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Abstract
Ontologies provide a structured framework to represent and integrate domain knowledge. Developing
them is a complex and time-consuming task, requiring domain expertise to ensure accuracy and consis-
tency. Ontology learning aims to automate this process by learning full ontologies, or parts of them,
from sources such as textual data. In this paper, we research the potential of Large Language Models
(LLMs), specifically GPT-4o, in ontology learning, using a real-world use case. We introduce a manually
constructed ontology based on knowledge in a news article, and compare it to ontologies extracted using
three different prompting approaches over multiple runs. The resulting ontologies are evaluated both
quantitatively and qualitatively, to ensure that differences in performance due to modelling choices
are also considered. The results show that, while the LLM effectively identifies important classes and
individuals, it often does not include properties between classes, and adds inconsistent and incorrect
properties between individuals. Prompting on a sentence level leads to more correct individuals and
properties, however, quantitative evaluation shows more hallucinations and incorrect triples. Despite
these issues, LLMs advance previous ontology learning methods by considering classes, individuals, and
properties as a whole, creating a more complete ontology rather than isolated elements. This provides a
new perspective on ontology learning and highlights the potential of LLMs to offer a first version of an
ontology or an extension to an existing one based on new information.
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1. Introduction

Ontologies play an important role in structuring and integrating domain knowledge. They sup-
port data interoperability, standardisation, and increasingly more, explainability and reasoning
for statistical models [1, 2]. Developing them is time-consuming, costly, and prone to errors [3].
Ontology Learning aims to tackle these challenges by automatically learning ontologies or parts
of them. Previous work has shown the potential of leveraging Natural Language Processing
techniques for ontology learning or knowledge graph extraction [4, 5, 6]. Term extraction
is relatively successful with techniques such as Named Entity Recognition, and some degree
of success can be seen on the relation extraction task on a sentence level [7, 8]. However,
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such extractions lead to a flat graph, often only containing individuals and simple relations.
The step towards ontologies with classes, taxonomical structures, and other abstractions is an
open challenge. Recent work by Bakker and Di Scala [6] and Babaei Giglou et al. [3] shows
the potential of Large Language Models (LLMs) for knowledge graph extraction and ontology
learning. These works demonstrate first steps towards using LLMs for ontology learning in the
form of extracting knowledge graphs [6], and extracting parts of ontologies with a step-by-step
approach [3]. While these advancements mark significant progress, these works and previous
efforts have focused on steps or parts of an ontology. Achieving a complete, fully integrated
model from domain-specific documents remains a challenge.

In this work, we research the potential of LLMs for ontology learning by extracting an
ontology from a news message. Specifically, we utilise GPT-4o to generate ontologies based on
a news message about the Nord Stream pipeline leakage incident. To evaluate this model on
the task of ontology learning, we introduce annotations for the selected news message and a
manually created ontology by an ontology developer. We prompt the LLM with three different
approaches: 1) a direct approach, in which one query is sent to extract a full ontology from the
complete document, 2) a sequential approach, in which three queries are sent to extract classes,
individuals, and properties sequentially, and 3) a sentence based approach, in which we extract
the ontology elements for each sentence. This comparison is conducted across multiple runs
to analyse the consistency and reliability of the LLM-generated ontologies. We evaluate the
generated ontologies against the manually created ground truth.

The paper is structured as follows: Section 2 provides an overview of related work in ontology
learning and knowledge graph extraction using LLMs. Section 3 describes the news message, the
annotations and manually created ontology, and the different prompting approaches. Section
4 presents the results, offering a quantitative evaluation of the extracted ontologies against
the manually created one, as well as a qualitative evaluation which highlights patterns and
differences. Section 5 discusses the results, and finally, Section 6 concludes this work with a
summary and suggestions for future work.

2. Related Work

In this section, wewill describe the fields of ontology learning, including evaluation of ontologies,
and knowledge graph extraction.

