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Abstract
In recent years, learning outfit compatibility patterns from human-generated fashion outfits has gained attention
from both academia and industry due to its importance to the generation of recommendations on fashion e-
Commerce platforms. The researches in this area mainly tackle two relevant tasks: Fashion Fill-in-the-blank
(Fashion FITB) and Outfit Complementary Item Retrieval (Outfit CIR). This work presents Sliced-Wasserstein
Fashion Compatibility Network or Slay-Net to tackle these tasks. In the proposed approach, fashion outfits are
modeled as set-structured data to capture the complex relationship between an item and the rest of the items within
an outfit. Slay-Net includes an innovative approach to learn to generate the set embedding of a fashion outfit
by using an attention-based set encoding and Pooling by Sliced-Wasserstein Embedding (PSWE). Furthermore,
the training of Slay-Net follows a curriculum learning framework that includes simultaneous training for binary
classification and contrastive learning through multi-task learning. Among recent related works, Slay-Net is able
to achieve the best performance in the Outfit CIR task, as measured by the Recall@top-k metric. Experiments
conducted on a real-world dataset shows that Slay-Net improves the performance in Outfit CIR task by up to 27.16%.
The implementation of Slay-Net is made publicly available at https://github.com/1503-firmansyah-indra/slay-net.
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1. Introduction

Fashion e-Commerce is an internet business that sells fashion items online. Each fashion item has
its own internet page, where pictures and various details of the item are displayed. This page is
commonly referred to as the product page. On the product page of an item on most fashion e-Commerce
platforms, there is a section to show other items that customers may also be interested in, and this
section is normally called recommendation section. Different methods can be used to generate these
recommendations, and these methods are normally data driven.

There are two main types of data that are used to power the recommendations generation methods;
user-item and item-item interaction data. User-item interaction data capture information such as the
items which a user has interacted with, the type of interactions and a measure of the interaction. In
fashion e-Commerce platforms, customers can interact with an item in different ways: for example, a
customer can view the product page of an item, put an item in their wishlist, or rate an item that they
have purchased before. However, the item-item interaction contains information about the interaction
between items. For example, two items that are purchased or viewed together can be said to have
interacted.

This work focuses on the use of item-item interaction data for curating items for the recommendation
section of a product page. The specific item-item interaction data is the one derived from human
generated fashion outfits. A fashion outfit, or simply an outfit, is a set of items that look visually
compatible when worn by a person. The number of items in an outfit is not fixed, and this feature allows
us to model outfits as set-structured data. The model proposed in this work aims to capture the patterns
in the relationships of items in compatible outfit. The captured patterns can then be utilized to suggest
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a fashion item that can transform an incomplete outfit set into a compatible outfit. This is beneficial
to fashion e-Commerce because customers tend buy an additional item that can be compatibly worn
together with an item that they are already planning to buy.

Recent works that focus on learning patterns in compatible outfits focus on two task: Fashion Fill-in-
the-blank (Fashion FITB) and Outfit Complementary Item Retrieval (Outfit CIR). Fashion FITB is a task
where given a partially complete outfit, a model has to choose one item from a pool of four potential
candidates to add into the outfit, so that the resultant outfit is a compatible one. Outfit CIR is similar to
Fashion FITB, but the task is modified such that information retrieval setup is established. In Outfit
CIR, the model has to retrieve 𝑘-many items from large pool of items, and these 𝑘 items are those that
have the high probabilities to transform the partially complete outfit into a compatible outfit. In this
work, the Fashion FITB and Outfit CIR tasks will collectively be called Outfit Compatibility Learning.

Prior works [1, 2] adopt a pairwise item-level approach for the Fashion FITB task. However, these
works are not specifically designed to perform the Outfit CIR task. [3] proposes a model to tackle the
Fashion FITB and Outfit CIR tasks, while also adopting a pairwise item-level approach. Afterwards, [4]
and [5] each proposes a model to tackle Outfit Compatibility Learning, but each outfit is modeled as a set.
Modeling an outfit as a set introduces a new challenge; since the size of the outfit set is variable, there
has to be a mechanism to derive a fixed-dimensional set embedding from the outfit set features, which
have variable dimension. Both [4] and [5] adopt an attention-based set encoding method that includes
the addition of a trainable token to the input to the set encoding process. However, this approach does
not utilize all the encoded set features for generating the set embedding. That is why this paper presents
an innovative approach to generate the fixed-dimensional set embedding using both set encoding and
set pooling. Our approach enables the exploitation of all information from the encoded set features to
generate the set embedding. The set encoding method is based based on Set Attention Block (SAB) [6].
The specific set pooling method used is Pooling by Sliced-Wasserstein Embedding (PSWE) by [7].

