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Abstract
Ontology learning from text is traditionally approached as sub-tasks tackled with linguistic, statistical
or logic-based methods. Large language models and their generation capabilities have recently caught
much interest. We investigate the pertinence of such generative models for ontology learning. We
evaluate the created ontologies on two different use cases by aligning with a reference ontology and
compare components for each sub-task using the OLAF ontology learning framework. In addition to
demonstrating the relevance of large language models for ontology learning, we discuss component
combinations, LLM size, and environmental impact in creating efficient pipelines while limiting resource
consumption.
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1. Introduction

Ontologies and Large Language Models (LLMs) have recently caught much attention. With
LLMs demonstrating outstanding capabilities, the research communities converged to explore
how LLMs could be leveraged for Knowledge Graph (KG) construction and ontology engineering
tasks [1]. The particular task of Ontology Learning (OL) involves moving from unstructured
information in text to structured data as axioms in a chosen formalism. The process can be
considered end-to-end, like a translation, or a series of interlinked specialised sub-tasks. With
LLMs’ ability to generate and summarise text, reason and identify relevant information, they
are good candidates as tools for OL.
In this work, we focus on OL from text and investigate the pertinence of LLM for such a

task. We study unsupervised techniques from term to axiom extraction. We explore zero-shot
prompting, i.e., prompting with only instructions, and few-shot prompting, i.e., prompting
with a few examples added to the instructions. We investigate the influence of LLM size on its
performance in the OL task as well as the energy consumption and greenhouse gas emissions
of such models for the OL task. Our study is based on two different use cases. On the one
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hand, we select a reference ontology and generate its descriptive text using an LLM. On the
other hand, we manually build an ontology from a text using the Ontology Development 101
guide [2]. We create three different pipelines, execute them with the texts as input and evaluate
their performances by aligning the ontologies produced with the reference ontologies. We also
compare components’ efficiency in unitary ways to build pipelines maximising performance
while limiting the computational resources consumed. The code is publicly available in our
repository: https://github.com/wikit-ai/olaf-llm-nlp4kgc2024.

2. Related work

The terms ontology and KG are often used similarly. In computing, an ontology is a concrete,
formal representation of what terms mean within the scope in which they are used [3]. A
KG is a graph of data intended to accumulate and convey knowledge, whose nodes represent
entities of interest and whose edges represent relations between these entities [3]. This paper
considers a KG as an ontology with the data. Nevertheless, we recognise that an ontology is
only a possible part of a KG. We consider ontologies expressed with the Semantic Web standards
RDF, RDFS and OWL [4, 5]. Therefore, we implement the RDF representation of OWL axioms.
Our framework is based on Description Logics for formal knowledge representation.

2.1. Ontology Learning

Collecting and modelling knowledge to build an ontology is known as knowledge acquisition.
Such a process is complex, time-consuming, and requires access to domain experts rarely
available in practice. The challenges inherent to the knowledge acquisition task led to the
knowledge acquisition bottleneck [6]. In the literature, we find different terms denoting the
tools and approaches to tackle knowledge acquisition, such as KG construction [7], ontology
engineering [8], and OL [9].

The OL task aims at automatically constructing ontologies from existing resources [9]. Con-
centrating on OL from text, current approaches focus on tools to support the ontology engineer-
ing process or use case-specific methods in which the human still has a predominant role [10].
This paper uses the OL from text framework OLAF [10] and its implementation1 to construct
fully automatic OL pipelines. We implement pipelines and investigate the use of LLM for OL.

2.2. LLMs for Ontology Learning

The joint use of LLMs and KG is a widely discussed topic in the literature [1]. We focus on
the LLM-based approaches for OL. Grapher [11] is one of the first works to extract RDF triples
from text using LLMs. A trainable system is used for the tasks of node and edge generation.
More recently, LLMs4OL [12] aims to evaluate different LLMs for specific OL tasks. The latter
work provides information on which LLM to use for the OL and shows the positive impact
of fine-tuning. The authors of [13] also demonstrate the latter fine-tuning benefit for KG
completion tasks. Another approach is AutoKG [14], where multiple LLM-based agents build

1https://github.com/wikit-ai/olaf (Accessed on October 11, 2024)
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KGs. The authors evaluate different OpenAI models on specific tasks with zero-shot and few-
shot prompting. Their results stay within the performance of the current state-of-the-art models.
Conversely, the authors of [15] obtained good results with an LLM-based iterative process for KG
construction manually evaluated task by task. Similarly, PiVe [16] offers a small-size LLM-based
iterative verification of a generated KG. Therefore, it could be used in addition to the previously
described methods to improve them.
Nevertheless, some issues persist with the works described. Datasets barely represent real-

world use cases and are task-focused. Evaluations are also task-focused. Hence, the complete
OL process or the ontologies created are not discussed. Furthermore, the methods only use the
LLMs’ internal knowledge instead of contextualisation. We aim to address these points with
our work. We are interested in unsupervised OL from text, so we use LLMs with zero-shot and
few-shot prompting depending on the task, rather than fine-tuning.

3. Contributions

LLMs are widely used to generate text and structure data [1]. Hence, they are appropriate
candidates for moving from plain text to OWL axioms. However, we argue that this task should
not be seen as a simple translation. In this section, we demonstrate our hypothesis with an
in-depth analysis of applying LLMs in different ways and highlighting the emerging advantages,
disadvantages and behaviours for OL. This section describes our approach and how we handle
the OL discriminative sub-task of axiom extraction.

3.1. Evaluation approach

OL from text derives an ontology from a textual corpus. Hence, the perfect data to evaluate this
task would be a corpus with one or more expected associated ontologies. However, we could
not find such a text/ontology combination in the literature. Thus, we build our two own to
assess the pertinence of LLMs for the OL task.

