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Abstract
In this paper we propose a many-valued temporal conditional logic, and exploit it in the verification of properties
of an argumentation graph, in a gradual semantics. We start from a many-valued logic with typicality, and extend
it with the temporal operators of the Linear Time Temporal Logic (LTL), thus providing a formalism which is
able to capture the dynamics of a system, trough strict and defeasible temporal properties. We then consider an
instantiation of the formalism for gradual argumentation.
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1. Introduction

Preferential approaches to commonsense reasoning [1, 2, 3, 4, 5, 6, 7, 8, 9] have their roots in conditional
logics [10, 11], and have been used to provide axiomatic foundations of non-monotonic or defeasible
reasoning. In recent work [12], we have proposed a many-valued multi-preferential conditional logic
with typicality to define a preferential interpretation of an argumentation graph in gradual argumen-
tation semantics [13, 14, 15, 16, 17, 18], provided some weak conditions on the domain of argument
interpretation are satisfied by the semantics. The many-valued conditional logic with typicality is not
only intended for reasoning about argumentation graphs. It can be used as the basis for a general
formalism for reasoning about the dynamic of a system, as well as for reasoning about the dynamic of
weighted Knowledge Bases (KBs). Actually, in the static case, a weighted knowledge base can be seen as
a weighted argumentation graph, and vice-versa. The relationships between weighted argumentation
graphs, under a specific gradual semantics (the φ-coherent semantics [19, 20]), and weighted conditional
KBs in a Description Logic (DL) formalism [21, 22] has been studied in [23].

This paper deals with the propositional setting, and aims at extending the many-valued conditional
logic with typicality developed in [12] by adding to the language the temporal operators of Linear Time
Temporal Logic (LTL), thus defining a propositional many-valued temporal logic with typicality. The
resulting temporal conditional formalism allows considering the temporal dimension of a weighted
conditional KB and reasoning about the defeasible properties of a system for explanation. Capturing
the dynamics of a weighted knowledge base can be exploited, for instance, to prove properties about
the transient behavior of a (recurrent) neural network (which can indeed be characterized as a weighted
KB [22]), or to reason about the dynamics of a weighted argumentation graph [23] under a gradual
semantics. In particular, as we will point out in Section 5, the proposed formalism allows reasoning
about the evolution of a weighted argumentation graph, when the weights of edges of the argumentation
graph change in time, e.g. when the weights of the argumentation graph (or of the weighted KB) are
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learned1. As another example, the structure of an argumentation graph can be updated through the
interaction of different agents in time, such as in the framework [27], via Argumentative Exchanges.

Preferential extensions of LTL with defeasible temporal operators have been recently studied [28, 29,
30] to enrich temporal formalisms with non-monotonic reasoning features, by considering defeasible
versions of the LTL operators. Our approach, instead, consists in adding the standard LTL operators
to a (many-valued) conditional logic with typicality, an approach similar to the temporal preferential
extension considered for Description Logics (DLs) in [31], where the logic LTLALC [32], extending
ALC with LTL operators, has been further extended with a typicality operator, to develop a (two-valued)
temporal ALC with typicality, called LTLT

ALC .
As in the Propositional Typicality Logic by Booth et al. [33] (and in the DLs with typicality [34]) the

conditionals are formalized based on material implication (resp., concept inclusion) plus the typicality
operator T. The typicality operator allows for the definition of conditional implications T(α) → β,
meaning that “normally if α holds, β holds". They correspond to conditional implications α |∼ β in
KLM logics [4, 6]. More precisely in this paper, as in [12], we consider a many-valued semantics, so that
a formula is given a value in a truth degree set D, and the two-valued case can be regarded as a specific
case, obtained for D = {0, 1}. As the logic is many-valued, we consider graded conditionals of the form
T(α) → β ≥ l (resp., T(α) → β ≤ l), meaning that “normally if α holds then β holds with degree at
least (resp., at most) l". For instance, the formalism allows for representing graded implications such as:

(living_in_Town ∧Young → T(3Granted_Loan)) ≥ l,

meaning that living in town and being young implies that normally the loan is eventually granted with
degree at least l, where the interpretation of some propositions (e.g., Young) may be non-crisp.