Figure 1: top: Illustration of set embedding generation using set encoding and trainable token. bottom:
Illustration of set embedding generation using set encoding and set pooling. all: In both illustrations, the left
most part (features of items in the input set) is the output of feature extraction process. The generated set
embedding will then be processed further in Slay-Net to calculate the losses.

Furthermore, [4, 5] use a form of curriculum learning, in which the model is trained with binary
classification and contrastive learning losses consecutively in separate phases. This work proposes a
curriculum learning framework which includes a simultaneous training of binary classification and
contrastive learning heads via multi-task learning. This is to allow the model to capture patterns that
can only be discovered through simultaneous exposure to binary classification and contrastive learning



dataset.
The model proposed in this paper is called Sliced-Wasserstein Fashion Compatibility Network, or

shortly Slay-Net. Based on the empirical evidence collected using the Polyvore dataset [1], Slay-Net
achieves the best performance metrics in the Outfit CIR task as compared to existing related works.

In summary, the main contributions introduced in this paper are the following.

• We introduce a new model, Slay-Net, which uses both an attention-based set encoding method
and the set pooling method PSWE for generating the fixed-dimensional set embedding of a
set-structured fashion outfit for the Fashion FITB and Outfit CIR tasks.

• Slay-Net is trained using a curriculum learning framework that includes the simultaneous training
for binary classification and contrastive learning via multi-task learning.

• We evaluate the performance of Slay-Net on a real-world dataset, and we find that Slay-Net
consistently improves the performance on Outfit CIR task over the best published baselines by
up to 27.16%.

2. Related Work

2.1. Outfit Compatibility Learning

One of the first prior works in Outfit Compatibility Learning models items in an outfit as a sequence
and proposes a bidirectional LSTM model [8]. The same work also introduces the Fashion FITB task.
In [1], each item in the outfits is projected into type-respecting latent spaces and the compatibility
between items is learned using contrastive learning in a pairwise manner. However, the drawback of this
approach is that is that it may not perform well on the item type that has not been seen during training.
Hence, [2] develops a contrastive learning framework that does not require an explicit definition of
latent spaces.

Other relevant prior works model items and the item-item relations as captured in fashion outfits as
graph. In this approach, each item is modeled as a node, and if two items co-occur in an outfit, an edge
is created between these two nodes. The models proposed by [9] and [10] use the graph autoencoder
method. The models consist of an encoder and a decoder; the encoder generates embedding for each
node based on the edges it has, while the decoder predicts if there is a potential edge between two
nodes. If the decoder is confident that there is an edge between two nodes, there is a high probability
that the items represented by the two nodes are visually compatible when worn together by a person.

To simulate a large-scale retrieval setup, which is a closer resemblance of an actual e-Commerce
setup, [3] proposes a new task called Outfit Complementary Item Retrieval or shortly Outfit CIR. This
is a task where given a partially complete outfit, the compatible item has to be efficiently retrieved from
a large number of candidate items. A category sub-space attention network is proposed in [3] to tackle
the Outfit CIR task. A loss called the Outfit Ranking Loss is used to perform contrastive learning by
considering all item pairs in an outfit, with respect to a single reference item.

A modified version of the Outfit Ranking Loss is used to perform contrastive learning in [4], and the
work also model outfits as set structured data. The modified loss is called Set-wise Outfit Ranking Loss.
The complex relationship between items within an outfit is learned using self-attention mechanism.
In [5], an outfit is also modeled as a set, but a cross-attention mechanism is utilized to learn the
relationship between items in an outfit. Furthermore, the work adopts FashionCLIP [11] as the image
feature extractor, and SentenceBERT [12] as the text feature extractor. The two feature extractor models
are used with their weights frozen, and this results in a more efficient model training compared to
previous related works.

2.2. Deep Learning on Set-structured Data

A different strategy is required when learning from set-structured data, as compared to learning from
fixed-dimensional data. For example, the output of the model has to be the same regardless of how



the items in the set are being permutated. Furthermore, the model has to be able to accommodate the
varying size of the input set. An example of a set-structured data is fashion outfit.

[13] proposes a deep learning architecture for set-structured data via fully connected layers and
aggregation of the transformed elements in the input set. While this architecture is able to achieve
permutation equivariance, the intermediate encoding of the set elements is done in isolation. Hence, it
cannot capture the interaction between elements within a set. To address this, [6] proposes an attention-
based framework for learning from set-structured data, and it is called SetTransformer. SetTransformer
consists of set encoding and set pooling steps.

Depending on the task that a model is tackling, the model architecture may include set encoding
and set pooling to learn from set-structured data. There are prior works that focus on the set pooling
step. [14] proposes a set pooling framework called Feature Sort Pooling (FSPool) that includes feature
sorting across the set elements and weighted sum of the sorted set features. A method to generate
a fixed-dimensional set embedding in a Euclidian space based on the generalized sliced Wasserstein
distance [15] is proposed in [7]. This method is called Pooling by Sliced-Wassertstein Embedding
(PSWE).