For the first use case, we choose an ontology as a reference and apply a reverse engineering
process. We generate a text describing the ontology from its textual labels and use different
OL techniques to produce ontologies from the same generated text. We compare them with
each other and with the reference ontology. For the second use case, we select another text and
manually build an ontology based on the ontology development 101 methodology [2]. We use
different OL techniques to produce ontologies from the same selected text and compare them
with each other and with the manually built ontology. The three ontology pipelines compared
in both cases are the following:

• LLM Text2OWL lets the LLM generate the ontology as a single task based on a prompt
• OLAF LLM builds an ontology with a list of all LLM-based components
• OLAF no-LLM creates an ontology using only components that are not LLM-based.

Evaluating a learned ontology is a complex task addressed in various ways in the literature
[10]. We use gold standard evaluation techniques as we have data combining text and reference
ontology. The gold standard evaluation compares the learned ontologywith a reference ontology.



This reference ontology is an idealised outcome of the learning algorithm, usually previously
created and known as the gold standard [17]. These approaches are based on ontology mapping
or ontology alignment. Therefore, we manually align the learned ontology with the reference
ontology to assess three standard ontology evaluation criteria: conciseness, completeness and
correctness [17]. Conciseness ensures that the ontology does not contain irrelevant elements
to the domain. We compute it as the proportion of common elements between the learned
ontology and the reference ontology in relation to the number of elements in the learned
ontology. Completeness measures if the domain of interest is appropriately covered in this
ontology. We compute it as the proportion of common elements between the learned ontology
and the reference ontology in relation to the number of elements in the reference ontology.
Finally, correctness ensures the ontology compliance to defined gold standards. We compute it
as the harmonic mean of conciseness and completeness.

3.2. Axiom extraction

The axiom extraction task remains challenging and little addressed in the literature [10]. How-
ever, this step truly distinguishes a graph of data from a KG. In OLAF, the axiom extraction
component is dedicated to extract axioms from the Knowledge Representation (KR), which rep-
resents knowledge as a set of concepts and relations. We extended OLAF with two approaches
for axiom extraction, one rule-based and another prompting an LLM. The latter prompt only
restricts the output format for the axioms and provides the KR constructed in the previous tasks
as context. The former rule-based axiom extraction approach is based on the idea of Ontology
Design Patterns (OPDs) [18]. We assume an ontology is constructed with a purpose, directly
impacting the kind of axioms to define. For our implementation, we decided to rely on the
OWL language. The OLAF OWL axiom extraction component constructs an OWL RDF graph
from the previously extracted concepts and relations. The user provides functions generating
OWL RDF triples. Some straightforward examples of such OWL axiom generator functions are
creating each KR concept as OWL class and each KR relation as an object property. With the
same spirit as the ODPs, we can create particular OWL constructs based on the KR.
The OLAF OWL axiom extractor component also checks for the generated OWL ontology

logical consistency. The process generates the full OWL RDF graph and runs a reasoner. It
stops if the reasoner finds no logical inconsistency or unsatisfiable classes. Based on whether a
logical inconsistency or an unsatisfiable class is found, the OLAF OWL axiom extraction process
will iteratively prune axioms until a consistent ontology is reached.

4. Experiments

This section introduces our corpus construction process before describing each OL pipeline we
compare in the next section. The experiment implementations and prompts are available on
our companion repository for extensive details.



4.1. Pizza Ontology textual description

We consider the Pizza Ontology2 as one of our reference ontology. It has been created for an
OWL tutorial with the Protégé software3 and introduces basic pizza concepts such as ingredients,
pizza categories, and the most popular pizzas. We use an LLM to generate descriptive text
about the Pizza Ontology. We extract the Pizza Ontology’s RDFS labels as a list of strings,
removing the OWL constructs. These text labels feed the prompt context to generate the textual
description. The prompt instructs to generate a text describing pizzas with all the given labels.
Prompt tuning techniques are discussed in section 4.6. We select the GPT-4 OpenAI model4

for this task and set the temperature to 0. LLMs are not deterministic, so we performed several
runs with the same prompt. The text obtained was identical for 5 successive generations. Each
paragraph is a document from the corpus. The corpus comprises 10 documents with an average
of 48 words each.

4.2. Manual construction of the metallic surface defect detection ontology

We consider the description of the C10-DET dataset [19] as our reference text. We extract the
text (available in the companion repository) as 11 documents with an average of 44 words each.
We manually build an ontology following the ontology development 101 methodology [2]. All
the steps are detailed below.
Step 1: To determine the domain and scope of the ontology, we rely on the corpus describing
metallic surface defect detection. The ontology must cover the entire scope of the text without
adding information not present in the text. Domain knowledge is not added so as not to
disadvantage ontologies learned only from text. This ontology aims to trace the cause of an
identified defect, so we’re focusing on this application.
Step 2: We do not reuse existing ontologies to be consistent with the ontology learning process.
However, linking our ontology to a higher-level ontology could be a guarantee of quality for
manually created or learned ontologies. We will explore this in future work.
Step 3: We enumerate all the terms of the text that could be important in the ontology.
Step 4: We combine the top-down and bottom-up approaches for classes and hierarchy definition.
We identify broad categories and the most specific defect information and reconstruct the
intermediate hierarchy by grouping terms into generic classes.
Step 5: We define the properties of classes by selecting the properties in the text and determining
which class they describe.
Step 6: We define the facets of the slots with the domain, i.e., the classes to which a slot is
attached, and the range, i.e., allowed classes for slots.
Step 7: We choose not to create instances on our ontology and stay at the schema level with
classes and properties.

