite. Indeed, if one were
to allow paths to be finite, then these notions trivialize, since one could computably find a path through
any given computable tree. For example, the set of strings

T := {λ} ∪ {σ, σ⌢1 : (∀n < |σ|)(σ(n) = 0)}

is an ill-founded tree with [T] = {0∞}. If T contains strings of arbitrary length, then T has infinite
height. Note that there are trees of infinite height which are well-founded, e.g., T = {λ} ∪ {n⌢σ :
|σ| ≤ n}.

3.2. Computable argumentation frameworks

A basic problem that one encounters when attempting to calibrate the algorithmic complexity of infinite
AFs is that of describing infinite objects in a finitary way. Computability theory offers a wide range of
tools designed for this endeavour. Here, we will concentrate on AFs that are computably presentable, in
the sense that there are Turing machines (or, equivalently, modern computer programs) that, in finitely
many steps, decide whether a given pair of arguments belongs to the attack relation.

Notation. Let (Φe)e∈ω be a uniform enumeration of all partial computable functions from ω to {0, 1}.

Definition 3.1. A number e is a computable index for an AF F = (AF , RF) with AF = {an : n ∈ ω}
so that

Φe(⟨n,m⟩) =

{
1 if an ↣ am

0 otherwise.

An AF F is computable, if it has a computable index e ∈ ω.

We use the notation Fe to refer to the AF with computable index e (note that every computable AF
possesses infinitely many computable indices.).

Remark 3.2. The collection of computable indices for AFs just defined is noncomputable (in particular,
any index e for a non-total computable function Φe cannot be a computable index for an argumentation
framework). There are alternative indexings that circumvent this issue; yet, adopting another indexing
would not alter the complexity of the computational problems we analyze, though it would make the proofs
slightly more cumbersome. Hence, we opt for the simplicity of Definition 3.1.

The benefit of dealing with computable AFs is that the complexity of the decision problems associated
with them do not arise due to complexity of the argumentation framework itself, but rather reflects
the inherent complexity of the decision problem. Further, the computational problems associated with
computable AFs can be naturally represented as subsets of ω, which are suitable to be classified by
computability theoretic means:

Definition 3.3. For a semantics σ:

4

Uri Andrews et al. CEUR Workshop Proceedings 1–13

1. Cred∞σ := {⟨e, n⟩ : (∃S ∈ σ(Fe))(an ∈ S)};

2. Skept∞σ := {⟨e, n⟩ : (∀S ∈ σ(Fe))(an ∈ S)};

3. Exist∞σ := {e : (∃S ⊆ AFe))(S ∈ σ(Fe))};

4. NE∞
σ := {e : (∃S ∈ σ(Fe))(S ̸= ∅)};

5. Uni∞σ := {e : (∃!S ⊆ AFe)(S ∈ σ(Fe))}.

For items 1. and 2. above, it’s also natural to consider their restrictions to a specific computable AF
Fe. That is, we define

Cred∞σ (Fe) = {n : ⟨e, an⟩ ∈ Cred∞σ }

Skept∞σ (Fe) = {n : ⟨e, an⟩ ∈ Skept∞σ }.

We note that in the finite setting, Credσ(F) or Skeptσ(F) for a finite AF F , is simply a finite subset
of AF , so it does not encode much complexity in itself. In constrast, in the infinite setting, Cred∞σ (Fe)
and Skept∞σ (Fe) are infinite subsets of ω, and it makes sense to ask about whether this set is decidable;
and if not, to understand its complexity. In these definitions, we use the number n in place of an so that
these sets are subsets of ω, thus amenable to computability-theoretic analyses, yet when working with
a given AF F , we often write the argument an in place of the number n.

We also introduce new semantics which make sense only in the infinite setting. This is motivated
by the idea that, given an infinite AF, we might hope for our accepted sets to give us infinitely much
information.