3. Problem Setting

This work is motivated by the problem of generating recommendation for fashion e-Commerce platforms
using item-item interaction data. The specific item-item interaction data is one that is derived from
human generated fashion outfit data. Two items that occur in at least one outfit are said to have
interacted. A fashion outfit, or simply an outfit, is a set of items that look visually compatible when
worn by a person. The items in an outfit are of different types. For example, an outfit can consist of a
blouse, skirt, pair of shoes, and bag. Furthermore, the number of items in an outfit is variable. Some
aspects of this recommendation generation problem are captured in researches in Outfit Compatibility
Learning. Recent works in this area focus on two tasks: Fashion FITB and Outfit CIR. These two tasks
are also the focus of this work.

In these two tasks, given a partially complete outfit 𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = {𝐼𝑖}𝑛𝑜
𝑖=1 ∖ 𝐼𝑝, the set embedding of

the outfit 𝑓𝑜 is to be generated. In this context, 𝐼𝑖 is an item in the outfit, 𝐼𝑝 an item removed from the
outfit and 𝑛𝑜 the number of items in the outfit, which can be different form outfit to outfit. To achieve a
good performance in the two tasks, the model has to be trained so that the generated set embedding 𝑓𝑜
is close to the embedding of the removed item 𝑓𝑝 on a Euclidean space.

3.1. Fashion FITB

Fashion FITB is a problem in which an item has to be chosen from a selection of four potential items
to transform a partially complete outfit into a compatible outfit. One can think of this problem as
one where a blank from a partially complete outfit has to be correctly filled, and hence, it is named as
Fashion Fill-in-the-blank. Performing Fashion FITB manifests in answering "FITB questions", and each
question is a multiple choice question, where choosing the correct answer will result in compatible
outfit. A better model will correctly answers more FITB questions and hence achieves higher FITB
accuracy.

Fashion FITB task can be formally defined as a multiple choice problem, where the goal is to
complete 𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙 by selecting the most compatible item from a set of candidate items {𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛}4𝑖=1,
where 𝐼𝑝 ∈ {𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛}4𝑖=1. The correct answer to each FITB question is 𝐼𝑝, the item removed from the
complete outfit. Let there be a parameterized embedding function 𝑔 that takes in either a set of items
or a single item, such that 𝑔(𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙) = 𝑓𝑜 and 𝑔(𝐼𝑝) = 𝑓𝑝. This work proposes Slay-Net as 𝑔. The
prediction of the answer to each FITB question is obtained through a series of steps. Firstly, given a set
of candidate items {𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛}4𝑖=1, the Euclidean distance between 𝑓𝑜 and the embedding of each candidate
item 𝑔(𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛), where 𝑖 ∈ {1, 2, 3, 4}, is calculated. The Euclidean distance is formally defined as



Figure 2: Illustration of dataset for FITB task by [1]. The first row shows an example of FITB question, and the
second row shows the answer pool. The item with green outline is the correct answer.

follows:
𝑑(𝑓𝑜, 𝑔(𝐼

𝑖
𝑜𝑝𝑡𝑖𝑜𝑛)) = ‖𝑓𝑜 − 𝑔(𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛)‖2 (1)

The item, which embedding’s Euclidean distance to 𝑓𝑜 is shortest, is set as the prediction to the answer
to the FITB question 𝐼𝑝𝑟𝑒𝑑.

𝐼𝑝𝑟𝑒𝑑 = arg min
𝐼𝑜𝑝𝑡𝑖𝑜𝑛

𝑑(𝑓𝑜, 𝑔(𝐼𝑜𝑝𝑡𝑖𝑜𝑛)) (2)

where 𝐼𝑜𝑝𝑡𝑖𝑜𝑛 ∈ {𝐼𝑖𝑜𝑝𝑡𝑖𝑜𝑛}4𝑖=1. The FITB question is correctly answered when 𝐼𝑝𝑟𝑒𝑑 is 𝐼𝑝.
FITB training and evaluation dataset is first introduced by [8], but is later improved by [1]. In the

original FITB dataset, the pool of potential answers to an FITB question contains items of different
types. For example, if the item type of the correct answer to an FITB question is shoes, the answers
contain other item types, such as top or bottom. [1] modify the answer pool for each question so that it
only contains items of the same type as the correct answer.

3.2. Outfit CIR

Although the Fashion FITB task described in the previous section does measure important aspects of
the performance of models that are proposed in Outfit Compatibility Learning works, the small answer
pool of size four is not representative of an actual e-Commerce system. Most e-Commerce operators
have a large item catalog, and generating recommendation is a retrieval problem. For establishing a
setup that is of closer resemblance to actual e-Commerce operations, the number of candidate answers
for each FITB question has to be greatly increased. The modified Fashion FITB task with retrieval
setting is the Outfit CIR task. In Outfit CIR task, the retrieval setting is manifested through the use of
3000 candidate items for each FITB question. As will be explained later, there is a hierarchy of item
types and this hierarchy consists of two levels of item types. The candidate answers in Outfit CIR have
the same item type as the correct answer across the two levels of item types.