The preferential semantics of the logic exploits multiple preference relations <α with respect to
different formulas α, following the approach developed for ranked and weighted KBs in description
logics, based on a multi-preferential semantics [35, 36] and for the propositional calculus in [37], where
preference are allowed with respect to different aspects.

The schedule of the paper is the following. Section 2 develops a many-valued preferential logic with
typicality, which is inspired to [12]. Section 3 extends such logic with LTL modalities to develop a
temporal many-valued conditional logic, by considering temporal graded formulas. In Section 4, we
introduce weighted temporal knowledge bases and their semantics. In Section 5, an instantiation of the
logic for gradual argumentation is considered, in the direction of providing a temporal conditional
semantics for reasoning about the dynamics of gradual argumentation graphs. Section 6 concludes the
paper.

2. A Many-valued Preferential Logics with Typicality

In this section, we recall a many-valued preferential logic with typicality developed in [12].
Let L be a propositional many-valued logic, whose formulas are built from a set Prop of propositional

variables using the logical connectives ∧, ∨, ¬ and →, as usual. We assume that ⊥ (representing falsity)
and ⊤ (representing truth) are formulas of L. We consider a many-valued semantics for formulas, over
a truth degree set D, equipped with a preorder relation ≤D , a bottom element 0D , and a top element 1D .
We denote by <D and ∼D the related strict preference relation and equivalence relation (often, we will
omit explicitly referring to D, and simply write ≤ <, ∼, 0 and 1).

Let ⊗, ⊕, ⊖ and � be the truth degree functions in D for the connectives ∧, ∨, ¬ and → (respectively).
When D is [0, 1] or the finite truth space Cn = {0, 1

n , . . . ,
n−1
n , nn}, for an integer n ≥ 1, as in our case

of study [20], ⊗, ⊕, � and ⊖ can be chosen as a t-norm, an s-norm, an implication function, and a
negation function in some system of many-valued logic [38]; for instance, in Gödel logic (that we will
consider later): a⊗ b = min{a, b}, a⊕ b = max{a, b}, a� b = 1 if a ≤ b and b otherwise; and ⊖a = 1
if a = 0 and 0 otherwise.
1Indeed, a multilayer neural network can be regarded as an argumentation graph [24, 25], or as a weighted knowledge base
[26, 22], based on the strong relationships of the two formalisms [23].



We further extend the language of L by adding a typicality operator, as introduced by Booth et
al. [33] for the propositional calculus, and by Giordano et al. for preferential description logics [39].
Intuitively, “a sentence of the form T(α) is understood to refer to the typical situations in which α
holds" [33]. The typicality operator allows the formulation of conditional implications (or defeasible
implications) of the form T(α) → β whose meaning is that “normally, if α then β”, or “in the typical
situations when α holds, β also holds”. They correspond to conditional implications α |∼ β of KLM
preferential logics [6]. As in PTL [33], the typicality operator cannot be nested. When α and β do not
contain occurrences of the typicality operator, an implication α → β is called strict. We call LT the
language obtained by extending L with a unary typicality operator T. In the logic LT, we allow general
implications α → β, where α and β may contain occurrences of the typicality operator.

The interpretation of a typicality formula T(α) is defined with respect to a preferential interpretation.
The KLM preferential semantics [4, 6, 3] exploits a set of worlds W , with their valuation and a preference
relation < among worlds, to provide an interpretation of conditional formulas. A conditional A |∼ B is
satisfied in a preferential interpretation, if B holds in all the most normal worlds satisfying A, i.e., in all
<-minimal worlds satisfying A.

Here we consider a many-valued multi-preferential semantics. The propositions at each world w ∈ W
have a value in D and multiple preference relations <A⊆ W ×W are associated to formulas A of L.