1. S ∈ infad(F) if and only if S ∈ ad(F) and S is infinite;

2. S ∈ infco(F) if and only if S ∈ co(F) and S is infinite;

3. S ∈ infstb(F) if and only if S ∈ stb(F) and S is infinite.

The complexity classes that most naturally match the problems of Definition 3.3 are those of the Σ1
1

and Π1
1 sets. The Σ1

1 sets are formally defined as those subsets of ω that are definable in the language of
second-order arithmetic using a single second-order existential quantifier ranging over subsets of ω
followed by number quantifiers and the first order functions and relations (+, ·, <, 0, 1,∈); for more
details, see [18, §16]. Π1

1 sets are the complements of Σ1
1 sets.

Proposition 3.4. Cred∞σ , Exist∞σ , and NE∞
σ are Σ1

1, for σ ∈ {ad, stb, co, infad, infstb, infco}.

Proof. We first consider σ ∈ {ad, stb, co}. To define Cred∞σ , we see from Definition 3.3: Cred∞σ :=
{⟨e, n⟩ ∈ ω : (∃S ∈ σ(Fe)(an ∈ S))} uses a single existential quantifier over sets S. This is similarly
true for the definitions of Exist∞σ and NE∞

σ in Definition 3.3. Thus, it suffices to see that the condition
S ∈ σ(Fe) can be defined with only quantification over arguments, which are in bijection with ω, not
needing quantification over sets of arguments.

Note that the definition of S+ and S− use only quantifiers over arguments. Thus the definition of
fF (S) given by a ∈ fF (S) if and only if {a}− ⊆ S+ uses only quantifiers over arguments. Finally,
S ∈ ad(F), S ∈ stb(F), S ∈ co(F) are all defined from fF (S) and S+ using only quantifiers over
arguments.

In the case of σ ∈ {infad, infstb, infco}, we need to also observe that S being infinite is defined via
∀n∃m(am ∈ S ∧ m > n), which uses only quantifiers over numbers.

Proposition 3.5. Skept∞σ is Π1
1, whenever σ is in {ad, stb, co, infad, infstb, infco}. Furthermore, for

σ ∈ {ad, co}, Uni∞σ is Π1
1.

5

Uri Andrews et al. CEUR Workshop Proceedings 1–13

Proof. The definition of Skept∞σ in Definition 3.3 uses a single universal set-quantifier followed by only
number quantifiers in the definition of σ(Fe).

For σ ∈ {ad, co}, e ∈ Uni∞σ if and only if there are not two different σ extensions (as there is always
at least one σ extension). This is defined by the negation of the following formula:

(∃S1∃S2)(∃x ∈ S1 ∖ S2 ∧ S1 ∈ σ(Fe) ∧ S2 ∈ σ(Fe)).

Note that ∃S1∃S2 can be replaced by a single existential quantifier by encoding the pair (S1, S2) as
a single set {⟨1, x⟩ : x ∈ S1} ∪ {⟨2, y⟩ : y ∈ S2}. This shows that Uni∞σ is the complement of a Σ1

1 set,
thus is Π1

1.

Remark 3.6. The above argument does not suffice to show that Uni∞stb is also Π1
1, since some AFs have

no stable extension. The most obvious definition says there exists one stable extension and there does
not exist two, which gives a definition which is a conjunction of a Σ1

1 and a Π1
1 condition, i.e., a so-called

d-Σ1
1 definition. This is analogous to the fact that in the finite case Unistb is DP-complete. Similarly, the

argument above does not show that Uni∞σ is Π1
1 for σ ∈ {infad, infstb, infco}. Yet, it is true that Uni∞σ

is Π1
1 for σ ∈ {stb, infad, infstb, infco}, as we show in [1, Section 6].

We note that knowing that a problem is Σ1
1 does not necessarily mean the problem is complicated.

This only gives an upper-bound for its complexity. Sometimes, a simpler definition is achievable. As
an example, we consider Credcf := {⟨e, n⟩ : (∃S ∈ cf(Fe))(an ∈ S)}. Though the given definition is
Σ1
1, to know if an argument an belongs to a conflict-free extension of Fe, it suffices to check whether

an is non-self-defeating, i.e., an ̸↣ an, which is equivalent to checking the computable fact that
Φe(⟨n, n⟩) = 0. In contrast, we will show that for the computational problems associated to the
admissible, stable, and complete semantics, the use of the quantifier ranging over all sets cannot be
avoided.