2.1. Ontology Learning

An ontology is a formal specification of concepts in the world [9]. Ontologies often describe
a part of the world. Two examples often used in the field are the pizza ontology [10], which
describes different type of pizzas, toppings and for example types of dough, and the wine
ontology [11], which describes types of wine, colours, grapes and flavours. Current ontologies
are mostly created manually. This is an extensive task, which involves the time of at least one
domain expert and a modeller. Ontologies also require maintenance, which also is costly and
prone to errors. Therefore, the field of ontology learning has focused on (semi-)automatically
creating (part of) ontologies. Many overview or survey papers on this topic have been published,



such as by Buitelaar et al. [12], Zhou [13], Wong et al. [14], Asim et al. [15], Khadir et al. [16]
and Du et al. [17].

Buitelaar et al. [12] give an overview of the field until 2005, in which they divide the task into
complexity levels, based on the ontology learning layer cake: Starting in complexity with terms,
going up to synonyms, then concepts and concept hierarchies, followed by relations and finally
rules and axioms. The majority of the techniques at this time were rule-based and focused
on lexico-syntactical patterns. Performance, especially recall, was low, as such patterns could
not consistently be identified [12]. Relation extraction was often done by combining linguistic
patterns, such as dependencies, with statistical analysis [18]. For all approaches on all levels,
manual work was necessary to produce a coherent ontology.

In the work of Wong et al. [14] on ontology learning in 2012, they state that the newer
techniques were able to extract a lightweight ontology – or in later terms a simple knowledge
graph – with classes and relations but without axioms [19], but not yet heavyweight ontologies
that have extensive axioms [20].

In the years to follow, statistical approaches gained in popularity due to the increase of
computing power and the uprise of machine learning applications. Some of these statistical
approaches include co-occurrences, hierarchical clustering, and the start of vector-based meth-
ods [15]. In the overview paper of Asim et al. [15], linguistic and statistical approaches are
distinguished, as well as the different terms of the layer cake, mainly term extraction and
relation extraction.

From 2021 onwards, Natural Language Processing (NLP) techniques have provided for more
efficient and scalable ontology learning [21, 16]. Another trend is that the term ontology is used
less in the literature, as the term knowledge graph is used more often. The consensus seems to
be that ontologies are stricter than knowledge graphs and that ontologies could be considered a
subclass of knowledge graphs [22]. In the overview of Khadir et al. [16], the distinction between
linguistic and statistical / machine learning approaches is still there, but they are combined
more often, such as in Tian et al. [23], in which a graph convolutional network is trained using
dependency trees and in Jaradeh et al. [24] in which the multi-tool Plumber is introduced. For
different texts, different approaches are suggested. Its dynamic pipelines outperform static
pipelines, but scores for the knowledge graph completion task remain low. This has to do with
performance of the individual components, where results can still be improved [24].

Currently, decoder-only models such as GPT [25] have gained prominence [17]. They are
known as generative LLMs, due to the vast amounts of texts and parameters with which they are
trained, and can be applied to advance the field of ontology learning. For example, Babaei Giglou
et al. [3] test different LLM model families on several ontology learning tasks such as term
typing, taxonomy discovery, and extraction of non-taxonomic relations. Hao et al. [26] use
prompting to extract (implicit) information from Language Models such as BERT to construct
an ontology / knowledge graph. Most recent papers focus on subtasks of ontology learning, but
not the creation of a full ontology. However, they show that LLMs could, at least on these tasks,
introduce new opportunities for ontology learning. Du et al. [17] mention that future directions
using LLMs in ontology learning could be to develop benchmarks, work on non-taxonomic
relation extraction and axiom discovery, the collaboration between domain expert and prompt
engineering and leveraging LLMs for dynamic ontology updating. Therefore, our main focus in
this paper is purely on Generative LLM capabilities on Ontology Learning.



2.1.1. Evaluation of Ontologies

An important aspect in ontology learning is evaluation [14, 27]. As soon as ontologies increase
in complexity, for instance by adding a taxonomical structure, evaluation techniques come short.
Several metrics and tools have been created in the past years, of which for example Wilson et al.
[27] explain the characteristics consistency, coverage, conciseness, correctness and modularity,
while McDaniel and Storey [28] introduce DOORS, which is a ranking framework for ontologies
by using syntactic, pragmatic, semantic and social quality metrics. Recent work by Bakker
and de Boer [29] extend previous metrics and test them in an experimental setting on various
ontologies and taxonomies. They show that such metrics can indicate the quality of changes,
but evaluation of a first version of a knowledge graph or an ontology still requires manual steps.