Multi-preferential semantics have previously been proposed by Gill in [40], used in defining refine-
ments of the rational closure construction [37], and for description logics, in ranked defeasible KBs [41]
and, in the many-valued case, in weighted conditional KBs [21, 22]. The semantics below exploits a set
of preference relations <Ai associated to formulas Ai of L 2.

Definition 1. A (multi-)preferential interpretation is a triple M = ⟨W, {<Ai}, v⟩ where:

• W is a non-empty set of worlds;
• each <Ai⊆ W ×W is an irreflexive and transitive relation on W ;
• v : W × Prop −→ D is a valuation function, assigning a truth value in D to any propositional

variable in each world w ∈ W .

The valuation v is inductively extended to all formulas in LT as follows:

v(w,⊥) = 0D v(w,⊤) = 1D

v(w,A ∧B) = v(w,A)⊗ v(w,B) v(w,A ∨B) = v(w,A)⊕ v(w,B)

v(w,A → B) = v(w,A)� v(w,B) v(w,¬A) = ⊖v(w,A)

and the interpretation of a typicality formula T(A) in M, at a world w, is defined as:

v(w,T(A)) =

{
v(w,A) if ∄w ′ ∈ W s.t. w ′ <A w
0D otherwise

When v(w,T(A)) ̸= 0D, w is a typical/normal A-world in M. Note that we do not assume well-
foundedness of <A.

A ranked interpretation is a (multi-)preferential interpretation M = ⟨W, {<Ai}, v⟩ for which each
preference relation <Ai is modular, i.e., for all x, y, z, if x <Ai y then x <Ai z or z <Ai y.

In general, some conditions may be needed to enforce an agreement between the truth values of a
formula Ai at the different worlds in M and preference relation <Ai among them. The preferences
<Ai might have been determined by some closure construction, such as those exploiting the ranks or
weights of conditionals, as in [41, 21]. Similar conditions, called coherence, faithfulness and φ-coherence
conditions, have for instance been introduced in the multi-preferential semantics for DLs with typicality
in [21, 22].

2If we limit our consideration to finite KBs, we can restrict our attention to interpretations with a finite set of preference
relations <Ai , one for each formula Ai such that T(Ai) occurs in the KB or in the query.



We call a (multi-)preferential interpretation M = ⟨W, {<Ai}, v⟩ coherent if, for all w,w′ ∈ W , and
preference relation <Ai ,

v(w,Ai) > v(w′, Ai) ⇐⇒ w <Ai w
′

that is, the ordering among Ai valuations in w and w′ is justified by the preference relation <Ai ; and vice-
versa. A weaker condition is faithfulness. A (multi-)preferential interpretation M = ⟨W, {<Ai}, v⟩ is
faithful if, for all w,w′ ∈ W , and preference relation <Ai ,

v(w,Ai) > v(w′, Ai) ⇒ w <Ai w
′

Clearly, a preferential interpretation M might be coherent with respect to a preference relation <Ai ,
while being only faithful with respect to another one <Aj .

Let us now define the satisfiability of a graded implication with form A → B ≥ l (or A → B ≤ u)
with respect to an interpretation M, where l and u are constants corresponding to truth values in D
and A and B are formulas of LT.

We can first define the truth degree of an implication A → B in M as follows:

Definition 2. Given a preferential interpretation M = ⟨W, {<Ai}, v⟩, the truth degree of an implication
A → B wrt. M is defined as:

(A → B)M = infw∈W(v(w,A)� v(w,B)).

The satisfiability of a graded implication in a preferential interpretation M is evaluated globally to
the preferential interpretation M.

Definition 3. A preferential interpretation M = ⟨W, {<Ai}, v⟩, satisfies a graded implication A →
B ≥ l (written M |= A → B ≥ l) iff (A → B)M ≥ l. Similarly, I satisfies a graded implication
A → B ≤ u (written M |= A → B ≤ u) iff (A → B)M ≤ u.

Let a knowledge base K be a set of graded implications. A model of K is an interpretation M which
satisfies all the graded implications in K . Given a knowledge base K , we say that K entails a graded
implication A → B ≥ l if A → B ≥ l is satisfied in all the models of K (and similarly for a graded
implication A → B ≤ l). In the following, we will refer to the entailment of graded implications
A → B ≥ 1 as 1-entailment.