We will heavily rely on the following fundamental theorem by Kleene which offers a natural way of
representing Σ1

1 sets:

Theorem 3.7 (Kleene [19]). A set X ⊆ ω is Σ1
1 if and only if there is a computable sequence of computable

trees (T X
n)n∈ω so that n ∈ X iff T X

n is ill-founded.

We call (T X
n)n∈ω a tree-sequence for X . As a corollary of Kleene’s theorem, one obtains that the

problem of deciding which computable trees in ω<ω are ill-founded (or well-founded) is as hard as any
other Σ1

1 (resp., Π1
1) problem.

Theorem 3.7 gives a reason to consider the Σ1
1 sets as the natural infinite analogs of the NP problems.

Namely, given an ill-founded computable tree T and a sequence π which is a path through T , it is
relatively simple to check that π ∈ [T] (it requires checking infinitely many simple facts: π ↾n ∈ T , for
each n), but finding a sequence π ∈ [T]—or even knowing whether there exists a sequence π ∈ [T]—is
a far harder problem.

Our main goal is to exactly characterize the complexity of the computational problems described in
Definition 3.3. To do so, we need to show that they are complete for their respective complexity classes.
The following definition formalizes this notion.

Definition 3.8. Let Γ be a complexity class (e.g., Γ ∈ {Σ1
1,Π

1
1}). A set V ⊆ ω is Γ-hard, if for every

X ∈ Γ there is a computable function f : ω → ω so that x ∈ X if and only if f(x) ∈ V . If V is Γ-hard
and belongs to Γ, then it is Γ-complete.

Proposition 3.9. It follows from Theorem 3.7 that the set of indices for ill-founded computable trees is a
Σ1
1-complete set. Similarly, the set of indices for well-founded computable trees is a Π1

1-complete set.

The following example is far less obvious, but will be useful below to examine Uni∞σ .

Theorem 3.10 ([20, Theorem 18.11]). The set UB of indices for computable trees with exactly one path is
a Π1

1-complete set.

6

Uri Andrews et al. CEUR Workshop Proceedings 1–13

Remark 3.11. The hardness in Theorem 3.10 is quite easy. We can reduce the question of whether a
tree T is well-founded to whether a tree T ′ has two paths, where T ′ always has at least one path, by
simply giving T ′ one more path than T (e.g. T ′ = {1⌢σ : σ ∈ T } ∪ {σ : (∀n < |σ|)σ(n) = 0}). The
fact that UB is itself Π1

1 is the subtle part of this example.

Theorem 3.7 along with Definition 3.8 suggest a natural approach for gauging the complexity of the
computational problems of Definition 3.3. Namely, given another Σ1

1 (or Π1
1) set X , we translate the

question asking whether n ∈ X to the question of if the tree T X
n is ill-founded (resp., well-founded), and

then we need to computably find an instance of our computational problem which should be accepted
if and only if T X

n is ill-founded (resp., well-founded). This involves coding a tree, or more precisely, the
collection of paths through a tree into the σ extensions in an argumentation framework. We do exactly
this in Section 4.

Table 2 collects our results regarding complexities of the computational problems examined for
computable argumentation frameworks.

σ Cred∞
σ Skept∞σ Exists∞σ NE∞

σ Uni∞σ
ad Σ1

1-c 4.2,3.4 trivial trivial Σ1
1-c 4.2 3.4 Π1

1-c 4.3,3.5
stb Σ1

1-c 4.2,3.4 Π1
1-c 4.4,3.5 Σ1

1-c 4.2, 3.4 Σ1
1-c 4.2,3.4 Π1

1-c 4.3, †
co Σ1

1-c 4.2, 3.4 Π1
1-c ∗, 3.5 trivial Σ1

1-c 4.2, 3.4 Π1
1-c 4.3,3.5

infad Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3, †

infstb Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3, †

infco Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3, †

Table 2
Computational problems for computable AFs. C-c denotes completeness for the class C. The entry with
an asterisk is not fully proved in this paper. Rather, the Π1

1-hardness for Skept∞co is deferred to future
work focusing on the grounded semantics. It is included in the table here (though partially unproved) to
give a more complete picture. Similarly, the dagger in several Uni∞σ cells reflect that the upper bounds
for these cases are not proved in this paper; they appear in [1].

