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Abstract
Online advertising opportunities are bought and sold in automated auctions driven by real-time bidding. In
the case of contextual advertising, the size of a bid is informed by the media context in which the ad will be
displayed. In contrast to personalised advertising, contextual advertising is better aligned with privacy acts
such as GDPR and CCPA. We investigate how reinforcement learning with human feedback can help optimise
contextual advertising under budget constraints. We propose a dynamic epsilon-greedy algorithm that considers
the rate of budget consumption during a finite transaction time. The goal is to maximise long-term rewards in a
sustainable manner. Our comparative evaluation of fundamental reinforcement learning algorithms on real data
suggests that the approach is feasible and effective.
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1. Introduction

In the context of online advertising, an impression is an opportunity to show an ad to a user. The vast
majority of all impressions are sold to advertisers or their intermediates through a mode of automated
auctioning known as real-time bidding (RTB). This allows for allocation management and placement of
ads with minimal human mediation [1]. The basic RTB interaction scheme looks as follows: When a
user visits a webpage, the publishers controlling the page send a bid request through the supply-side
platform to an ad exchange. In response, one or more demand-side platforms bid on behalf of different
advertisers. Ideally, an optimal bidding strategy uses a small amount of budget to bid on the most
valuable impressions and the values of the impressions often hinge on the personal information of the
user, which helps advertisers effectively identify their target audience.
With the enactment of a series of data protection policies such as the California Consumer Privacy

Act [2] and the General Data Protection Regulation (GDPR) [3], people’s awareness of their online
privacy is increasing. Data platforms must now explicitly ask for user’s consent to collect personal
information and track their activities. However, since it is impossible to predict who will win the
impressions in advance, the users cannot be given a complete picture of how their data will ultimately
be used [1]. An alternative solution is contextual advertising, which does not depend on private data.
Instead, the value of an impression is derived from the media context in which the winning ad will
appear. The assessment of the context can, for example, be based on the degree of topical congruence
between the ad and the context. By studying the leverage of the contextual features under budget
constraints, an effective and sustainable advertising strategy can be found.
RTB optimisation is a central topic in advertising literature. To maximise the impact of advertising

within budget constraints, accurately predicting click-through rates (CTR) is crucial. Previous studies
have largely treated CTR prediction as a static problem and resulted in algorithms such as LIN [4] and
ORTB [5] which use linear and nonlinear regression, respectively. There have also been attempts at
combining neural networks and factorisation machines to improve CTR prediction [6, 7]. In real life, the
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processes of recommending and bidding on ads are all dynamic in nature. For this reason, RTB is more
accurately modelled as a dynamic optimisation problem. The algorithms RLB [8] and DRLB [9] aim to
address such dynamic bidding problems with budget constraints. While DRLB addresses the limitation
of model-based RLB, making it more applicable to real-world scenarios using Deep Q-Network, the
fixed set of bid scaling parameters that spans its action space still restricts its adaptability. Therefore,
we reframe RTB as a dynamic optimisation problem and train a bidding agent to spend a limited budget
as effectively as possible, to maximise long-term returns in a more sustainable manner.
This paper explores the application of reinforcement learning to contextual advertising with bud-

get constraints. The main contributions are: (1) A dynamic epsilon-greedy reinforcement learning
mechanism that adaptively adjusts the rate of advertising spend and maximises long-term rewards.
(2) Realistic parameter values, derived from real-world data, including costs and rewards. (3) Offline
evaluations on real-world data, under a holistic simulation workflow that combines RTB, contextual
advertising, and reinforcement learning.

2. Method

In our experiments, we use real-world data to simulate RTB auctions. The dataset consists of pairs of
impressions and information about whether the user clicked on the ad, that is, the ground truth that the
agent is trying to predict. To train the agent, it is shown the impression part of one data item at a time
and has to decide whether or not to bid. It bases its decision on contextual features of the impression, as
well as on prior knowledge from previous attempts at bidding. If it chooses to bid and, according to the
historical data, the user clicked on the ad, then it receives a positive reward. This bidding process is then
repeated until the agent has depleted its budget, or a maximum number of bidding opportunities have
been offered. This means that the agent needs to assess not only the value of the impression currently
at hand, but also how to maximise the cumulative return of the entire episode with a limited budget. To
this end, it must ration its available budget over time, rather than bidding on every opportunity which
would exhaust the budget prematurely, or being too conservative and eventually running out of bidding
opportunities. This reflects real-world applications, where campaigns are set to run over periods of
days, weeks, or even months, so it is not desirable that the agent spends its entire budget in the first
few hours or even minutes.

2.1. Interaction Framework

There are three main components in our simulated bidding process, inspired by RecSim [10]: a document
model, a user model, and an agent model. The agent receives a stream of bid requests, each of them
generated by sampling the document model to retrieve a candidate advertisement characterised by
some contextual feature. For each such document it decides whether or not to bid. If it decides to bid, it
is informed if the user clicks on the ad. The agent then computes its gains and losses and updates its

Figure 1: The interaction process revolves around the document, user, and agent models (peach-coloured boxes).



bidding strategy. The interaction is illustrated in Figure 1. The training data consists of recorded RTB
auctions of individual impressions1, aggregated from multiple US publisher sites in the period June 14 –
28, 2016. Each impression is represented by a reference ID, a topic ID, and a binary user response: 1
means that they clicked, and 0 that they did not.