2https://github.com/owlcs/pizza-ontology/tree/master (Accessed on October 11, 2024)
3https://protege.stanford.edu/ (Accessed on October 11, 2024)
4https://arxiv.org/abs/2303.08774 (Accessed on October 11, 2024)
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4.3. LLM Text2OWL

When determining whether LLMs are suitable for OL, one of the first things to investigate is
having the LLM directly generate the ontology from the text. We choose the GPT-3.5-turbo-16k
OpenAI model and Mistral 7B model, ensuring that the input and output context windows were
large enough to contain all the necessary information. For example, we prefer GPT-3.5-turbo-16k
to GPT-3.5-turbo because GPT-3.5-turbo can generate a maximum of 4096 tokens, which is not
enough to produce the ontology directly from the text. Otherwise, the result is truncated. We
do not use GPT-4 to limit bias as it was already used for the Pizza Ontology textual description
generation. We choose the Mistral 7B model to compare the performance of LLMs for the OL
task according to their size and to propose a solution with an open-source LLM. The temperature
for both models is set to 0. We instruct the model to generate an OWL ontology in the turtle
format provided a namespace and the textual description as context. To limit the effect of the
LLMs’ non-deterministic behaviour, we carried out 10 trials. The generated ontologies were
always the same for the Mistral model. We kept the ontology generated identically 7 times for
the pizza ontology and 9 times for the defect detection ontology with the OpenAI model. We
discuss whether the LLMs already know the ontologies we are asking them to generate and the
impact on our results in the section 6.1.

4.4. OLAF LLM pipeline

We consider OL a process comprising several tasks [10]. Hence, we create a pipeline entirely
relying on LLM components. We use the framework OLAF [10] extended with LLM-based
components for each sub-task. For consistency in our comparisons, we keep GPT-3.5-turbo-
16k and Mistral 7B with temperature 0. First, the LLM extracts candidate terms that could be
concepts for each document. It then enriches these candidate terms by adding lists of synonyms.
The LLM groups enriched candidate terms to form concepts. The LLM is then asked to create
hierarchy triples among concepts. These steps are repeated for relations. For all the previous
steps, the Pizza Ontology and metallic surface defect detection description extracts are in the
prompt to contextualise the text generation. Finally, the LLM generates the OWL axioms based
on the lists of concepts and relations. The prompts are discussed in section 4.6, along with the
method used to obtain them.

4.5. OLAF no-LLM pipeline

We build a pipeline without any LLM component to complete the LLM performance evaluation
for OL. We select the most suitable no-LLM components available in OLAF [10]. The candidate
terms extraction uses TF-IDF [20] scores with a threshold. These candidate terms are enriched
using WordNet [21]. They are grouped as concepts with Agglomerative Clustering (AC)[22]
and the sentence-t5-base Sentence Transformer embedding model [23]. We compute hierarchies
based on the Subsumption algorithm [24]. The relation candidate terms are extracted from
VERB POS-tags, enriched using WordNet and grouped as relations with AC. OWL axioms are
extracted with the rules described in section 3.2.



4.6. Prompts tuning

Prompts are natural language instructions that provide context to guide model output without
altering parameters5. Therefore, the form and content of the prompt can directly affect the
result produced by the LLM. Prompt engineering has become essential to design task-specific
instructions according to various techniques. We rely on techniques capable of handling new
tasks without extensive training, i.e., zero-shot and few-shot prompting5. While zero-shot
prompting relies on a precise task description in the prompt, few-shot prompting adds a few
input-output examples to induce an understanding of the given task. As the examples imply
additional tokens in model input, it can become prohibitive for longer text inputs. LLMs have
fixed-size context windows divided between input and output tokens. For example, if a model
has a context window of 10k tokens and the input is 6k tokens, the output cannot exceed 4k
tokens. The prompt must also respect the specific format supported by the chosen model. Once
the first version of the prompt is established, it is tested and modified iteratively and empirically
to adapt the output.

In ourwork, we create a variety of prompts. They are all available in our companion repository.
The first prompt we develop is generating the pizza ontology’s textual description. As we are
querying the GPT-4 model, we refer to the OpenAI guidelines6. We prefer zero-shot to few-shot
prompting so that the number of tokens in the input does not restrict the output of the LLM.
We then propose the prompts to generate an ontology directly from a textual description. There
is one prompt for the GPT-3.5-turbo-16k model and one for Mistral-7B based on the model
guidelines7. We prefer zero-shot to few-shot prompting again to leave enough tokens to the
LLM output. A large number of prompts are required for the LLM pipeline. The one-shot
prompting strategy is applied to extract concept and relation candidate terms. An LLM call is
made on each document, and the example added in the prompt is small, which does not penalise
the model output. Term enrichment is achieved by calling the LLM for each term with one-shot
prompting. We tried adding more examples, but this did not improve the generation of the
examples tested. To extract concepts and relations, we develop a zero-shot prompting strategy,
as we list all the candidate terms in the prompt, which already represents a large number of
tokens. For the Mistral model, an example of the expected output data format must be added.
We tried different strategies for the hierarchisation task. Despite the large number of input
tokens with the list of all concepts, we applied a one-shot prompting strategy because the results
in zero-shot were too bad. In this case, the LLM poorly understood the task without an example.
Finally, axiomatisation is managed using zero-shot prompting because the input provided and
the expected output already involve a large number of tokens.

5. Results

The section presents a quantitative analysis of the created ontologies and compares their
alignments with the Pizza Ontology and the defect detection ontology. We conclude the section
with an in-depth study of the relevance of each OL sub-task LLM.