Remark 3.12. As noted before, the Σ1
1 sets are natural analogs in the infinitary setting of the NP sets,

and the Π1
1 sets are the natural analogs of the coNP sets. With the exception of Skept∞co and Uni∞stb,

Table 2 follows this translation from Table 1 for the first three rows. These two results mark surprising
differences in the infinite setting.

The trivial entries are due to the fact that ∅ is always an admissible extension and the grounded
extension is always a complete extension.

3.3. Spectra of σ extensions

We propose a way to more fully understand the complexity of the problem of finding a σ extension in a
given AF F .

Definition 3.13. For each e ∈ ω and semantics σ, let Spec¬∅σ (Fe) be the set of Turing degrees of non-empty
sets X ⊆ ω so that {an : n ∈ X} is a σ extension in Fe.

The notion Spec¬∅σ (Fe) exactly captures the difficulty of computing a non-empty σ extension in Fe.
We will be relating the problem of computing a σ extension in Fe to the problem of finding a path
through a particular tree. So, we define the analogous notion of the spectrum of a tree.

Definition 3.14. Given any computable tree T , we let Spec(T) be set of Turing degrees of paths X ∈ [T].

Our main result in this direction is the following:

Theorem 3.15. For σ ∈ {ad, stb, co, infad, infstb, infco} and for any computable tree T , there exists a
computable AF Fe so that Spec¬∅σ (Fe) = Spec(T).

7

Uri Andrews et al. CEUR Workshop Proceedings 1–13

In [1, Theorem 3.15], we prove the converse for σ ∈ {ad, stb, infad, infstb}: namely, that for every e,
there is a computable tree so that Spec¬∅σ (Fe) = Spec(T). Table 3 collects our results on spectra of
extensions.

σ Spec¬∅
σ

ad Exactly Spec(T)
stb Exactly Spec(T)
co Any Spec(T)
infad Exactly Spec(T)
infstb Exactly Spec(T)
infco Any Spec(T)

Table 3
In this paper, we show that for any computable tree T , there is a computable argumentation framework Fe so
that Spec(T) = Spec¬∅

σ (Fe). In [1], we show the converse when σ ∈ {ad, stb, infad, infstb}: namely, for every e,
there is a computable tree so that Spec¬∅

σ (Fe) = Spec(T).

We now discuss a few of its implications for the problem of computing σ extensions of computable
AFs. The hyperarithmetical sets are often used as a yardstick to measure complexity of undecidable
problems. A set is hyperarithmetical if and only if it is both Σ1

1 and Π1
1. The hyperarithmetical degrees

are particularly useful as a yardstick of complexity because a set X is hyperarithmetical if and only if it
is computed from a set Y which can be reached by (transfinitely) iterating the halting jump operator.
Thus, the number of iterations of the halting jump needed to compute X yields a useful yardstick for
the complexity of X . For more information about the hyperarithmetical hierarchy, see [18, §16.8].

Proposition 3.16. There is a computable argumentation framework Fe which has continuum
many non-empty σ extensions, yet no hyperarithmetical non-empty σ extension, whenever σ is in
{ad, stb, co, infad, infstb, infco}.

Proof. There exists a computable tree with uncountably many paths yet no hyperarithmetical path [18,
Corollary XLI(b)]. Applying Theorem 3.15 to this tree yields a computable argumentation framework
with uncountably many non-empty σ extensions, yet no hyperarithmetical non-empty σ extension.

In the case of Proposition 3.16, there are σ extensions that are not particularly computationally
powerful. For example, there are two σ extensions, each undecidable, so that the only sets they both
compute are the computable sets. Thus, though there is no hyperarithmetical solution, there is also
no undecidable information coded into every solution. This is always the case if an infinite AF has
continuum many σ extensions. On the other hand, if a computable argumentation framework has only
countably many σ extensions, the picture is quite different.

Theorem 3.17 ([1], Corollary 6.15). Let σ ∈ {ad, stb, co, infad, infstb, infco} and suppose that Fe is a
computable argumentation framework with only countably many non-empty σ extensions. Then there is a
hyperarithmetical non-empty σ extension of Fe.