The performance of the model in the Outfit CIR task is measured using the Recall@top-k metric. Given
a large catalog 𝐶 = {𝐼𝑖𝑐𝑎𝑛𝑑}3000𝑖=1 containing 3000 candidate items, the Euclidean distance 𝑑(𝑓𝑜, 𝑔(𝐼𝑖𝑐𝑎𝑛𝑑))
between 𝑓𝑜 and the embedding of each candidate item is calculated according to equation (1). Recall@top-
k measures the percentage of FITB questions where the correct answer 𝐼𝑝 is in the top 𝑘 candidate
items with the shortest Euclidean distances.

4. Slay-Net

In this section we present our proposed architecture the Sliced-Wasserstein Fashion Compatibility
Network, or shortly Slay-Net. After a brief overview of the architecture, the individual components will
be explained. The section concludes with a description of the curriculum learning framework.



4.1. Architecture Overview

The Slay-Net is trained by following a curriculum learning. In the first phase, binary classification and
contrastive learning heads are simultaneously trained, while the second phase focuses on contrastive
learning. Showing the two different flows (the binary classification and contrastive learning flow) gives
a good overview of the architecture of Slay-Net.

Figure 3 shows the binary classification flow of Slay-Net, and this is only used in the first phase as a
pre-training. The input to the model is a complete outfit 𝑂𝑓𝑢𝑙𝑙 = {𝐼𝑖}𝑛𝑜

𝑖=1, where 𝐼𝑖 is an item in the
outfit and 𝑛𝑜 the number of items in the outfit. No item is removed from a complete outfit. Each item
in the outfit manifests as an image and text description. Feature extraction of the image and text are
done using FashionCLIP [11] and SentenceBERT [12], respectively. These extracted features are then
concatenated to give 𝐸𝑠𝑒𝑡, which is used as input for the set operation block. The first component of the
set operation block is set encoding, and this is based on the Set Attention Block (SAB) [6]. The second
component is set encoding via Pooling by Sliced-Wasserstein Embedding (PWSE) [7], and this outputs
a fixed-dimensional outfit embedding 𝑥𝑜. The last component is the learning head specifically used
for the binary classification pre-training. The dataset fed into the binary classification flow includes
compatible and incompatible outfits. The binary classification training process trains Slay-Net to predict
whether an input outfit is compatible or not.

Figure 3: Binary Classification Pretraining Flow of Slay-Net

Figure 4 shows the contrastive learning flow of Slay-Net. It is used in both phases of the curriculum
learning, and it has a more direct impact to the performance improvement of Slay-Net in the Fashion
FITB and Outfit CIR tasks. Each instance of Contrastive Learning datasets consists of an anchor 𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙,
a positive 𝐼𝑝 and negative 𝐼𝑛. The anchor is a partial outfit, an outfit in which one of the items is
removed. The positive is the item removed from the outfit. The negative is one or more items of the
same general or fine-grained item type as the positive. Whether the negative is of the same general or
fine-grained item type is decided based on which curriculum phase the learning is in. The anchor goes
through both feature extraction and set operation step, while the positive and negative only go through
feature extraction step. The set embedding of anchor 𝑥𝑜, embedding of positive 𝑥𝑝 and negative 𝑥𝑛
go through CSA-Net [3] to generate the final embedding of anchor 𝑓𝑜, positive 𝑓𝑝 and negative 𝑓𝑛.
The final embedding is also called CSA embedding. Afterwards, Set-wise Outfit Ranking Loss [4] is
calculated.

4.2. Feature Extraction

The main input to Slay-Net is set-structured outfit data. Each outfit consists of a number of items, and
each item manifests as an image and a text. Image and text are unstructured data, and since the latter
part of the model expects the data to be structured, feature extraction needs to be performed to convert
the unstructured data into structured data or embeddings. Hence, for each item, an image embedding



Figure 4: Contrastive Learning Flow of Slay-Net

𝐸𝑖𝑚𝑔 ∈ R𝑑𝑖𝑚𝑔 and a text embedding 𝐸𝑡𝑒𝑥𝑡 ∈ R𝑑𝑡𝑒𝑥𝑡 are generated, where 𝑑𝑖𝑚𝑔 = 𝑑𝑡𝑒𝑥𝑡 = 64.