5https://arxiv.org/abs/2402.07927, Accessed on October 11, 2024.
6https://platform.openai.com/docs/guides/prompt-engineering, Accessed on October 11, 2024.
7https://docs.mistral.ai/guides/prompting_capabilities/, Accessed on October 11, 2024.
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5.1. Ontologies evaluation

To evaluate the created ontologies, we begin with a quantitative analysis. In Tables 1 and 3,
we count the OWL named classes, object properties, named individuals and RDFS subClassOf
tuples for each ontology. We then evaluate conciseness, completeness and correctness through
manual alignment with the reference ontologies in Tables 2 and 4 for the two use cases.

Pizza ontology The OLAF LLM ontology built with the OpenAI model has the closest ap-
proximate size to the Pizza Ontology. The number of OWL-named classes and RDFS subClassOf
tuples are almost similar. The LLM Text2OWL ontology built with the OpenAI model does well
on the OWL object properties and named individuals but falls short for OWL-named classes
and RDFS subClassOf tuples. It suggests that this ontology is more straightforward than the
others. The same trend appears for the Mistral model pipelines. A few elements are extracted
compared to the Pizza Ontology, except object properties for the OLAF LLM pipeline. For the
OLAF no-LLM ontology, although the number of OWL named classes and object properties
is consistent with that of the Pizza Ontology, many more OWL named individuals and RDFS
subClassOf tuples were extracted, suggesting this ontology is noisy.

Table 1
Pizza ontologies’ OWL axioms counts per type.

Counts
Pizza

Ontology
Text2OWL
OpenAI

Text2OWL
Mistral

OLAF LLM
OpenAI

OLAF LLM
Mistral

OLAF
no-LLM

OWL
named classes 97 36 23 99 23 111

OWL
object properties 8 2 0 77 13 22

OWL
named individuals 5 27 0 97 1 343

RDFS
subClassOf tuples 141 33 23 114 5 390

We manually align the created ontologies with the Pizza Ontology and detail the metrics in
Table 2 to explore the results further. The LLM Text2OWL ontologies of both LLMs perform
well for class extraction, with an advantage for OpenAI regarding completeness. Every class
found is in the Pizza Ontology, but two-thirds of the Pizza Ontology classes are missing. No
individuals are found, which suggests that the LLMs tend to create classes rather than instances
when no precise instructions are given. Text2OWL OpenAI pipeline performs best for object
properties because the Pizza Ontology contains very few. They are all found, though the LLM
generates other ones. On the contrary, the Mistral one fails to generate object properties. For
both LLMs, half of the extractions for the subClassOf pairs are relevant, but the completeness is
very low as there are few extracted pairs. These mixed scores suggest that LLMs can generate
relevant and precise OWL axioms, but a significant part of them is missing.
The OLAF LLM OpenAI ontology obtains the best correctness for 4 of the 5 aligned object

types. Half of the Pizza Ontology classes are correctly extracted. The Mistral model achieves



Table 2
Results of aligning the Pizza Ontology with the created ones.

Metrics
Text2OWL
OpenAI

Text2OWL
Mistral

OLAF LLM
OpenAI

OLAF LLM
Mistral

OLAF
no-LLM

Classes conciseness 1.000 1.000 0.567 0.826 0.387
Classes completeness 0.379 0.253 0.579 0.200 0.453
Classes correctness 0.550 0.410 0.573 0.322 0.417

Individuals conciseness 0.000 0.000 0.011 0.000 0.006
Individuals completeness 0.000 0.000 0.200 0.000 0.400
Individuals correctness 0.000 0.000 0.020 0.000 0.012

Classes and individuals
conciseness 0.540 0.870 0.557 0.609 0.130

Classes and individuals
completeness 0.239 0.141 0.380 0.099 0.415

Classes and individuals
correctness 0.332 0.242 0.452 0.170 0.198

Object properties conciseness 0.250 0.000 0.065 0.000 0.136
Object properties completeness 1.000 0.000 0.625 0.000 0.375
Object properties correctness 0.400 0.000 0.118 0.000 0.200

SubClassOf pairs conciseness 0.515 0.565 0.237 0.800 0.012
SubClassOf pairs completeness 0.066 0.051 0.105 0.016 0.023
SubClassOf pairs correctness 0.117 0.093 0.146 0.030 0.015

greater conciseness but much less completeness. Some individuals are generated by the OLAF
LLM OpenAI pipeline, even if their quality is still inferior. The Mistral model does not extract
any. The same applies to properties, where only the OpenAI pipeline finds most of the few
Pizza Ontology object properties but adds many others. For the subClassOf pairs, only some
extracted are aligned with the Pizza Ontology, which gives a lower score. Thus, the OLAF LLM
OpenAI pipeline produced the ontology closest to the Pizza Ontology.
Though the OLAF no-LLM ontology performs poorly at first glance, just under half of the

Pizza Ontology classes and individuals are correctly extracted. It is closer to a third for object
properties. The OLAF no-LLM pipeline extracts many axioms, so the lower correctness scores
are often linked to conciseness. Indeed, few of these axioms are ultimately relevant. It likewise
applies to completeness in the case of subClassOf pairs. Therefore, the OLAF no-LLM pipeline
is producing mixed results. It is promising, but the extracted axioms must be filtered to reduce
noise.

Defect detection ontology The OLAF LLM ontologies built with both models have the
closest approximate size to the defect detection ontology. The LLM Text2OWL ontologies are the
samewith both LLMs and contain very few elements. This suggests that the generated ontologies
are too straightforward compared with the reference ontology, validating the behaviour already
observed with the Pizza Ontology. For the OLAF no-LLM ontology, many elements are extracted.



It confirms the hypothesis made with the Pizza Ontology that this pipeline produces ontologies
that are too noisy.

Table 3
Defect detection ontologies’ OWL axioms counts per type.