2.2. Knowledge Graph Extraction

A task related to ontology learning is Knowledge Graph Extraction (KGE), in which the aim
is to extract knowledge graphs from different sources, using a variety of techniques. KGE is
has similar subtasks that overlap with ontology learning, especially those related to the lower
levels of the layer cake, in which terms and relations are extracted.

KGE is also often linked to the field of Open Information Extraction (OpenIE) [30]. One of
the tasks in OpenIE is to generate triples, containing a subject, relation, and object, based on
textual data. The field of OpenIE evolved in a similar way as ontology learning, coming from
statistical approaches and linguistic approaches, to word embeddings [31], to BERT models [32]
and multiple techniques are often combined, similar to Jaradeh et al. [24] as described above.

Similar to ontology learning, research efforts currently focus on LLMs. LLMs provide new
possibilities in a variety of NLP tasks, including triple generation and KGE. Some approaches
include using prompting schemes, like in-context learning [33, 34] and manual prompting for
completing subject-predicate-object triples [35]. In this way LLMs are often used in the inference
or completion of knowledge graphs rather than their direct production [36]. Knowledge graph
extraction is, however, also done end-to-end [37]. A recent solution for knowledge graph
extraction, or any related NLP task such as Named Entity Recognition and relation extraction,
is OntoGPT[38]. It integrates current LLMs such as GPT-3.5 and GPT-4 and has instruction
prompts and ontology-based grounding, especially for the biomedical domain. Most related
to this work, in Bakker and Di Scala [6] relation extraction methods, including REBEL [7],
KnowGL [39] and GPT-3.5 and GPT-4, are used on a real-world textual dataset similar to the
one in this paper to explore the performance of the different models on this task. Results show
that LLMs show potential in this task, but do not yet compare to manual annotation.

2.2.1. Evaluation of Knowledge Graphs

Knowledge graphs are often evaluated using their performance on downstream tasks, such as
Named Entity Recognition or relation extraction [40]. Evaluation metrics often include the
standard machine learning metrics such as accuracy, precision and recall. Chen et al. [41]
introduced requirements for knowledge graphs on the dimensions of accessibility, intrinsic,
contextual and representational, which are similar to metrics introduced for ontology learning.



Mihindukulasooriya et al. [42] introduced Text2KGBench to evaluate knowledge graphs gen-
erated by language models from natural text guided by an ontology. The evaluation metrics
include precision, recall and F1 score, but also ontology conformance and subject, relation and
object hallucinations.

3. Method

3.1. Data

In this paper, we aim to extract an ontology from text using Large Language Models. As a use
case, we selected a news message on an incident in the safety domain. In this domain, multiple
sources of information have to be considered to gather all information and make good decisions.
One important source of information is the news; newsmessages provide up-to-date information
albeit at a non-confidential level. With the use of an ontology, safety organisations can keep
track of different sources of information in a structured manner. Therefore, we created a ground
truth ontology for a news message on the Nord Stream Pipeline incident by Reuters1. The news
message describes the incident on September 26 in 2022 when a gas leak occurred in the two
Nord Stream gas pipelines. The leaks in international waters lead to separate investigations by
Denmark, Germany, and Sweden to find the cause. Due to the Russian invasion of Ukraine, the
pipelines were inactive. As of the writing of this paper, investigations continue.

We annotated the news message according to the ontology learning layer cake described
in Section 2. First, terms were annotated, after which the synonyms, and thirdly the concepts.
In the fourth step, the concept hierarchy was annotated for taxonomic relations. As a final
step, properties were annotated. The top steps of the ontology learning layer cake – rules and
axioms in Buitelaar et al. [12] and the relation hierarchy, axioms schemata, and general axioms
in Asim et al. [15] – were left out of the annotation due to their complexity and the scope
of the text. From the annotations, an RDF ontology was built in ttl (turtle) syntax including
classes (concepts), individuals (terms), and object properties and data properties (relations). The
ontology was created based on the first 12 sentences of the news text, and resulted in a Ground
Truth ontology, which can be found in the repository of this paper2. The process of annotating
the text and modelling the annotations in an RDF ontology took 16 hours, including 2 hours
of discussion of modelling choices with experienced ontology developers. The Ground Truth
ontology consists of 33 classes, 38 individuals, 20 object properties and 15 datatype properties.
Visualisations of the classes and part of the individuals are shown in Figures 1 and 2, respectively.
The full visualisation of all individuals can also be found in the repository2.