On the other hand, we can show that there is no bound in the hyperarithmetical hierarchy on how
complicated this extension might be.

Theorem 3.18. Let σ ∈ {ad, stb, co, infad, infstb, infco} and let H be a hyperarithmetical set. Then there
exists a computable AF Fe with a single non-empty σ extension X so that X computes H .

Proof. This follows from Theorem 3.15 by encoding a tree with a single path π so that π computes H .
Such a tree is known to exist for any hyperarithmetical H [18, Corollary XLIV(d)].

8

Uri Andrews et al. CEUR Workshop Proceedings 1–13

λ

0 1

10 11

c

aλ bλ

a0 b0 a1 b1

a10 b10 a11 b11

Figure 1: Example of our encoding of trees into AFs: the left-side represents the tree {λ, 0, 1, 10, 11}, the
right-side is the resulting AF. When applied to trees T of infinite height, [T] will be encoded into the stable,
complete, and admissible extensions of FT . For the example shown in the figure, the only admissible extension
of FT is the empty one, since [T] = ∅.

4. Encoding a tree into an argumentation framework

Given a tree T ⊆ ω<ω , we will define an argumentation framework FT = (AT , RT). The set of
arguments AT of FT is computable and consists of {aσ : σ ∈ T } ∪ {bσ : σ ∈ T } ∪ {c}. The attack
relation RT of FT contains all and only the following edges:
For all σ ∈ T ,

1. bσ ↣ bσ ;

2. bσ ↣ aσ ;

3. aσ ↣ bτ , if |σ| = |τ |+ 1;

4. aσ ↣ aτ , if |σ| = |τ |+ 1 and τ ̸⪯ σ;

5. c ↣ aτ for every τ ∈ T ;

6. aλ ↣ c.

Figure 1 gives an example of our encoding for a finite tree. We next consider which extensions in
FT are admissible, stable, or complete.

Notation. For π ∈ [T], let Sπ be the set {aσ : σ ≺ π}.

Lemma 4.1. A non-empty extension S of FT is stable iff S is complete iff S is admissible iff S is exactly
Sπ for some π ∈ [T].

Proof. Stable always implies complete, which always implies admissible. It is straightforward to check
that Sπ is stable for any π ∈ [T], so we need only show that any non-empty admissible extension is
exactly some Sπ . Suppose that S is admissible. Observe that c and bσ cannot be in S since these are
self-defeating. So some aσ ∈ S since S is non-empty. Note that since c ↣ aσ , we must have aλ ∈ S.
Next, observe that if aτ ∈ S, then there must be some i so that aτ⌢i ∈ S: this is because some element
of S must defend aτ from bτ and such an element must be an aσ with |σ| = |τ |+ 1. But it must have
τ ≺ σ as otherwise aσ would attack aτ . It follows that S contains Sπ for some π ∈ [T]. Since Sπ is
stable, S cannot properly contain Sπ , so S = Sπ .

9

Uri Andrews et al. CEUR Workshop Proceedings 1–13

We are now in a position to obtain hardness results for the computational problems described in
Definition 3.3.

Theorem 4.2. The following hold:

1. for σ ∈ {ad, stb, co, infad, infstb, infco}, NE∞
σ is Σ1

1-hard;

2. for σ ∈ {stb, infad, infstb, infco}, Exist∞σ is Σ1
1-hard;

3. for σ ∈ {ad, stb, co, infad, infstb, infco}, Cred∞σ is Σ1
1-hard.

Proof. 1. Let X ∈ Σ1
1 and let (T X

n)n∈ω be a tree-sequence for X , as given by Theorem 3.7. To show Σ1
1-

hardness, we need to produce a computable function f so that n ∈ X if and only if f(n) ∈ NE∞
σ . We let

f(n) be a computable index for FT X
n . Then Lemma 4.1 shows that n ∈ X if and only if T X

n is ill-founded
if and only if FT X

n has a non-empty σ extension for each σ ∈ {ad, stb, co, infad, infstb, infco}.
2. For each of these σ, the empty set is not a σ extension, so Exist∞σ = NE∞

σ , which we showed above
is Σ1

1-hard.
3. In the proof of 1. above, we reduced a given Σ1

1 set X to NE∞
σ by sending n to FT X

n . Note that
FT X

n has a non-empty σ extension if and only if aλ is in some σ extension. Thus sending n to ⟨e, aλ⟩
where e is a computable index for FT X

n shows that Cred∞σ is Σ1
1-hard.