Counts
Defect

Ontology
Text2OWL
OpenAI

Text2OWL
Mistral

OLAF LLM
OpenAI

OLAF LLM
Mistral

OLAF
no-LLM

OWL
named classes 51 1 1 20 26 100

OWL
object properties 5 0 0 12 12 34

OWL
named individuals 0 10 10 47 0 317

RDFS
subClassOf tuples 45 0 0 14 7 377

Table 4
Results of aligning the defect detection ontology with the created ones.

Metrics
Text2OWL
OpenAI

Text2OWL
Mistral

OLAF LLM
OpenAI

OLAF LLM
Mistral

OLAF
no-LLM

Classes conciseness 1.000 1.000 0.700 0.577 0.210
Classes completeness 0.019 0.019 0.269 0.288 0.404
Classes correctness 0.038 0.038 0.389 0.385 0.276

Classes and individuals
conciseness 1.000 1.000 0.280 0.577 0.082

Classes and individuals
completeness 0.212 0.212 0.269 0.288 0.654

Classes and individuals
correctness 0.349 0.349 0.275 0.385 0.145

Object properties conciseness 0.000 0.000 0.083 0.009 0.088
Object properties conciseness 0.000 0.000 0.200 0.400 0.600
Object properties correctness 0.000 0.000 0.118 0.018 0.154

SubClassOf pairs conciseness 0.000 0.000 0.000 0.143 0.006
SubClassOf pairs conciseness 0.000 0.000 0.000 0.044 0.067
SubClassOf pairs correctness 0.000 0.000 0.000 0.068 0.011

We manually align the created ontologies with the defect detection ontology and detail the
metrics in Table 4 to explore the results further. The LLM Text2OWL ontologies of both LLMs
performwell for class conciseness but poorly for class completeness. The correctness is improved
by considering individuals because classes defined in the reference ontology are generated
as individuals by the LLMs. Unlike the Pizza Ontology, the LLMs tend to create individuals
rather than classes when no precise instructions are given for this use case. Text2OWL OpenAI
pipelines do not work for properties and SubClassOf pairs as they generate none. These weak



scores confirm that the LLMs can generate relevant and precise OWL axioms, but a major part
of them is missing. For this use case, the LLM size does not impact the results.

The OLAF LLM ontologies obtain the best correctness for only one aligned object type each,
even though they have the closest number of elements to the reference pipeline. More than
a third of the defect detection ontology classes are correctly extracted. The Mistral model
achieves greater correctness for both classes/individuals and SubClassOf pairs extraction, while
the OpenAI model performs best for classes and object properties extraction. The OpenAI
model does not extract SubClassOf pairs. Thus, the OLAF LLM pipelines produced the ontology
closest to the defect detection ontology but with room for improvement. Contrary to the Pizza
Ontology, the model size does not give a significant advantage to one pipeline over another.
Though the OLAF no-LLM ontology performs poorly at first glance, it obtains the best

completeness for all aligned object types. As the pipeline extracts many axioms, the lower
correctness scores are often linked to conciseness again. It likewise applies to completeness
in the case of subClassOf pairs. Therefore, we can conclude in the same way as for the Pizza
Ontology: the OLAF no-LLM pipeline is producing promising results, but the extracted axioms
must be filtered to reduce noise.

5.2. Analysis by component

We have shown that LLMs perform well when executing the OL unitary tasks. We now
further compare the components available in OLAF one by one. This analysis aims to build
a pipeline mixing LLM and non-LLM components to maximise performance while limiting
the computational resources consumed. Computational resources are highly related to the
model size. Model hosting costs or third-party model providers should also be considered. This
detailed analysis is based on the Pizza Ontology use case with the GPT-3.5-turbo-16k model.
Each component is executed on the same input.

Candidate terms extraction Candidate terms extraction is compared with POS-tagging
(extraction of terms according to the NOUN tag for concepts and VERB for relations), TF-IDF
(selection of terms with a score above a chosen threshold) and with LLM (prompt to generate
candidate terms in a given text). The results are presented in Figure 1. The POS-tagging
approach is restrictive as it can only extract one-word terms. The TF-IDF component extracts a
lot for concept candidate terms and requires appropriate post-processing. It is not implemented
for relation candidate terms because we can not filter terms specific to relations rather than
concepts. The LLM method is, therefore, the best option. We notice a few common terms
extracted by the different methods.

Term enrichment Term enrichment is compared with semantic similarity (cosine similarity
between spaCy model embeddings), WordNet (extraction of defined synonyms if the term is in
the knowledge base) and an LLM (prompt to generate synonyms for each candidate term). For
both concept and relation candidate terms enrichment, as depicted in Figure 2, only the LLM
finds synonyms for all candidate terms. Furthermore, according to Figure 3, the LLM adds more
synonyms on average than other methods. Semantic enrichment is restricted to the vocabulary
of the spaCy model used, and Wordnet enrichment is limited to the textual representation of
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Figure 1: Venn diagram comparing term extraction methods. The number indicate the candidate terms
in common between methods or specific to a method.

the term, which explains the fewer synonyms. The LLM is the best available method for term
enrichment.
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Figure 2: Number of candidate terms with and without synonyms for each term enrichment method.

Concept and relation extraction Concept and relation extraction are based on the same
methods with AC (AC runs on the embedded terms and the output groups of terms become
concepts), candidate terms validation (all candidate terms are converted into concepts), Con-
ceptNet (creates a concept if the term exists in the knowledge base), synonym grouping (groups
terms with common synonyms into concepts) and an LLM (prompt to generate concepts and
relations from a list of terms). The results are presented in Figure 4. The ConceptNet-based
method retains only entities that exist in ConceptNet, which can result in a significant loss of
knowledge. Synonym grouping highly depends on the enrichment task. AC is promising and
appears to perform similarly to the LLM. Hence, AC should be preferred for these tasks.
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Figure 3: Number of synonyms by candidate term with average and standard deviation for each term
enrichment method.
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Figure 4: Number of concepts and relations extracted by each method.