2.2. Optimisation Task

We model the interaction between the agent and the external environment (that is, the user model
and the document model) at each time step as a Markov Decision Process (MDP). We denote by 𝑎𝑡 the
bidding action taken by the agent at time step 𝑡, by 𝑠𝑡 the state of the environment at that time, and by
𝑟𝑡+1 the immediate reward received at time step 𝑡 + 1. Each time an agent makes a bidding decision, it
triggers a subsequent change in the environment state, and the updated state is evaluated by the agent
in preparation for the next time step. In our simulated bidding process, each episode is an ordered
sequence of several such interactions. We thus obtain the following sequential trajectory at the end of
an episode with 𝑡 time steps: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡. The goal of the agent is to maximise
the cumulative return 𝐺 = Σ𝑖∈{1,…,𝑡}𝑟𝑡 under a constrained budget. The central concepts in the chosen
approach are listed below, followed by an explanation of our choice of parameter values.

• A state is a tuple 𝑠 = ⟨tpc, 𝑏⟩, consisting of contextual features that describe the essential
information of the external environment, where tpc is a topic ID of the document and 𝑏 is a figure
denoting the remaining budget. The total budget for each episode in the experiments is $120, and
if the agent chooses to bid, then a bidding price of $1.5 is deduced from the available budget only
if it receives a click.

• An action 𝑎𝑡 ∈ 𝐴 = {0, 1} represents the agent’s bidding decision at time step 𝑡.
• A reward 𝑟𝑡 from the transition 𝑠𝑡 → 𝑠𝑡+1. In the experiments, if the agent chooses to bid and
receives a click from the user, then the reward is $5. In all other cases, there is no reward.

• The episode length is a non-zero integer parameter 𝑡. In the experiments presented here, we
let 𝑡 = 500. In the extreme scenario where the agent chooses to bid on almost every impression,
the episode will end around 𝑡 = 80 when the budget is exhausted. However, we would like to
encourage the agent to be more selective with its bids, and learn how to identify impressions that
are likely to lead to clicks.

To make our experiments as realistic as possible, we derive key parameters from Amazon’s report on
Advertising Cost of Sale (ACoS)2. ACoS is a measure of the ratio of advertising expenditure to revenue
and should be around 20% – 30%, calculated by:

ACoS =
TotalAdSpend
TotalSales

= CPC
UnitPrice × CVR

Here, CVR denotes the conversion rate, that is, the relative proportion of users that click on an ad that
also take some desired action when arriving at the landing site. The Cost Per Click (CPC) is generally
70 – 150 cents, and CVR should be in the range of 2% – 8%.

2.3. Learning Algorithms

We compare two fundamental classes of RL algorithms: the Monte Carlo (MC) family and the Temporal
Difference Learning (TD) family. They are represented by first-visit MC, every-visit MC, Q-Learning,
and SARSA [11]. As previously mentioned, the agent evaluates whether to bid based on the state, and
the different actions result in different feedback. Thus, for each state-action pair, we obtain a score to
measure its value, denoted as 𝑞⟨𝑠𝑡, 𝑎𝑡⟩. Once our agent has taken the action 𝑎𝑡 at the state 𝑠𝑡 and received
a reward, the value 𝑞⟨𝑠𝑡, 𝑎𝑡⟩ can be calculated based on the Bellman equation [11] and used for future
policy guidance.

1https://www.kaggle.com/competitions/outbrain-click-prediction/data
2https://advertising.amazon.com/library/guides/acos-advertising-cost-of-sales
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Figure 2: The scatter plot within the grid visualises the correlation between the values of mt before and after
log transformation and min-max normalisation (mt ′). The marginal plots represent their respective distributions.
The distribution of mt at the top has a noticeable left skew, while the distribution of mt ′ is closer to a normal
distribution.

One of the most important problems in reinforcement learning is to balance exploration and exploita-
tion. Exploitation is when the agent selects the option it expects to yield the highest reward based on
the information it has collected thus far. Exploration, on the other hand, is when the agent ignores
previous knowledge to investigate unknown (and potentially highly rewarding) options. In the real
world, users are not a heterogeneous group, and even individual users change their behaviours over
time and in response to external factors. So, if the agent is only guided by prior experiences, it is likely
to overlook opportunities for higher rewards and become trapped in sub-optimal choices. In contrast, if
the agent varies its interaction with the environment, it gains a more comprehensive understanding of
the underlying dynamics.
As previously mentioned, we want the agent to economise with its budget throughout the episode.