Figure 5: Illustration of Image Encoder Block

The feature extraction strategy of this work is mostly influenced by [5]. Figure 5 shows the Image
Encoder Block, which is the network block within the feature extraction component that generates an
embedding 𝐸𝑖𝑚𝑔 from an image. The first component of the Image Encoder Block is the pre-trained
FashionCLIP [11]. During training, the FashionCLIP weights are frozen. This is to expedite the training
process as the number of parameters of FashionCLIP is very large. FashionCLIP generates a vector of
dimension 512. The next components are three linear layers with slightly different architectures. The
first consists of a linear layer, ReLU activation function, and Batch Normalization. The second consists
of a linear layer and ReLU activation function. Finally, the third consists of only one linear layer.

The second block within the feature extraction component is the Text Encoder Block, and this generates
an embedding for the text description of an item. The architecture is similar to that of the Image
Encoder Block, but SentenceBERT [12] is used instead of FashionCLIP. Our model uses the pre-trained
multilingual variant "distiluse-base-multilingual-cased-v2" of SentenceBERT that generates a vector of
dimension 512. FashionCLIP can generate embedding for both text and image, but the FashionCLIP
embeddings of an image and its text description are expected to be close to each other in the latent space.
That is why a different model is used to generate the text embedding so that no redundant information
will be used. Similar to FashionCLIP in the Image Encoder Block, the weights of SentenceBERT are



frozen to accelerate model training.
Once the image and text embedding of each item in the input outfit set have been generated, Slay-Net

constructs the outfit set feature matrix 𝐸𝑠𝑒𝑡 ∈ R𝑛𝑜×𝑑𝑜 . The outfit set feature matrix is formally defined
as:

𝐸𝑠𝑒𝑡 = {𝐸𝑖𝑚𝑔,𝑖||𝐸𝑡𝑒𝑥𝑡,𝑖}𝑛𝑜
𝑖=1 (3)

where || is concatenation operation, 𝑛𝑜 the number of items in the input outfit and 𝑑𝑜 the sum of 𝑑𝑖𝑚𝑔

and 𝑑𝑡𝑒𝑥𝑡.

4.3. Modeling Outfit as Set-structured Data

In prior works ([1], [2], [3]) where contrastive learning is used to perform outfit compatibility learning,
the learning is done in a pairwise manner. This work aims to perform the contrastive learning in
a set-wise manner. Each contrastive learning dataset instance consists of an anchor, a positive and
negative. The goal of contrastive learning is to learn model weights such that the embeddings of anchor
and positive are close to each other while making sure that the embeddings of anchor and negative are
further away from each other. In a pairwise learning setup, the anchor and positive are two items that
co-occur in an outfit. On the other hand, in a set-wise learning setup, the anchor is a partially complete
outfit with one item taken out and the positive is the item taken out.

Prior works, such as [4] and [5], adopt a set-wise learning in outfit compatibility learning. In their
works, they introduce a trainable target item token 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 in the set encoding step. The features of the
elements of the input set and 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 are concatenated and passed into set encoding block, which is based
on attention mechanism. The encoded 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is then used as the fixed-dimensional set embedding.
However, Slay-Net uses both set encoding and set pooling steps to generate the fixed-dimensional set
embedding. The set encoding step is based on the Set Attention Block (SAB) [6] and the set pooling
step is based on Pooling by Sliced-Wasserstein Embedding (PWSE) [7].

4.3.1. Set Encoding

The set encoding used in Slay-Net is permutation-equivariant, and this means that if the elements in
the input set are shuffled, the outputs are shuffled correspondingly in the same way. SAB [6] is used as
the building block of the set encoding in Slay-Net. SAB is an attention-based parameterized function
that can capture the interaction between elements within an input set. The input to the set encoding is
the outfit set feature matrix 𝐸𝑠𝑒𝑡. Given input 𝐸𝑠𝑒𝑡, SAB is formally defined as:

𝑆𝐴𝐵(𝐸𝑠𝑒𝑡) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻 + 𝑟𝐹𝐹 (𝐻)) (4)

where 𝐻 is defined as:

𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐸𝑠𝑒𝑡 +𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝐸𝑠𝑒𝑡, 𝐸𝑠𝑒𝑡, 𝐸𝑠𝑒𝑡;𝑤𝑆𝐴𝐵)) (5)

The 𝑟𝐹𝐹 used in the above equation is any row-wise feed forward layer, and 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 is layer
normalization mechanism as per [16]. 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 is multi-head attention mechanism introduced in
[17], and 𝑤𝑆𝐴𝐵 is the set of parameters correspond to it. The output of set encoding step is the encoded
outfit set feature matrix 𝐸ℎ𝑖𝑑𝑑𝑒𝑛 ∈ R𝑛𝑜×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 , and this will be the input of the set pooling step.