Concept hierarchisation Concept hierarchisation is compared with the Subsumption al-
gorithm [24] and an LLM (prompt for generating hierarchies between concepts). The concept
hierarchies in Figure 5 have few in common. Nevertheless, the Subsumption algorithm extracts
many more than the LLM. It may be due to the sparse data limiting the algorithm’s capabilities.
It is a disadvantage for the OLAF no-LLM pipeline. The LLM should be preferred for this task
with our data.

6. Discussion

This work is a first attempt at evaluating the performance of LLMs for OL. Therefore, it comes
with a few limitations. Most of them stem from using LLMs, such as prompting strategies to
stabilise the generation, scalability across corpus size, or the final cost of LLM components.
This section discusses two particular aspects of LLM usage: their internal knowledge and
environmental impact.
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6.1. LLM internal knowledge

The LLM internal knowledge is the knowledge learned during training. This knowledge is not
provided during inference but is intrinsic to the model, represented in its weights. Since we
prompt LLMs to generate ontologies or parts of ontologies, we ask ourselves whether they
carry out this task based on the context and instructions provided or simply use the knowledge
acquired during their training. This bias could affect our results, particularly the Text2OWL
pipeline for the Pizza Ontology, as the ontology is available on the web.

Table 5
Similarity score between ontologies.

First ontology Second ontology Similarity score

Pizza Ontology Defect detection Ontology 0.937
Pizza Ontology OpenAI output for pizza ontology 0.942
Pizza Ontology Mistral output for pizza ontology 0.939

OpenAI output for pizza ontology OpenAI Text2OLW pizza ontology 0.974
Mistral output for pizza ontology Mistral Text2OWL pizza ontology 0.962

To mitigate the potential bias, we instruct LLMs to generate the pizza ontology we seek to
obtain without any context and measure the semantic similarity between the ontology obtained,
the reference ontology and the results of the pipelines. Table 5 presents the cosine similarity
computed between the ontologies embedded with the sentence-transformers/sentence-t5-xl model.
We start by calculating the similarity between the reference pizza ontology and the manually
constructed defect detection ontology. We notice a high similarity between them because the
two ontologies have similar syntaxes. This score will serve as a landmark for future comparisons.
The similarities between the reference Pizza Ontology and the pizza ontologies generated by the
LLMs without context are not significantly higher than the landmark score. Regarding the pizza
ontologies generated by the LLMs against the Text2OWL pipelines’ results, similarity scores are
higher than the landmark score but do not indicate that the outputs are similar. This suggests
that even if the LLMs have prior knowledge regarding our use case ontology, the techniques



applied do not rely only on the LLMs’ internal knowledge and produce different and interesting
outputs.

6.2. Carbon footprint

The massive development of LLMs has raised several questions, particularly about the amount
of resources they consume. These models are particularly energy-hungry because of their size
and the infrastructure required. Different stages need to be taken into account to measure
their impact, such as the training phase, which has the greatest impact, and the inference
phase, which extends over a long period of time8. In our work, we want to measure the energy
consumed by LLMs to propose responsible solutions so that performance considers ecological
criteria. As we are using trained models, we focus on measuring the energy consumed and
GreenHouse Gases (GHG) emitted during inference. We measure them for each task we perform
and for each model we test. We use the EcoLogits calculator9, available for different providers,
to quantify environmental impact according to different criteria and phases.

Table 6
Energy consumption and greenhouse gas emissions of prompt executions for the pizza use case.

Task Model Energy consumption GHG Emissions

Pizza textual description generation GPT-4 473 Wh 280 gCO2eq
OWL ontology generation GPT-3.5-turbo-16k 15 Wh 9 gCO2eq
OWL ontology generation Mistral 7B 3 Wh 2 gCO2eq
Concept candidate terms extraction
for one document

GPT-3.5-turbo-16k 0.4 Wh 0.2 gCO2eq

Concept candidate terms extraction
for one document

Mistral 7B 0.2 Wh 0.1 gCO2eq

Relation candidate terms extraction
for one document

GPT-3.5-turbo-16k 0.2 Wh 0.1 gCO2eq

Relation candidate terms extraction
for one document

Mistral 7B < 0.1 Wh < 0.1 gCO2eq

Enrichment for one candidate term GPT-3.5-turbo-16k 0.4 Wh 0.2 gCO2eq
Enrichment for one candidate term Mistral 7B 0.3 Wh 0.2 gCO2eq
Concepts or relations extraction GPT-3.5-turbo-16k 4 Wh 2 gCO2eq
Concepts or relations extraction Mistral 7B 1 Wh 0.8 gCO2eq
Concepts or relations hierarchisa-
tion

GPT-3.5-turbo-16k 11 Wh 7 gCO2eq

Concepts or relations hierarchisa-
tion

Mistral 7B 4 Wh 2 gCO2eq

Axiom extraction GPT-3.5-turbo-16k 11 Wh 6 gCO2eq
Axiom extraction Mistral 7B 3 Wh 2.4 gCO2eq

Table 6 details each prompt and model’s energy consumption and GHG emissions during
the usage phase. The Mistral model has a lower environmental impact for the same task than

8https://arxiv.org/abs/2309.14393, Accessed on October 11, 2024.
9https://github.com/genai-impact/ecologits, Accessed on October 11, 2024.

https://arxiv.org/abs/2309.14393
https://github.com/genai-impact/ecologits


Table 7
Energy consumption and greenhouse gas emissions of LLM pipelines executions for the pizza use case.