1https://www.reuters.com/business/energy/pressure-defunct-nord-stream-2-pipeline-plunged-overnight-operator-2022-09-26
2https://gitlab.com/knowledge-graphs/text2onto
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Figure 1: ground truth ontology’s classes (blue circles) and literals (yellow boxes). rdfs:Sub-
classOf relations are denoted by non-labeled arrows.
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Figure 2: Part of the ground truth ontology’s individuals (blue circles) and literals (yellow boxes).

3.2. Experimental Setup

We implemented three approaches for prompting GPT-4o for ontology extraction, as shown in
Figure 3. GPT-4o is chosen because GPT-4 has shown superior performance over GPT-3.5 and
other models in earlier related research Bakker and Di Scala [6], and GPT-4o has been claimed
to match GPT-4 Turbo performance on text in English https://openai.com/index/hello-gpt-4o/,
while being less expensive to use. We assessed the consistency of the output by running each
approach three times. The temperature of the model is set at a low score of 0.3 to minimise
hallucinations and ensure greater consistency.

A. Direct. The first approach involves prompting GPT4-o directly to extract the ontology from
given text. This was done with the following prompt: “Extract an ontology in ttl format from
the following text, only return the created ttl code. Make sure to label all classes as rdfs:Class, all
individuals as owl:NamedIndividual, and all properties as owl:ObjectProperty, owl:DatatypeProperty,
or owl:AnnotationProperty.”

B. Sequential. Secondly, we followed a sequential approach, in which we split up the task
of ontology extraction into three extraction parts: class extraction, individual extraction and
relation extraction. For this, we prompted GPT-4o three separate times and included the output
of the previous prompts. First, GPT-4o was prompted to extract all classes based on the given
text, with a similar prompt as used in the direct approach. Then, GPT-4o was prompted to

https://openai.com/index/hello-gpt-4o/


Figure 3: Overview of the three implemented ontology extraction approaches: A) a direct approach, B)
a sequential approach splitting the extraction process up in classes, individuals, and relations and C) a
sentence based step-by-step approach dividing the extraction process over each sentence.

extract all individuals, considering both the provided text and the extracted classes. Finally,
considering the text, the extracted classes and the extracted individuals, GPT-4o was prompted
to extract all relations. The three resulting ttl files were then merged to yield the full ontology.

C. Sentence. Our third extraction approach entails a sentence based step-by-step method, in
which we first extracted the classes from the full text, same as the sequential approach. Then,
the text was split into sentences, and for each of the sentences GPT-4o was prompted to extract
the individuals and relations. For each new sentence, GPT-4o was prompted to take into account
the extracted classes and the previously extracted individuals and relations. Finally, all results
were merged in a resulting ontology.

3.3. Evaluation

The resulting ontologies were evaluated quantitatively and qualitatively. For the quantitative
evaluation, the precision, recall, and F1 score were calculated for the classes, individuals,
relations, and overall performance. To measure the interconnectedness of the resulting ontology,
we calculated the average degree score 𝐷𝑎𝑣𝑔 for each of the approaches [43]. This degree score is
calculated by the following formula: 𝐷𝑎𝑣𝑔 = (|𝐼 |+ |𝐶|)/(|𝑃𝐼 𝐼| + |𝑃𝐼 𝐶| + |𝑃𝐼 𝐿|), with |𝐼 | and |𝐶| being
the amount of individuals and classes and |𝑃𝐼 𝐼|, |𝑃𝐼 𝐶| and |𝑃𝐼 𝐿| being the amount of properties
between individuals and individuals, between individuals and classes and between individuals
and literals. The degree score gives an indication of the interconnectedness of the resulting
ontology. As discussed in Guéret et al. [43], the goal of ontologies is not be to be fully complete,
as it indicates a high amount of properties that lack any meaning. Therefore, the aim of this
degree metric for the resulting ontologies is not to be as high as possible, but to match closely
with the ground truth’s degree score, which indicates a similar level of interconnectedness.