Theorem 4.3. For σ ∈ {ad, stb, co, infad, infstb, infco}, Uni∞σ is Π1
1-hard.

Proof. We first consider σ ∈ {ad, co}. Let X ∈ Π1
1 and let (T ω∖X

n)n∈ω be a tree-sequence for its
complement. Consider the sequence of AFs (FT ω∖X

n)n∈ω . Note that ∅ is an admissible extension in any
AF and since every argument in FT ω∖X

n is attacked, ∅ is also a complete extension. Thus, FT ω∖X
n has a

unique σ extension if and only if T ω∖X
n is well founded if and only if n ∈ X , which shows that Uni∞ad

and Uni∞co are Π1
1-hard.

For the other σ, ∅ is not a σ extension. We use Theorem 3.10 to show Π1
1-hardness. Let X be any

Π1
1 set. Then we get from Remark 3.11 a sequence of trees T ′

n so that 0∞ ∈ [T ′
n] for each n, and

{n : T ′
n has only one path} is Π1

1-hard. It follows from Lemma 4.1 that this holds if and only if FT ′
n has

a unique σ extension, which shows the Π1
1-hardness of Uni∞σ .

Theorem 4.4. For any σ ∈ {stb, infstb, infco, infad}, Skept∞σ is Π1
1-hard.

Proof. Let X be a Π1
1 set. Then we get from Remark 3.11 a sequence of trees T ′

n so that 0∞ ∈ [T ′
n]

for each n, and {n : T ′
n has only one path} is Π1

1-hard. Then note that ⟨e, a0⟩ ∈ Skept∞σ where e is
a computable index for Gn := FT ′

n
if and only if T ′

n only has paths π with π(0) = 0 if and only if
T ′
n has only one path (see the definition of T ′

n in Remark 3.11) if and only if n ∈ X . This shows the
Π1

1-hardness of Skept∞σ .

Theorem 4.5. For σ ∈ {ad, stb, co, infad, infstb, infco} and for any computable tree T , there exists a
computable AF Fe so that Spec¬∅σ (Fe) = Spec(T).

Proof. Observe that for the AF Fe = FT , it follows from Lemma 4.1 that the non-empty σ extensions
are all infinite and are in the same Turing degrees as the paths through T .

5. Complexity of Cred∞
σ (Fe) and Skept∞σ (Fe)

In this section, we examine the complexity of the problems Cred∞σ (Fe) and Skept∞σ (Fe) for a single
computable argumentation framework Fe. Note that Cred∞σ (Fe) is no more complicated than the full
problem Cred∞σ , so Cred∞σ (Fe) is Σ1

1 for σ ∈ {ad, stb, co, infad, infstb, infco}, and Skept∞σ (Fe) is Π1
1

for σ ∈ {stb, co, infad, infstb, infco}. Recall that Skept∞ad is trivial.
Here we show that even restricting to a single computable argumentation framework, these sets can

be Σ1
1-complete or Π1

1-complete. We do omit discussion of Skept∞co (Fe), just as we omitted discussion

10

Uri Andrews et al. CEUR Workshop Proceedings 1–13

of the hardness for Skept∞co above. This is because Skept∞co (Fe) is exactly the grounded extension of F .
In future work giving a systematic analysis of the complexity of the grounded semantics in infinite
argumentation frameworks, we will examine the remaining entry in Table 2, namely that Skept∞co is
Π1

1-hard, and we will also consider the complexity of Skept∞co (Fe) for a single computable AF Fe.
In the previous section, we built AFs FT specifically to code a single Σ1

1-question into a single
question about extensions in FT , e.g., T is ill-founded if and only if aλ ∈ Cred∞ad(FT). We will use the
following notion of a disjoint union of AFs to build a single AF F so that Cred∞ad(F) codes multiple Σ1

1

questions.