Pipeline Model Energy consumption GHG Emissions

LLM Text2OWL GPT-3.5-turbo-16k 15 Wh 9 gCO2eq
LLM Text2OWL Mistral 7B 3 Wh 2 gCO2eq

OLAF LLM GPT-3.5-turbo-16k 96 Wh 50 gCO2eq
OLAF LLM Mistral 7B 57 Wh 38 gCO2eq

the OpenAI model. This is directly linked to the size of the models and the geographical areas
in which they are hosted (Europe for Mistral, North America for OpenAI). A clear link can
be made between the cumulative size of LLM input and output and its environmental impact.
Indeed, the generation of the Pizza Ontology textual description has by far the highest impact,
with many tokens in input and output. The OWL ontology generation, concept and relation
extraction, hierarchisation and axiomatisation processes have a close environmental impact.
The number of input tokens is approximately the same, while the number of output tokens
varies slightly depending on the instructions given. Other prompts have less impact because
they have a much smaller input and output. Table 7 shows the total impact of pipelines using
LLMs. Unsurprisingly, the OLAF LLM pipeline has a much greater environmental impact than
the LLM Text2OWL pipeline. However, this pipeline produces results that are better and, above
all, more explicable with elements added step by step. The model chosen and its size significantly
influence the environmental impact. Therefore, a balance must be struck between the technique
used and the model chosen to execute it.

7. Conclusion

The community’s growing interest in LLMs has questioned their relevance to knowledge
extraction. Hence, our work explores the relevance of LLMs for OL from text. We propose two
use cases with a reverse engineering process for evaluating OL pipelines by alignment with a
reference ontology. We leverage our framework OLAF [10], which implements OL tasks from
term to axiom extraction. We demonstrate the pertinence of LLMs for OL with zero-shot or
one-shot prompting, particularly when used for specific tasks rather than on an end-to-end
basis. The contextual information provided during text generation is a differentiating feature
compared to other works in the literature. We show the positive impact of using a larger LLM
on one of the use cases, while the results are not significantly different for the second one. This
is encouraging for future work, as we can consider using smaller LLMs for the OL task. We also
detail the environmental impact of the pipelines developed to propose efficient and responsible
solutions. We argue that the environmental impact is mainly linked to the model chosen and the
size of the inputs and outputs used. Combining LLMs with other sub-task components creates
even more efficient pipelines by limiting the resources consumed according to the application’s
needs. As future work, we will explore other algorithms for currently critical tasks without
LLM and test more LLMs to balance model performance and environmental impact.



References

[1] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying large language models and
knowledge graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering
(2024) 1–20. URL: http://dx.doi.org/10.1109/TKDE.2024.3352100. doi:10.1109/tkde.2024.
3352100.

[2] N. Noy, D. Mcguinness, Ontology development 101: A guide to creating your first ontology,
Knowledge Systems Laboratory 32 (2001).

[3] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, S. Kirrane,
J. E. Labra Gayo, R. Navigli, S. Neumaier, A.-C. Ngonga Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs,
number 22 in Synthesis Lectures on Data, Semantics, and Knowledge, Springer, 2021. URL:
https://kgbook.org/. doi:10.2200/S01125ED1V01Y202109DSK022.

[4] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, W3C Recom-
mendation, w3c, 2014. URL: https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[5] W. O. W. Group, OWL 2 Web Ontology Language Document Overview, W3C Recommen-
dation, 20122. URL: https://www.w3.org/TR/owl2-overview/.

[6] C. M. Keet, An Introduction to Ontology Engineering, https://people.cs.uct.ac.za/m̃keet/OE-
book, 2020. URL: https://people.cs.uct.ac.za/~mkeet/OEbook.

[7] X.Ma, Knowledge graph construction and application in geosciences: A review, Computers
& Geosciences 161 (2022) 105082. URL: https://www.sciencedirect.com/science/article/pii/
S0098300422000450. doi:https://doi.org/10.1016/j.cageo.2022.105082.

[8] D. L. M. Elisa F. Kendall, Ontology Engineering, Synthesis Lectures on Data, Se-
mantics, and Knowledge, Springer, 2019. URL: https://link.springer.com/book/10.1007/
978-3-031-79486-5. doi:https://doi.org/10.1007/978-3-031-79486-5.

[9] M. N. Asim, M. Wasim, M. U. G. Khan, W. Mahmood, H. M. Abbasi, A survey of ontology
learning techniques and applications, Database 2018 (2018). doi:10.1093/database/
bay101, bay101.

[10] M. Schaeffer, M. Sesboüé, J.-P. Kotowicz, N. Delestre, C. Zanni-Merk, Olaf: An ontology
learning applied framework, Procedia Computer Science 225 (2023) 2106–2115. URL: https:
//www.sciencedirect.com/science/article/pii/S1877050923013595. doi:https://doi.org/
10.1016/j.procs.2023.10.201, 27th International Conference on Knowledge Based and
Intelligent Information and Engineering Sytems (KES 2023).

[11] I. Melnyk, P. Dognin, P. Das, Grapher: Multi-stage knowledge graph construction using
pretrained language models, in: NeurIPS 2021 Workshop on Deep Generative Models and
Downstream Applications, 2021.

[12] H. Babaei Giglou, J. D’Souza, S. Auer, Llms4ol: Large language models for ontology
learning, in: International Semantic Web Conference, Springer, 2023, pp. 408–427.

[13] L. Yao, J. Peng, C. Mao, Y. Luo, Exploring large language models for knowledge graph
completion, arXiv preprint arXiv:2308.13916 (2023).

[14] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng, H. Chen, N. Zhang, Llms for
knowledge graph construction and reasoning: Recent capabilities and future opportunities,
arXiv preprint arXiv:2305.13168 (2023).