In addition to the quantitative evaluation, a qualitative evaluation is performed. Observations



Approach Run # Classes # Individuals

Ground Truth 33 38

Direct 1 24 9
Direct 2 15 8
Direct 3 10 14
Direct Average 16.33 10.33

Sequential 1 31 13
Sequential 2 36 12
Sequential 3 31 14
Sequential Average 32.67 13

Sentence 1 35 64
Sentence 2 38 60
Sentence 3 31 57
Sentence Average 34.67 60.33

Table 1
Amount of extracted classes and individuals for each approach and run, including ground truth. Bold
indicates closest amounts to the ground truth, whereas underlining indicates the closest average.

were made on various levels, including the form of the output, the quality and correctness of
full triples, and the level of detail. Development choices made during annotation were also
considered.

4. Results

4.1. Quantitative Results

Table 1 shows the amount of classes and individuals. The results show that the sequential
approach is closest to the ground truth in terms of amount of individuals. As expected, the
direct approach produces the least amount of classes and individuals, and the sentence based
approach the most. Note that there is only a slight difference in amount of classes between the
sequential and sentence based approach, as these use the same prompt for class extraction.

Table 2 shows the F1 scores for all approaches and all three runs for each approach. The results
show that the sentence based approach, in which classes are extracted for the full document
and individuals and properties per sentence, yields the highest overall F1 score on average and
absolute on the second run. This run for the sentence based approach also lead to the highest
score for classes and properties, whereas the highest average score for classes was achieved by
the sequential approach. The highest score on individuals is achieved by the sentence based
approach in the third run. Comparing performance of the different types of extraction (classes,
individuals, properties), the properties have a relatively low score, especially for the direct and
sequential approach. Individuals consistently have a higher score compared to the other two
over all runs and types.

Figure 4 shows the precision, recall and F1 scores for all approaches in a bar plot, including



Approach Run Classes Individuals Properties Overall

Direct 1 0.53 0.34 0.29 0.40
Direct 2 0.33 0.41 0.22 0.33
Direct 3 0.28 0.48 0.23 0.34
Direct Average 0.38 0.41 0.25 0.36

Sequential 1 0.44 0.52 0.17 0.39
Sequential 2 0.52 0.51 0.17 0.42
Sequential 3 0.50 0.51 0.18 0,42
Sequential Average 0.49 0.51 0.17 0.41

Sentence 1 0.30 0.56 0.38 0.41
Sentence 2 0.56 0.46 0.77 0.60
Sentence 3 0.36 0.65 0.36 0.47
Sentence Average 0.41 0.56 0.50 0.49

Table 2
F1 scores for the extracted classes, individuals, properties and overall, for each approach and run. Bold
indicates highest score per column for the individual runs, whereas underlining indicates the highest
score on the average per column.

Figure 4: Average precision, recall and F1 scores for the three runs of all approaches, including standard
deviation.

the standard deviation. The figure shows that for the direct and sequential approaches precision
is higher than recall, whereas in the sentence based approach recall is higher than precision. The
standard deviation is lower for the sequential approach compared to the other two approaches.
Especially the precision of the direct and sentence based approach have a relatively high standard
deviation.



Figure 5: Average degree scores of all approaches and ground truth.

Figure 5 shows the degree scores of all approaches and ground truth in a bar plot. The
figure shows that the sentence based approach is closest to the ground truth degree. The direct
approach is furthest away from the ground truth. One outlier is the third run of the direct
approach, which is due to its low amount of individuals and classes, while still outputting
correct properties between individuals and classes, as well as the inclusion of a few datatype
properties.

4.2. Qualitative Results

In this section, we analyse qualitative findings of ontology extraction split over class extraction
and individuals extraction. All visualisations of the resulting ontologies can be found in the
repository2.