4.3.2. Set Pooling

Given 𝐸ℎ𝑖𝑑𝑑𝑒𝑛, the set pooling step generates a fixed-dimensional set embedding 𝑥𝑜 ∈ R𝑑𝑜 . PSWE
[7] is used in the set pooling step. PSWE treats the elements from the input set as samples from a
probability distribution. Hence, using this modeling, comparing two sets is analogous to comparing two
probability distribution. Furthermore, this allows the use of concepts and tools from Optimal Transport
(OT) for comparing two sets. These concepts and tools are normally used to compare two probability
distributions. In PWSE, generalized sliced Wasserstein distance [15] is used to define distance measure



between two sets. PSWE embeds an input set into a Euclidian space, in which the weighted Euclidian
distance of two sets is equal to the generalized sliced Wasserstein distance. Once PSWE has finished the
embedding process, the generated fixed-dimensional set embedding 𝑥𝑜 is passed to the learning heads.

4.4. Learning Heads

Slay-Net consists of two learning head; binary classification and contrastive learning head. A curriculum
learning is used to train Slay-Net. The binary classification head will only be used in the first phase of
the curriculum learning, while contrastive learning head is used in the first and second phase of the
curriculum learning.

4.4.1. Binary Classification Head

The Polyvore outfits dataset [1] contains a dataset for Outfit Compatibility Prediction task. Outfit
Compatibility Prediction task is one in which a model has to predict whether a set of items is a
compatible outfit. The binary classification head performs a fine-tuning of the weights of Slay-Net
through backpropagation with respect to Binary Cross Entropy loss 𝐿𝐵𝐶𝐸 . The 𝐿𝐵𝐶𝐸 is defined as:

𝐿𝐵𝐶𝐸 =

𝑁𝑏𝑐∑︁
𝑖=1

𝑦𝑖 log 𝜎(𝑓𝑏𝑐,𝑖) + (𝑖− 𝑦𝑖) log(1− 𝜎(𝑓𝑏𝑐,𝑖)) (6)

where 𝑓𝑏𝑐,𝑖 is defined as:
𝑓𝑏𝑐,𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑏𝑐(𝑥𝑜,𝑖; 𝜃𝑏𝑐) (7)

𝐿𝑖𝑛𝑒𝑎𝑟𝑏𝑐(.; ) is a set of linear layers in binary classification head, 𝑥𝑜,𝑖 the set embedding of instance 𝑖, 𝑦𝑖
the ground truth for instance 𝑖 and 𝑁𝑏𝑐 the number of instances in the Outfit Compatibility Prediction
dataset.

4.4.2. Contrastive Learning Head

The Contrastive learning head is the main learning head as it enable the inference process for the
Fashion FITB and Outfit CIR tasks. The embedding of the anchor 𝑥𝑜, positive 𝑥𝑝 and negative 𝑥𝑛
pass through a modified version of the Category-based Subspace Attention Network (CSA-Net) [3].
Afterwards, the CSA embedding of the anchor 𝑓𝑜, positive 𝑓𝑝 and negative 𝑓𝑛 are generated. The
generation of CSA embedding consists of two steps; first, 𝑘 subspace embeddings are generated, and
then the weighted sum of the subspace embeddings are computed. The CSA embedding is formally
defined as:

𝑓 =

𝑘∑︁
𝑖=1

𝑤𝑖(𝑥𝑖𝑛𝑝𝑢𝑡 ⊙𝑚𝑖) (8)

where 𝑚𝑖 is the mask for subspace 𝑖, 𝑤 = {𝑤𝑖}𝑘𝑖=1 the weight of subspace embeddings and 𝑥𝑖𝑛𝑝𝑢𝑡 ∈
{𝑥𝑜, 𝑥𝑝, 𝑥𝑛}. In addition, 𝑤 is a function of the one hot encoding of the general item type of the positive.

Set-wise Outfit Ranking Loss [4] is used in the contrastive learning head. The use of Set-wise Outfit
Ranking Loss aims to optimize the Euclidean distance of 𝑓𝑜 to 𝑓𝑝 and 𝑓𝑜 to 𝑓𝑛, such that 𝑓𝑜 is relatively
closer to 𝑓𝑝 and further away from 𝑓𝑛. There are two variants of it; the mean 𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 and hard
𝐿𝑆𝑂𝑅,ℎ𝑎𝑟𝑑 Set-wise Outfit Ranking Loss. 𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 is used in the first phase of curriculum learning
while the sum of 𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 and 𝐿𝑆𝑂𝑅,ℎ𝑎𝑟𝑑 is used in the second phase of the curriculum learning.
These losses are defined as follows;

𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 =
1

|𝐹𝑛|

|𝐹𝑛|∑︁
𝑗=1

[𝑑(𝑓𝑜, 𝑓𝑝)− 𝑑(𝑓𝑜, 𝑓𝑛,𝑗) +𝑚]+ (9)