It can be proven that the the usual KLM preferential semantics [4] can be regarded as a special case
of the multi-preferential semantics above. The KLM properties of a preferential consequence relation can
be reformulated in the many-valued setting, and they are satisfied by multi-preferential interpretations
for some choice of combination functions, when the preference relations <Ai are well-founded.

3. A Temporal Preferential Logic with Typicality

In this section we extend the language of the logic LT with the temporal operators ⃝ (next), U (until),
3 (eventually) and 2 (always) of Linear Time Temporal Logic (LTL) [42].

We extend the language of graded implications, by allowing temporal and typicality operators to
occur in a graded implication A → B ≥ l (or A → B ≥ l) in A and in B, with the only restriction that
T should not be nested. For instance,

lives_in_town ∧ young → T(3granted_loan) ≥ 0.8
3T(granted_loan) → lives_in_town ∧ young ≥ 0.8.

are graded implications. We define the semantics of the logic in agreement with the fuzzy LTL semantics
by Frigeri et al. [43].

Definition 4. A temporal (multi-)preferential interpretation is a triple I = ⟨W, {<n
Ai
}n∈N, v⟩ where:

• W is a non-empty set of worlds;



• each <n
Ai
⊆ W ×W is an irreflexive and transitive relation on W ;

• v : N×W × Prop −→ D is a valuation function assigning, at each time point n, a truth value to
any propositional variable in each world w ∈ W .

When there is no w′ ∈ W s.t. w′ <n
A w, we say that w is a normal situation for A at timepoint n.

In a preferential interpretation I = ⟨W, {<n
Ai
}n∈N, v⟩, the valuation v(n,w,A) of a formula A, in

world w, at time point n ∈ N, can be defined inductively as follows:

v(n,w,⊥) = 0D v(n,w,⊤) = 1D v(n,w,¬A) = ⊖v(n,w,A)

v(n,w,A ∧B) = v(n,w,A)⊗ v(n,w,B)

v(n,w,A ∨B) = v(n,w,A)⊕ v(n,w,B)

v(n,w,T(A)) =

{
v(n,w,A) if ∄w ′ ∈ W s.t. w ′ <n

A w
0D otherwise

v(n,w,⃝A) = v(n+ 1, w,A)

v(n,w,3A) =
⊕

m≥n v(m,w,A) v(n,w,2A) =
⊗

m≥n v(m,w,A)

v(n,w,AUB) =
⊕

m≥n(v(m,w,B)⊗
⊗m−1

k=n v(k,w,A))

The semantics of 3, 2 and U requires a passage to the limit. Following [43], we introduce a bounded
version for 3, 2 and U , by adding new temporal operators 3t (eventually in the next t time points), 2t

(always within t time points) and Ut, with the interpretation:

v(n,w,3tA) =
⊕n+t

m=n v(m,w,A) v(n,w,2tA) =
⊗n+t

m=n v(m,w,A)

v(n,w,AUtB) =
⊕n+t

m=n(v(m,w,B)⊗
⊗m−1

k=n v(k,w,A))

so that

v(n,w,3A) = limt→+∞ v(n,w,3tA)

v(n,w,2A) = limt→+∞ v(n,w,2tA)

v(n,w,AUB) = limt→+∞v(n,w,AUtB)

The existence of the limits is ensured by the fact that v(n,w,3tA) and v(n,w,AUtB) are increasing in
t, while v(n,w,2tA) is decreasing in t (assuming the monotonicity properties of t-norms and t-conorms
for ⊗ and ⊕) [43].

The notions of coherence and faithfulness can be extended to temporal multi-preferential interpreta-
tion. E.g., a multi-preferential interpretation is coherent if, for all w,w′ ∈ W , n ∈ N and preference
relation <Ai , v(n,w,Ai) > v(n,w′, Ai) ⇐⇒ w <n

Ai
w′ (and similarly for faithfulness).