4.2.1. Class Level

Overall, the connectivity of the output is very low, as GPT-4o produces barely any relations
between classes. None of the three approaches yield any properties from classes to literals,
whereas the ground truth includes 15 datatype properties. The only exception is the third run
from the sentence based approach, in which the triple :Ship :radius “five nautical miles”∧
∧xsd:string is found, with :radius correctly being classified as datatype property. The ground
truth also includes a lot of taxonomic (rdfs:subClassOf) relations, which are not produced by
the LLM.

Furthermore, on many accounts the results do not adhere to ontology creation standards and
conventions. The prefixes are incorrectly given or missing (e.g. xsd: being used as prefix but



prefix xsd: <http://www.w3.org/2001/XMLSchema#> not being provided as prefix definition
at the top of the document), and no rdfs:domain, rdfs:range or rdfs:label descriptions are
given.

In general, while some terms from the text are correctly extracted, correctly classifying them
remains a challenge. Some terms that should be identified as individuals, are classified as classes
(e.g., :EnergyWar). Or supposed properties are classified as classes (e.g., :Bar or :Volume).
This happens most frequently in the direct and sequential approach.

One notable property produced by the third run of the sentence based approach, is that the
concepts of Twitter and Website are linked with each other (:Twitter rdf:type :Website),
which is arguably correct. However, this requires some world knowledge which is not directly
present in the text.

Another frequently occurring error are reflexive rdf:type properties, which happens because
concepts in the text are designated as both an individual and a class. For example, GasStor-
ageLevel rdf:type Class and GasStorageLevel rdf:type GasStorageLevel; rdf:type
NamedIvindivual. This is another issue that occurs due to poor naming conventions, in this
case the inconsistent use of lowercase letters for individuals.

4.2.2. Individual Level

Overall, GPT-4o is consistent in its format (e.g., UpperCamelCase for classes, lowerCamelCase
or snake_case for properties) per call. However, in the sequential and sentence based approach,
results are aggregated from different calls. This leads to these conventions being mixed and
therefore the results to be inconsistent.

More specifically, notable errors by the sequential approach are the creation of tuples instead
of triples (that is, it creates a triple with an empty object), and connecting terms that have
no logical connection and are incorrect (e.g., :GermanNetworkRegulator :hasStatement
:Pressure or :NordStream1 :disclosedPressureDrop :Pressure).

The sentence based approach produces a high amount of different relations between in-
dividuals, but does not make relevant connections between sentences. For example, :Nord-
Stream2Pipeline rdf:type :Pipeline and NordStream2 rdf:type :Pipeline are both extracted,
but while it is clear that these individuals pertain to the same concept, they are not connected
by the LLM.

Most notably, on close inspection the sentence based approach hallucinates information,
such as dates of the pipelines’ completion and cancellation. E.g., :Pipeline1 :completedOn
“2022-02-20” and :Germany :cancelledOn “2022-02-22”. These dates are not given in the text,
and also do not correspond to the actual dates so their extraction is not grounded in additional
world knowledge either.

Finally, in the second run of the direct approach rdfs:comment is used to label a part of
the corresponding text. This positively adheres to ontology creation standards, as the usage of
comments in this manner contribute to the explainability of the extraction process. This run is
highlighted in Figure 6.



Figure 6: Snippet of the result of the third run of the direct approach. It shows part of the extracted
classes and individuals. Most notably, a rdfs:comment property is used to refer back to the text.

5. Discussion

When manually developing an ontology, different design choices can be made depending on
the use case and goal of the ontology. In this work, the goal of the ontology was to describe
the information in the news message. Therefore, the manually created ontology was highly
detailed. As described in the previous section, the sentence based approach, where we extracted
classes on a document level but individuals and properties per sentence, led to the best results
overall, which might be due to the fact that it is most detailed. When a lower level of detail is
desired, for instance when someone is only interested in the cause of the gas leak, the manually
created ontology would be less detailed, and one of the other approaches might lead to better
results.