𝐿𝑆𝑂𝑅,ℎ𝑎𝑟𝑑 = [𝑑(𝑓𝑜, 𝑓𝑝)− min
𝑗∈{1,... |𝐹𝑛|}

𝑑(𝑓𝑜, 𝑓𝑛,𝑗) +𝑚]+ (10)



where [.]+ is a hinge loss, 𝑚 the margin , 𝐹𝑛 = {𝑓𝑛,𝑗}
𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑗=1 and 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 the number of negatives
sampled in each instance. Furthermore, 𝑑(𝑥𝑎, 𝑥𝑏) denotes the Euclidian distance between the vector
𝑥𝑎 and 𝑥𝑏. In this work, hyperparameter optimization is conducted to determine the optimal value of
the margin 𝑚 for each dataset. The optimization process involves training the model across a range of
margin 𝑚 values and recording the performance using the FITB accuracy. The value of the margin 𝑚
that achieves the highest FITB accuracy is selected as the optimal value for the corresponding dataset.

4.5. Curriculum Learning

Slay-Net is trained using a curriculum learning framework, which consists of two phases. The first
phases involves training the model in a multi-task learning setup, where both the binary classification
and contrastive learning heads are used. In the multi-task learning setup, Slay-Net is exposed to the
binary classification and contrastive learning dataset simultaneously. The aim of this is to allow Slay-Net
to capture patterns which can only be discovered through simultaneous exposure to binary classification
and contrastive learning dataset. The loss used in the first phase of the curriculum learning 𝐿𝑝ℎ𝑎𝑠𝑒1 is
as follows:

𝐿𝑝ℎ𝑎𝑠𝑒1 = 𝜆𝑐𝑙𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 + 𝜆𝑏𝑐𝐿𝐵𝐶𝐸 (11)

where 𝜆𝑐𝑙 and 𝜆𝑏𝑐 are the weight for the contrastive learning loss and binary classification loss, respec-
tively. Furthermore, in the first phase, negatives with the same general item type as the positive are
randomly sampled for each contrastive learning dataset instance.

The second phase of the curriculum learning focuses on the contrastive learning, and the loss used
𝐿𝑝ℎ𝑎𝑠𝑒2 is as follows:

𝐿𝑝ℎ𝑎𝑠𝑒2 = 𝐿𝑆𝑂𝑅,𝑚𝑒𝑎𝑛 + 𝐿𝑆𝑂𝑅,ℎ𝑎𝑟𝑑 (12)

The strategy adopted to sample negatives is different in the second phase. During the second phase,
negatives with the same fine-grained item type as the positive are randomly sampled. This makes the
second phase contrastive learning more difficult because items of the same fine-grained type share
more similarities and Slay-Net has to capture the more nuanced outfit compatibility patterns.

5. Experiment Details

5.1. Dataset

Polyvore outfits dataset [1] is used in this work, and dataset consists of 68,306 outfits and 365,054 unique
items retrieved from Polyvore, a now-defunct fashion social media website. This work uses both the
disjoint and nondisjoint variant of the dataset. The difference between two variants is whether they
allow an item to be in different dataset splits. In disjoint variant, each item can only be either in train,
validation or test split, while nondisjoint variant does not have this restriction.

In the dataset, there are two hierarchies of item types; general and fine-grained item type. The
general item type is labeled using a word that describes the type, such as "shoes" and "tops". However,
the fine-grained type is only labeled with a number. Figure 6 illustrate the difference between general
and fine-grained item types. The top half shows the case where the reference item is a pair of strappy
heels. In this case, the general item type is shoes and the fine-grained item type is strappy heels. For
each general and fine-grained item types, examples are given to illustrate the difference between the
two item types. The bottom half shows the case where reference item is a pair of long jeans.

5.2. Evaluation

This works focuses on two tasks: Fashion FITB and Outfit CIR. The performance on Fashion FITB is
measured by FITB accuracy and the relevant dataset from [1] is used to calculate the metric. The Outfit
CIR task is measured using Recall@top-k, but unlike Fashion FITB, the dataset to calculate the metric is
not readily available in [1]. Data pre-processing as per [3] needs to be performed, where 3000 items
of the same fine-grained item type as the correct answer to the FITB question are to be selected from



Figure 6: Illustration of general item type and fine-grained item type. top: the general and fine-grained item
type of the reference item is shoes and strappy heels, respectively. bottom: the general and fine-grained item
type of the reference item is bottoms and long jeans, respectively.

training and test splits. In [3], [4] and [5], Recall@top-k for three different values of k (10, 30 and 50)
are calculated, and this work will calculate the same variants of Recall@top-k, too.

5.3. Implementation Details

The main loss being minimized in Slay-Net is Set-wise Outfit Ranking Loss [4]. When calculating the
the Set-wise Outfit Ranking loss, CSA embedding [3] need to be generated and the number of subspace
embeddings 𝑘 is set to 5, the same value as in the original work [3]. The hinge loss margin used are
different in the disjoint and nondisjoint dataset; 1.35 is used for disjoint dataset and 0.45 is used for
nondisjoint dataset. The set encoding of Slay-Net consists of 2 layers of SAB with 4 heads in each layer.
In the set pooling, the number of elements in PSWE reference set is 19 for nondisjoint dataset and 16
for disjoint dataset.