Note that, here, we have not considered the additional temporal operators (“soon”, “almost always”,
etc.) introduced by Frigeri et al. [43] for representing vagueness in the temporal dimension (which
can be considered for future work). As a consequence, for the case D = [0, 1], without the typicality
operator, the semantics corresponds to the semantics of FLTL (Fuzzy Linear-time Temporal Logic) by
Lamine and Kabanza [44].

Proposition 1. For any formulas A and B, time point n and world w, the following holds:
v(n,w,3A) = v(n,w,A)⊕ v(n+ 1, w,3A)
v(n,w,2A) = v(n,w,A)⊗ v(n+ 1, w,2A)
v(n,w,AUB) = v(n,w,B)⊕ (v(n,w,A)⊗ v(n+ 1, w,AUB))

It can be seen that a temporal many-valued interpretation I = ⟨W, {<n
Ai
}n∈N, v⟩ can be regarded as

a sequence of (non-temporal) preferential interpretations M0,M1,M2, . . . over the same set of worlds
W , where each Mn is defined as follows: Mn = ⟨W, {<n

Ai
}, vn⟩, where w <n

Ai
w′ holds in Mn iff

w <n
Ai

w′ holds in I , for all w,w′ ∈ W ; and vn(w,A) = v(n,w,A), for all w ∈ W and propositional
variable A.



Definition 5. Given a temporal preferential interpretation I = ⟨W, {<n
Ai
}n∈N, v⟩ the truth degree of

an implication A → B in I at time point n is defined as:
(A → B)I,n = infw∈W(v(n,w,A)� v(n,w,B)).

Let us now define the satisfiability of a graded implication in a preferential interpretation I =
⟨W, {<n

Ai
}n∈N, v⟩. Rather than regarding graded implications as global constraints, that have to hold

at all time points, we can allow for boolean combination of graded implications (as in [12]) and also for
temporal operators to occur in front of the graded implications and of their boolean combinations. We
call such formulas temporal graded formulas.

3.1. Temporal graded Formulas

A temporal graded formula is defined as follows:

α ::= A → B ≥ l | A → B ≥ l | α ∧ β | ¬α | ⃝α | 3α | 2α | αUβ,

where α and β stand for temporal graded formulas. Note that temporal operators may occur both
within graded implications (A → B ≥ l) and in front of them, and of their boolean combinations.

An example of temporal graded formula is the following conjunction:

2(T(professor) → teaches U retired ≥ 0.7) ∧
(lives_in_town ∧ young → T(3granted_loan) ≥ 0.8)

where the graded implication in the first conjunct is prefixed by a 2 operator, while the second one is
not.

We will evaluate the satisfiability of a temporal graded formula at the initial time point 0 of a temporal
preferential interpretation I . Let us first define the interpretation of temporal graded formulas at a time
point n of a temporal interpretation I as follows:
I, n |= A → B ≥ l iff (A → B)I,n ≥ l
I, n |= A → B ≤ l iff (A → B)I,n ≤ l
I, n |= α ∧ β iff I, n |= α and I, n |= β
I, n |= ¬α iff I, n ̸|= α
I, n |= ⃝α iff I, n+ 1 |= α
I, n |= 3α iff exists m ≥ n such that I,m |= α
I, n |= 2α iff for all m ≥ n, I,m |= α
I, n |= αUβ iff exists m ≥ n such that I,m |= β and, for all n ≤ k < m, I, k |= α

Let us define the notions of satisfiability and entailment.

Definition 6 (Satisfiability and entailment). A temporal graded formula α is satisfied in a temporal
preferential interpretation I = ⟨W, {<n

Ai
}n∈N, v⟩ if I, 0 |= α.

A preferential interpretation I = ⟨W, {<n
Ai
}n∈N, v⟩ is a model of a temporal conditional knowledge

base K , if I satisfies all the temporal graded formulas in K .
A temporal conditional knowledge base K entails a temporal graded formula α if α is satisfied in all

the models I of K .