Definition 5.1. If (Fk)k∈ω is a countable sequence of argumentation frameworks where each Fk =
(Ak, Rk), then we define the disjoint union H of the sequence (Fk)k∈ω as follows: H = (AH, RH),
where AH = {⟨a, k⟩ : a ∈ Ak} and (⟨a, j⟩, ⟨b, k⟩) ∈ RH ⇔ j = k ∧ (a, b) ∈ Rk

We omit the proof of the following easy lemma.

Lemma 5.2. Let H be the disjoint union of a sequence of AFs (Fk)k∈ω and σ ∈ {ad, stb, co}. A set
Y ⊆ AH is a σ extension of H if and only if for each n, Yn := {c ∈ An : ⟨c, n⟩ ∈ Y } is a σ extension in
Fn.

Theorem 5.3. There is a computable argumentation framework Fe so that Cred∞ad(Fe) = Cred∞infad(Fe) =

Cred∞co (Fe) = Cred∞infco(Fe) is Σ1
1-complete.

Proof. Let X be a Σ1
1-complete set, and let (T X

n)n∈ω be a tree-sequence for X . We consider the
argumentation framework HX which is the disjoint union of the sequence (FT X

k)k∈ω of argumentation
frameworks. Note that since the sequence of trees T X

k is a computable sequence of computable trees,
HX is a computably presented argumentation framework.

Note that an argument ⟨aσ, k⟩ is a member of an admissible extension in HX if and only if aσ is
a member of an admissible extension in FT X

k by Lemma 5.2 and the fact that the empty set is an
admissible extension in all of the FT X

n . Similarly, ⟨aσ, k⟩ is a member of a complete extension in HX if
and only if aσ is a member of a complete extension in FT X

k . By Lemma 4.1, each of these conditions is
equivalent to σ being on a path in [T X

k], thus Cred∞ad(Fe) = Cred∞co (Fe). Since all of the non-empty
admissible extensions in FT X

k are infinite, these coincide with Cred∞infad(Fe) = Cred∞infco(Fe).
We now give a reduction of X to Cred∞ad(HX). We need to give a computable function f so that

n ∈ X if and only if f(n) ∈ Cred∞ad(HX). We define f(n) = ⟨aλ, n⟩. Then ⟨aλ, n⟩ ∈ Cred∞ad(HX) if
and only if there is a path in [T X

n] if and only if n ∈ X , showing the Σ1
1-hardness of Cred∞ad(HX).

With a more cumbersome construction, given in [1], we may show that we can find a single computable
argumentation framework that simultaneously witnesses the hardness for each of the Cred∞σ (Fe) and
Skept∞σ (Fe) which we analyze in this paper.

Theorem 5.4 ([1], Theorem 5.4). There is a single computable argumentation framework Fe so that
Cred∞σ (Fe) is Σ1

1-complete for each σ ∈ {ad, co, stb, infad, infco, infstb} and Skept∞σ (Fe) is Π1
1-complete

for each σ ∈ {stb, infad, infco, infstb}.

6. Conclusion and future work

In this paper, we initiated a systematic exploration of the complexity issues inherent to infinite ar-
gumentation frameworks. To pursue this direction, we employed computability theoretic techniques
which are ideally suited for assessing the complexity of infinite mathematical objects. Our focus was
on the credulous and skeptical acceptance of arguments, as well as the existence and uniqueness of
extensions, for admissible, complete, and stable semantics. We introduced and explored new semantics
that are meaningful exclusively in the infinite setting, concerning the existence of infinite extensions
that satisfy a given semantics σ. The computational problems we examined (here and in [1]) were found
to be maximally complex, properly belonging to the complexity classes of Σ1

1 and Π1
1 sets.

11

Uri Andrews et al. CEUR Workshop Proceedings 1–13

A plethora of intriguing questions regarding the complexity of infinite AFs remains open. First, we
shall fill the gaps that we left behind (such as proving the Π1

1-hardness for Skept∞co). Next, we aim at
investigating whether the computational problems considered in this paper become more tractable if we
restrict to special classes of AFs, such as the finitary ones (i.e., those in which each argument receives
finitely many attacks only [8]). Finally, future research will extend our analysis to analogous problems
associated with other key semantics for AFs, including grounded, preferred, and ideal semantics. Given
that the definitions of these semantics are more intricate than those we examined here, we anticipate
the need for additional techniques to thoroughly analyze them.