During the first phase of the curriculum learning, the weight of the contrastive learning loss 𝜆𝑐𝑙 is set
as 0.8 while the weight of the binary classification loss 𝜆𝑏𝑐 is set as 0.2. The first phase of the curriculum
learning is run for 20 epochs while the second phase is run for 50 epochs. In the second phase, the
weights of Slay-Net are initialized using the weights of the best model of the first phase. At the end of
each training epoch, the FITB accuracy is calculated using the validation split dataset. The model of the
epoch, in which the validation FITB accuracy is the highest, is chosen as the best model. The training is
carried out with batch size of 512 and Adam optimizer with learning rate of 5e-5.

6. Results

Table 1 shows the performance of Slay-Net and relevant prior works in Fashion FITB and Outfit CIR
tasks. The performance in Fashion FITB task is measured using FITB accuracy, while that of Outfit
CIR task is measured using Recall@top-k (on Table 1, it is abbreviated as R@k). Each metric figure



Table 1
Slay-Net performance comparison with prior works. Results marked with * symbol are taken from [5].

Work
Disjoint Nondisjoint

FITB R@10 R@30 R@50 FITB R@10 R@30 R@50

(Vasileva et al., 2018) [1] 55.65* 3.66* 8.26* 11.98* 57.83* 3.50* 8.56* 12.66*

(Tan et al., 2019) [2] 53.67* 4.41* 9.85* 13.87* 59.07* 5.10* 11.20* 15.93*

(Lin et al., 2020) [3] 59.26* 5.93* 12.31* 17.85* 63.73* 8.27* 15.67* 20.91*

(Sarkar et al., 2022) [4] 59.48* 6.53* 12.12* 16.64* 67.10* 9.58* 17.96* 21.98*

(Wang and Zhong, 2023) [5] 63.04* 6.10* 13.24* 18.81* 65.32* 6.81* 14.46* 20.38*

Slay-Net (Ours) 61.36 6.85 14.23 19.52 68.53 11.11 21.59 27.95

Improvement over
-2.66 4.90 7.48 3.77 2.13 15.97 20.21 27.16

best published baseline (%)

of Slay-Net is an average of six figures from six training runs, where each run uses different random
seed. In [5], two variants of the model is proposed; one trained with the outfit textual description and
another without. Since Slay-Net does not use the outfit textual description for training and inference,
the performance figures of [5] on Table 1 are the ones for the variant where outfit textual description is
not used in training and inference.

Slay-Net outperforms the relevant prior works in all datasets and tasks, except the Fashion FITB
task in disjoint dataset. [5] achieves the best performance in the Fashion FITB task in disjoint dataset.
Although the complete implementation of [5] is not yet made publicly available at the time of writing, it
can be inferred that the model proposed by [5] has smaller number of parameters as compared to Slay-
Net. In the Polyvore outfits dataset [1], there are 53,306 outfits for training in the nondisjoint dataset,
and 16,995 in the disjoint dataset. The number of outfits available for training in the disjoint dataset
is relatively smaller. One potential explanation of the observation in the Fashion FITB performance
in disjoint dataset is that the model with fewer parameters could perform better when the available
training data is relatively smaller.

Slay-Net outperforms relevant prior works in Fashion FITB task in nondisjoint dataset and in Outfit
CIR task in disjoint and nondisjoint datasets. This observation could be credited to the research
contributions introduced in this work. In [4] and [5], only set encoding is used to generate the fixed-
dimensional set embedding, but Slay-Net uses both set encoding and set pooling. The use of set
pooling enables the exploitation of all encoded features of items in the input outfit set to generate
the set embedding. Furthermore, when training Slay-Net, the multi-task learning in the first phase
of the curriculum learning allows Slay-Net to capture patterns that can only be discovered through
simultaneous exposure to the binary classification and contrastive learning dataset. This, in turn, allows
Slay-Net to start the second phase of the curriculum learning with the model parameter weights that
enable it to achieve better performance in Fashion FITB and Outfit CIR task by the end of the training
process.

7. Conclusion

This work presents the model Slay-Net that leverages both set encoding and set pooling to learn to
generate the embedding of the set-structured input in the Outfit Compatibility Learning. Furthermore,
Slay-Net is trained using an innovative curriculum learning approach that involves simultaneous
training of binary classification and contrastive learning head via multi-task learning. This work focuses
on two tasks; Fashion FITB and Outfit CIR tasks. Slay-Net outperforms the state-of-the-art approaches
in the Outfit CIR task as measured by Recall@top-k.
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