[15] S. Carta, A. Giuliani, L. Piano, A. S. Podda, L. Pompianu, S. G. Tiddia, Iterative zero-shot

http://dx.doi.org/10.1109/TKDE.2024.3352100
http://dx.doi.org/10.1109/tkde.2024.3352100
http://dx.doi.org/10.1109/tkde.2024.3352100
https://kgbook.org/
http://dx.doi.org/10.2200/S01125ED1V01Y202109DSK022
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/owl2-overview/
https://people.cs.uct.ac.za/~mkeet/OEbook
https://www.sciencedirect.com/science/article/pii/S0098300422000450
https://www.sciencedirect.com/science/article/pii/S0098300422000450
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2022.105082
https://link.springer.com/book/10.1007/978-3-031-79486-5
https://link.springer.com/book/10.1007/978-3-031-79486-5
http://dx.doi.org/https://doi.org/10.1007/978-3-031-79486-5
http://dx.doi.org/10.1093/database/bay101
http://dx.doi.org/10.1093/database/bay101
https://www.sciencedirect.com/science/article/pii/S1877050923013595
https://www.sciencedirect.com/science/article/pii/S1877050923013595
http://dx.doi.org/https://doi.org/10.1016/j.procs.2023.10.201
http://dx.doi.org/https://doi.org/10.1016/j.procs.2023.10.201


llm prompting for knowledge graph construction, arXiv preprint arXiv:2307.01128 (2023).
[16] J. Han, N. Collier, W. Buntine, E. Shareghi, Pive: Prompting with iterative verification

improving graph-based generative capability of llms, arXiv preprint arXiv:2305.12392
(2023).

[17] J. Raad, C. Cruz, A Survey on Ontology Evaluation Methods, in: Proceedings of the Inter-
national Conference on Knowledge Engineering and Ontology Development, part of the
7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management , Lisbonne, Portugal, 2015. URL: https://hal.science/hal-01274199.
doi:10.5220/0005591001790186.

[18] A. Gangemi, V. Presutti, S. Staab, R. Studer, Ontology Design Patterns, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 221–243. URL: https://doi.org/10.1007/
978-3-540-92673-3_10. doi:10.1007/978-3-540-92673-3\_10.

[19] X. Lv, F. Duan, J.-j. Jiang, X. Fu, L. Gan, Deep metallic surface defect detection: The
new benchmark and detection network, Sensors 20 (2020). URL: https://www.mdpi.com/
1424-8220/20/6/1562. doi:10.3390/s20061562.

[20] K. S. Jones, A statistical interpretation of term specificity and its application in retrieval, J.
Documentation 60 (2021) 493–502. URL: https://api.semanticscholar.org/CorpusID:2996187.

[21] G. A. Miller, Wordnet: a lexical database for english, Commun. ACM 38 (1995) 39–41. URL:
https://doi.org/10.1145/219717.219748. doi:10.1145/219717.219748.

[22] M. L. Zepeda-Mendoza, O. Resendis-Antonio, Hierarchical Agglomerative Clustering,
Springer New York, New York, NY, 2013, pp. 886–887. URL: https://doi.org/10.1007/
978-1-4419-9863-7_1371. doi:10.1007/978-1-4419-9863-7\_1371.

[23] J. Ni, G. Hernandez Abrego, N. Constant, J. Ma, K. Hall, D. Cer, Y. Yang, Sentence-
t5: Scalable sentence encoders from pre-trained text-to-text models, in: S. Muresan,
P. Nakov, A. Villavicencio (Eds.), Findings of the Association for Computational Linguis-
tics: ACL 2022, Association for Computational Linguistics, Dublin, Ireland, 2022, pp.
1864–1874. URL: https://aclanthology.org/2022.findings-acl.146. doi:10.18653/v1/2022.
findings-acl.146.

[24] H. N. Fotzo, P. Gallinari, Learning ”generalization/specialization” relations between
concepts: Application for automatically building thematic document hierarchies, in:
Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval,
RIAO ’04, Le centre des Hautes Etudes Internationales d’Informatique Documentaire, Paris,
FRA, 2004, p. 143–155.

https://hal.science/hal-01274199
http://dx.doi.org/10.5220/0005591001790186
https://doi.org/10.1007/978-3-540-92673-3_10
https://doi.org/10.1007/978-3-540-92673-3_10
http://dx.doi.org/10.1007/978-3-540-92673-3_10
https://www.mdpi.com/1424-8220/20/6/1562
https://www.mdpi.com/1424-8220/20/6/1562
http://dx.doi.org/10.3390/s20061562
https://api.semanticscholar.org/CorpusID:2996187
https://doi.org/10.1145/219717.219748
http://dx.doi.org/10.1145/219717.219748
https://doi.org/10.1007/978-1-4419-9863-7_1371
https://doi.org/10.1007/978-1-4419-9863-7_1371
http://dx.doi.org/10.1007/978-1-4419-9863-7_1371
https://aclanthology.org/2022.findings-acl.146
http://dx.doi.org/10.18653/v1/2022.findings-acl.146
http://dx.doi.org/10.18653/v1/2022.findings-acl.146

	1 Introduction
	2 Related work
	2.1 Ontology Learning
	2.2 LLMs for Ontology Learning

	3 Contributions
	3.1 Evaluation approach
	3.2 Axiom extraction

	4 Experiments
	4.1 Pizza Ontology textual description
	4.2 Manual construction of the metallic surface defect detection ontology
	4.3 LLM Text2OWL
	4.4 OLAF LLM pipeline
	4.5 OLAF no-LLM pipeline
	4.6 Prompts tuning

	5 Results
	5.1 Ontologies evaluation
	5.2 Analysis by component

	6 Discussion
	6.1 LLM internal knowledge
	6.2 Carbon footprint

	7 Conclusion