Observe that any graded implication A → B ≥ l is either satisfied or not at a time point n of a
temporal interpretation I , i.e., either I, n |= A → B ≥ l or I, n ̸|= A → B ≥ l (and similarly for the
graded implications A → B ≤ l). Hence, the interpretation above of temporal graded formulas in I at
a time point n is two-valued (although it builds over the degree of an implication A → B in I at time
point n, which has a truth value (A → B)I,n in D, see Definition 5).

Note that, in the temporal graded formula given above, the graded implication in the first conjunct
(T(professor) → teaches U retired ≥ 0.7) is required to hold at all the time points of the interpretation
I (as it is prefixed by 2), while the second conjunct (lives_in_town ∧ young → T(3granted_loan) ≥
0.8) has to hold only at time point 0.



Decidability and complexity of the different decision problems (the satisfiability, the model checking
and entailment problems) have to be studied for this temporal many-valued conditional logic, for
different choices of D and of combination functions. Satisfiability is decidable in the two-valued case,
when we restrict to preference relations <Ai with respect to a finite number of formulas (for instance,
by restricting to the formulas occurring in a finite KB, and to the respective preferences). Under such
conditions, and assuming that all the temporal graded formulas in a KB are prefixed by the 2 operator,
the propositional temporal logic with typicality introduced above can be regarded as a special case of
LTLALC with typicality, which has been shown to be decidable in the two-valued case and for a finite
number of preference relations [31].

4. Weighted temporal knowledge bases

As in the two-valued non-temporal case, the notion of preferential entailment considered in the previous
section is rather weak. For the KLM logics, different closure constructions have been proposed to
strengthen entailment by restricting to a subset of the preferential models of a conditional knowledge
base K . Let us just mention, the rational closure [6] (or system Z [3]) and the lexicographic closure
[45], but also other constructions, such as the MP-closure [37], which exploits a similar idea, only using
a different kind of lexicographic ordering to define the preference relation.

In the following we consider a construction that has been proposed for weighted knowledge bases in
defeasible description logics, where defeasible implications have a weight. We reformulate the semantics
of weighted KBs in [21, 22] in the propositional context, for the temporal case, by assuming that D is
the unit interval [0, 1] or a subset of it (e.g., the finite set D = Cn, for some n ≥ 1). The two-valued
case D = {0, 1} is also a special case.

A weighted KB is a set of weighted typicality implication of the form (T(Ai) → Bj , wij), where Ai and
Bj are propositions, and the weight wij is a real number, representing the plausibility or implausibility
of the conditional implication. For instance, for a proposition student , we may have a set of weighted
defeasible implications:

(T(student) → has_Classes , +50) (T(student) → 3holds_Degree ,+30)
(T(student) → has_Boss , -40)

that represent prototypical properties of students, i.e., that a student normally has classes and will
eventually reach the degree, and she usually does not have a boss (negative weight). Accordingly, a
student having classes, but not a boss, is more typical than a student having classes and a boss. Similarly,
one may introduce a set of weighted conditionals for other formulas, e.g., for employee .

Based on the set of weighted conditionals for a formula Ai, one can constrain the preferences
between worlds according to <Ai . For instance, consider an interpretation I = ⟨W, {<n

Ai
}n∈N, v⟩

in which a world w describes a student (v(0, w, student) = 1) that in the initial state has classes
(v(0, w, has_Classes) = 1) but not a boss (v(0, w, has_Boss) = 0), and that at time point 8 will reach
the degree (v(8, w, hold_Degree) = 1) ; while world w′ describes a student (v(0, w′, student) = 1) that
in the initial state has classes (v(0, w′, has_Classes) = 1) and has a boss (v(0, w′, has_Boss) = 1), and
will reach the degree at time point 7 (v(7, w′, hold_Degree) = 1.

The idea is that the preference relation <0
student in I should consider the situation described at w at

time point 0, more normal than the situation described by w′ (i.e., w <0
student w

′), as the sum of the
weights of the defeasible implications satisfied by world w at time point 0 (50 + 30 = 80) is greater
than the sum of the weights of the defeasible implications satisfied by world w′ (50 + 30− 40 = 40) at
time point 0.