Another aspect in which ontology developer choices play a role is the way abstractions are
made when implementing classes. For instance, in the manually created ontology, abstractions
are made in the form of events and the roles involved in an event. While for this singular use
case such abstractions are not required, they become necessary when new information is added
over time to ensure consistency. With a bigger use case, abstractions are also important to
establish patterns between similar concepts in data. Finally, abstractions enable the inclusion of
rules and axioms in an ontology.

Regarding the approaches, in preliminary trials, it was notable that not all extracted classes,
individuals and relations were correctly identified as rdfs:Class, owl:NamedIndividual, or
owl:Property by the LLM when it is not specifically instructed to do so. To increase overall
completeness of the output, we included an instruction for this in the prompts to steer GPT to
explicitly include these labels in its output, for the final three approaches.

While the three approaches we compare in this work yield interesting results, it is possible
to further extend the approaches or opt for additional alternatives. Prompting LLMs can be
done in many different ways, leading to different results. Our quantitative analysis showed that
the different approaches of prompting lead to big differences in F1 scores. The direct approach
produces a low amount of terms when compared to the other approaches, which is a result
from the single one-shot prompt. This approach could benefit from few-shot learning, chain of



thought prompting or targeted instructions to include a certain given minimum of concepts
and relations, to ensure completeness. Other instructions could also be included to improve the
results depending on the use case. For instance, while we focused on classes, individuals and
their respective properties, the prompt can further include instructions to focus on including
domain and range in the properties. However, guiding the LLM what parts of ontology creation
to focus on requires the suitable knowledge of ontology modelling. It would be interesting to
explore whether an LLM can be prompted for this information, and instructed to adhere to
these conventions in next steps.

It would be beneficial to further expand on this work by testing these approaches in a setting
with more texts, larger texts or more complex texts. Increasing complexity of the sentences in
the texts challenges the extraction capabilities of the methods even further. Increasing size of
the documents also entails further scalability issues. Running these methods on document level
becomes less feasible with large document sizes, so instead one could opt for separation of the
text into chunks.

The quantitative results indicated that the sentence based approach is better suitable for
the task of ontology extraction than the other two approaches. This is because the amount of
extracted classes and individuals matched the ground truth the best, the overall F1 score was
the highest, as well as the average degree score matched the ground truth the closest. However,
the qualitative evaluation showed that some mistakes are not always reflected in quantitative
results. Incorrect triples can contain correct classes, individuals, or properties. Hallucinations
can also occur and are difficult to distinguish from the knowledge present in the use case. For
larger use cases, qualitative evaluation is not always feasible, which increases the need for more
extensive quantitative evaluation.

Finally, the general inconsistency of the LLM outputs are still a limitation of this method.
While this inconsistency is most notable in the direct approach, all approaches yielded varying
extracted ontologies. The variety in output impacts reliability of the results. This makes the
use of GPT-4o less suitable for applications in general pipelines, especially in domains or use
cases where consistency is critical.

6. Conclusion and Future Work

Natural Language Processing techniques, such as Large Language Models, can aid the automatic
creation of ontologies, a process known as ontology learning. In this paper, we explore three
different prompting approaches to extract ontologies from a news message using GPT-4o,
including a direct approach, a sequential approach and a sentence based approach. The results
show that, while classes and individuals can be extracted with some success, the generated
ontologies do not yet match the quality of a manually created one. This can partly be attributed
to development choices and differences in prompting strategies. Sentence based prompting
yields results closest to the manually developed ontology, indicating its effectiveness for high-
detail extraction. Including more details in the prompt, such as types, can also improve the
results, but requires modelling expertise from the user. Despite the generated ontologies not
fully matching manually created ones, they are comprehensive models that include classes,
individuals, and properties. This shows that a Large Language Model such as GPT-4o can



provide a new perspective on ontology learning.
For future work, a valuable addition to this work would be to research the potential of LLMs

for extending an existing ontology. Additionally, a comparison between different types of LLMs
for this task would be insightful. Furthermore, as GPT-4o shows promising results on the
extraction of classes, individuals and their properties, the next step is the extraction of rules
and axioms. By researching the extent of LLM capabilities to tackle the extraction of these top
layers of ontologies, LLMs could further advance the field of ontology learning.
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