Acknowledgments

Andrews was partially supported by NSF grant DMS-2348792. San Mauro is a member of INDAM-
GNSAGA.

References

[1] U. Andrews, L. San Mauro, On computational problems for infinite argumentation frameworks:
Hardness of finding acceptable extensions, in: Proceedings of the 10th Workshop on Formal and
Cognitive Reasoning (FCR-2024), CEUR Workshop Proceedings, 2024. URL: https://ceur-ws.org/
Vol-3763/paper4.pdf.

[2] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Automata for infinite argumentation structures,
Artificial Intelligence 203 (2013) 104–150.

[3] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artificial intelligence 77 (1995) 321–357.

[4] A. J. García, G. R. Simari, Defeasible logic programming: An argumentative approach, Theory and
practice of logic programming 4 (2004) 95–138.

[5] P. Baroni, M. Giacomin, G. Guida, Self-stabilizing defeat status computation: dealing with conflict
management in multi-agent systems, Artificial Intelligence 165 (2005) 187–259.

[6] B. Verheij, Deflog: on the logical interpretation of prima facie justified assumptions, Journal of
Logic and Computation 13 (2003) 319–346.

[7] M. Caminada, N. Oren, Grounded semantics and infinitary argumentation frameworks, in:
Proceedings of the 26th Benelux Conference on Artificial Intelligence, BNAIC, 2014, pp. 25–32.

[8] R. Baumann, C. Spanring, Infinite argumentation frameworks: On the existence and uniqueness
of extensions, in: Advances in Knowledge Representation, Logic Programming, and Abstract
Argumentation: Essays Dedicated to Gerhard Brewka on the Occasion of his 60th Birthday,
Springer, 2015, pp. 281–295.

[9] P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Computing with infinite argumentation frameworks:
The case of afras, in: Theorie and Applications of Formal Argumentation: First International
Workshop, TAFA 2011. Barcelona, Spain, July 16-17, 2011, Springer, 2012, pp. 197–214.

[10] S. Bistarelli, F. Santini, et al., Weighted argumentation., FLAP 8 (2021) 1589–1622.
[11] P. E. Dunne, Coherence in finite argument systems, Artificial Intelligence 141 (2002) 187–203.
[12] P. E. Dunne, The computational complexity of ideal semantics, Artificial Intelligence 173 (2009)

1559–1591.
[13] W. Dvořák, S. Woltran, Complexity of semi-stable and stage semantics in argumentation frame-

works, Information Processing Letters 110 (2010) 425–430.
[14] K. V. Velupillai, Computable foundations for economics, Routledge, 2012.
[15] G. Jäger, J. Rogers, Formal language theory: refining the chomsky hierarchy, Philosophical

Transactions of the Royal Society B: Biological Sciences 367 (2012) 1956–1970.
[16] P. Baroni, M. Giacomin, Semantics of abstract argument systems, Argumentation in artificial

intelligence (2009) 25–44.

12

https://ceur-ws.org/Vol-3763/paper4.pdf
https://ceur-ws.org/Vol-3763/paper4.pdf

Uri Andrews et al. CEUR Workshop Proceedings 1–13

[17] P. E. Dunne, M. Wooldridge, Complexity of abstract argumentation, Argumentation in artificial
intelligence (2009) 85–104.

[18] H. Rogers Jr, Theory of recursive functions and effective computability, MIT press, 1987.
[19] S. C. Kleene, Arithmetical predicates and function quantifiers, Transactions of the American

Mathematical Society 79 (1955) 312–340.
[20] A. Kechris, Classical descriptive set theory, volume 156, Springer Science & Business Media, 2012.

13

	1 Introduction
	2 Argumentation theoretic background
	3 Computational problems for AFs through the lens of computability theory
	3.1 Sequences, strings, and trees
	3.2 Computable argumentation frameworks
	3.3 Spectra of extensions

	4 Encoding a tree into an argumentation framework
	5 Complexity of Cred(Fe) and Skept(Fe)
	6 Conclusion and future work