We have to further consider that the propositions may be non-crisp, e.g., v(0, w, has_Classes) =
0.7, and this has some impact on the degree to which a conditional implication (e.g.,
T(student) → has_Classes), is satisfied.

Given a weighted knowledge base K , we call distinguished propositions those propositions Ai such
that at least a weighted defeasible implications of the form (T(Ai) → Bj , wij) occurs in K .

Let K be a temporal weighted KB. Given a many-valued temporal interpretation I = ⟨W, {<n
Ai



}n∈N, v⟩, the weight of a world x ∈ W with respect to a distinguished proposition Ai at time point n is
given by

W I
Ai,n

(x) =
∑

(T(Ai)→Bj ,wij)∈K wij · v(n, x,Bj).

Intuitively, the higher the value of W I
i,n(x), the more normal is the state of affairs x, at time point n,

concerning the properties of A in K . This constrains the preference relation <Ai in I . We extend the
coherent and faithful multi-preferential semantics for weighted knowledge bases to the temporal case:

Definition 7. A many-valued temporal preferential interpretation I = ⟨W, {<n
Ai
}n∈N, v⟩ satisfies a

weighted KB K if, for all distinguished formulas Ai and time points n, it holds that:

x <n
Ai

y ⇐⇒ W I
i,n(x) > W I

i,n(y)

The condition in Definition 7, together with the coherence (faithfulness) condition introduced in
Section 2, guarantees that the many-valued interpretation I agrees with the weighted inclusions in K ,
at each time point n.

A weighted (defeasible) knowledge base KD can coexist with a strict knowledge base KS (i.e., a set
of temporal graded formulas). This is in agreement with the usual approach in defeasible DLs, which
distinguishes between a strict TBox and a defeasible TBox.

5. Towards a temporal conditional logic for gradual argumentation

In previous sections, we have developed a many-valued, temporal logic with typicality, extending with
LTL operators the many-valued conditional logic with typicality proposed in [12]. In this section
we aim at instantiating the proposed temporal logic to the gradual argumentation setting, to make it
suitable for capturing the dynamics of an argumentation graph (e.g., the changes of weights of edges in
time).

The idea in [12] was to provide a general approach for developing a preferential interpretation from
an argumentation graph G under a gradual semantics S, provided some weak conditions on the domain
of argument interpretation are satisfied by S and, specifically, that the domain of argument interpretation
D is equipped with a preorder relation ≤ (which is a widely agreed requirement [16, 17]). As it may
be expected, the domain of argument interpretation D plays the role of the truth degree set of our
many-valued semantics introduced above.

For the definition of an argumentation graph, let us adapt the notion of edge-weighted QBAF by
Potyka [24] to a generic domain D. A (weighted) argumentation graph is a quadruple G = ⟨A,R, σ0, π⟩,
where A is a set of arguments, R ⊆ A×A a set of edges, σ0 : A → D assigns a base score of arguments,
and π : R → R is a weight function assigning a positive or negative weight to edges (when the graph
is not weighted, we assume function π only distinguishes between attacks and supports).

A many-valued labelling σ of G over D is a function σ : A → D, which assigns to each argument
an acceptability degree (or a strength) in the domain of argument valuation D (for Ai ∈ A, σ(Ai) is
the acceptability degree of argument Ai in σ). Whatever gradual semantics S is considered for the
argumentation graph G (see, e.g., [16, 17, 24]) we assume that S identifies a set ΣS of labellings of the
graph G over a domain of argument valuation D. A semantics S of G can then be regarded, abstractly,
as a pair (D,ΣS): a domain of argument valuation D and a set of many-valued labellings ΣS over the
domain.

If we consider all arguments Ai ∈ A as propositional variables (Prop = A), each many-valued
labelling σ can be regarded as a world wσ ∈ W in a many-valued preferential interpretation MG =
⟨W, {<Ai}, v⟩, such that v(wσ, Ai) = σ(Ai).