So, for the agent to better maximise the benefit in a changing environment, we add a ratio 𝑚𝑡 =
BudgetLeft/TimeLeft to dynamically adjust the intensity of exploration, making it reflect the rate at
which the budget is spent. In this way, if there is an ample budget left and the episode is almost finished,
then the agent can boldly explore all opportunities. Conversely, if the budget is consumed too fast, we
can reduce 𝜖 to throttle the rate of exploration, so that the agent makes greedy choices according to the
previously obtained information. However, it is not practical to use this ratio directly as a value of 𝜖,
because this ratio obeys a right-skewed distribution, is unevenly distributed, and most of the values
are outside the [0, 1] interval. Therefore, we apply a log transformation and min-max normalisation of
the ratio so that the parameter is more uniformly distributed within the interval [0, 1], denoted as 𝑚𝑡′.
Figure 2 shows the comparison of this ratio before and after transformation.
Intuitively, the strategy for dealing with the exploration and exploitation trade-off is as follows:

at = {
argmax𝑎 𝑞(𝑠𝑡, 𝑎) with probability 1 −mt′,
random 𝑎 with probability mt′.

3. Results and Discussion

This section reports on the simulated interactions results3. We run 1 000 episodes for each algorithm to
train our agent. There are 500 time steps, i.e. 500 bidding interactions, per episode, and each episode
starts with a total budget of $120.
Figure 3 shows the cumulative rewards obtained by the different algorithms. We begin by noting

that the returns increase as more episodes are trained, which indicates that our agent is constantly

3The experiment code is available at https://github.com/JingWen17/Budget-Constrained_RTB_Optimisation
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Figure 3: The total returns obtained using different algorithms with a changing epsilon (𝑚𝑡′). The x-axis and
y-axis represent the count and average total return, respectively, per 10 episodes. The initial epsilon for all the
algorithms is 0.1 and the learning rate for Q-Learning and SARSA is 0.25.

improving its ability to recognise promising impressions. Secondly, the TD methods (Q-Learning and
SARSA) perform better than the MC methods. This is likely because the TD approaches update their
policies much faster, whereas the MC approaches need to wait until the end of each episode and then
calculate the value of each encounter by reviewing the interaction trajectory. The most obvious example
is that in a few beginning episodes, the agent is likely to be in a situation where nothing is known about
most states, because it has not had enough opportunities to interact with the environment. At this
point, the agent makes decisions primarily through random selection. If it happens to receive positive
feedback in an interaction, the MC agent can only update its policy once the entire episode is finished.
If this feedback points it in the wrong direction, then the MC agent may have to go through many more
episodes to make up for the mistake. This is not the case with the TD approach, where the TD agent
does not have to wait until the end of an episode before calibrating its knowledge of the environment,
but instead adjusts its policy at every time step of the interaction.
Next, we compare our proposed algorithm with baselines in a dynamic environment, where the

baseline Q-Learning and Sarsa algorithms consistently choose actions that yield the highest reward
based on the estimated 𝑞⟨𝑠𝑡, 𝑎𝑡⟩, focusing solely on exploitation. In this experiment, the reward associated
with a specific topic varies over time, and reaches its highest values towards the end of an episode, when
the agent’s budget might be running low. This reflects real-world fluctuations linked to, for example,
time of day, season, and global events. The results are reported in Figure 4.
By incorporating our proposed dynamic epsilon, both Q-Learning and Sarsa achieve higher total

(a) (b)

Figure 4: Comparisons between the performances of Q-learning and Sarsa, both with and without the changing
epsilon (𝑚𝑡′) in a dynamic environment. (a): The average total return per 100 episodes. (b): The ACoS calculated
based on the given formulation in Section 2.2.



returns compared to the baseline algorithms. The dynamic epsilon stimulates exploration while the
learner has a sufficient budget left to leverage new findings. In contrast, the baseline algorithms always
take the currently optimal action. In addition, Q-Learning and Sarsa with 𝑚𝑡′ prove to be more effective
and sustainable than the baselines. Figure 4(b) shows that four algorithms all achieve a good ACoS of
around 24% to 26%. However, our proposed algorithms stand out by having a lower ACoS, which is
valuable when budgets are limited.

In summary, our findings indicate that compared to MC methods, Q-Learning and SARSA are
better able to adapt their strategies through interactive learning. In addition, our proposed dynamic
epsilon method outperforms the baselines by more efficiently and sustainably learning in a dynamic
environment. In the specific problem we simulated, characterised by a relatively small state space,
limited unexpected events, and constrained time and budget, SARSA exhibited greater stability overall.

4. Conclusion

We model contextual RTB as a dynamic interaction process under budget constraints, define a suit-
able set of parameters to reflect real-world applications of contextual advertising, propose a dynamic
epsilon-greedy algorithm to maximise long-term rewards sustainably, and compare the performance of
different model-free reinforcement learning methods. Through experiments on real-world data, we can
find that Q-Learning and SARSA outperform MC-based approaches to the problem. In addition, our
proposed dynamic epsilon approach performs better in a changing environment. Future work includes
the exploration of more advanced contextual features, for example, the semantic congruence between
webpages and ads. This may involve further studies assessing the state-of-the-art text retrieval tech-
niques and similarity measurement methods. Furthermore, we will also extend our bidding experiment
to include several competing bidders.
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