More precisely, in [12] a gradual semantics (D,ΣS) of the argumentation graph G is mapped into a
preferential interpretation MG = ⟨W, {<Ai}, v⟩, defined as in Section 2, by letting:

- W = {wσ | σ ∈ ΣS}
- v(wσ, Ai) = σ(Ai), for all the arguments Ai ∈ Prop



- wσ <Ai wσ′ iff σ(Ai) > σ′(Ai)
Such a preferential interpretation can then be used in the verification of strict and conditional graded
implications. For finitely-valued φ-coherent argumentation semantics, in the finitely-valued case, an
ASP approach has been presented for conditional reasoning over an argumentation graph [20, 23], by
mapping weighted argumentation graphs into weighted knowledge bases.

The approach can be extended to the temporal case, based on the temporal many-valued logic with
typicality developed in Section 3. It can allow to reason about the dynamics of an argumentation graph,
for instance, when the weights of edges might change in time, e.g. when learning the weights. Indeed,
a multilayer neural network can be regarded as a weighted knowledge base [26, 22], but also as a
weighted argumentation graph [24, 25], based on the strong relationships of the two formalisms [23].
As another example, the structure of an argumentation graph can be updated through the interaction
of different agents in time, such as in [27] via Argumentative Exchanges, giving rise to a sequence of
argumentation graphs Gn (over the same set of arguments A).

When the argumentation graph changes dynamically, a temporal many-valued interpretation
I = ⟨W, {<n

Ai
}n∈N, v⟩ can be seen as a sequence of (non-temporal) preferential interpretations

M0,M1,M2, . . . (as in Section 3), where each Mn = ⟨W, {<n
Ai
}, vn⟩ is constructed from the la-

bellings ΣS
n of the argumentation graph Gn at time point n, as for MG above. Temporal graded

formulas over arguments, e.g., 2(T(A1 ) → A2UA3 ∨A3) ≥ 0.7, can then be verified over I .
As mentioned above, this verification approach has been studied, for the non-temporal case, in the

verification of properties of argumentation graphs under the φ-coherent gradual semantics [20], and an
ASP approach has been developed for the verification of graded conditional implications over arguments
and over boolean combination of arguments. Extending the ASP approach to deal with the temporal
case, for specific fragments of the language, is a direction for future work.

6. Conclusions

The paper proposes a framework in which different (many-valued) preferential logics with typicality
can be captured, together with their temporal extensions, with LTL operators. The interpretation of the
typicality operator is based on a multi-preferential semantics, and an extension of weighted conditional
knowledge bases to the temporal (many-valued) case is proposed.

The approach is parametric with respect to the choice of a specific many-valued logic (and their
combination functions), but also with respect to the definition of the preference relations <Ai , which
might exploit different closure constructions, among the many studied in the literature, in the spirit of
Lehmann’s lexicographic closure [45]. The two-valued case, with a single preference relation can as
well be regarded as a special cases of this preferential temporal formalism.

On a different route, a preferential logics with defeasible LTL operators has been studied in [29, 46].
The decidability of different fragments of the logic has been proven, and tableaux based proof methods
for such fragments have been developed [28, 46]. Our approach does not consider defeasible temporal
operators nor preferences over time points, but combines standard LTL operators with the typicality
operator in a many-valued temporal logic. In our approach, preferences between worlds change over
time.

Much work has been recently devoted to the combination of neural networks and symbolic reasoning
[47, 48, 49]. While conditional weighted KBs have been shown to capture (in the many-valued case) the
stationary states of a neural network (or its finite approximation) [21, 22, 23], and allow for combining
empirical knowledge with elicited knowledge for reasoning and for post-hoc verification, adding a
temporal dimension opens to the possibility of verifying properties concerning the dynamic behavior
of a network, based on a model checking approach or an entailment based approach.

Extending the above mentioned ASP encodings to deal with temporal preferential interpretations is
a direction of future work. Future work also includes studying the decidability for fragments of the
logic and exploiting the formalism for explainability, and for reasoning about the dynamics of gradual
argumentation graphs in gradual semantics.
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