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Abstract
We present automated theorem provers implementing systems for intermediate logics, in the propositional and

first-order setting. They use an axiomatic embedding into intuitionistic logic based on cut-restricted sequent

calculi. All provers are evaluated on a large benchmark set of propositional and first-order formulas.
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1. Introduction

Intermediate logics lie between intuitionistic logic and classical logic in terms of subset inclusion, in

the propositional or first-order setting. Intermediate logics offer a more nuanced approach to the

usual 2-valued classical logic and this motivates their study in logic, computer science, and artificial

intelligence. While many theorem provers exist for classical logic and several for intuitionistic logic,

only very few are available for intermediate logics. Our aim is to address this gap by presenting provers

for intermediate logic—propositional and first-order—in a systematic manner.

On the proof-theoretic side, it is well known that most propositional intermediate logics lack a cut-free

sequent calculus. This is a formidable obstacle for automated theorem proving, and meta-theoretic

investigations, since cut-freeness is the typical route towards a proof calculus with the subformula

property, and the latter property is crucial for pruning in backward proof search. Indeed, recall the

situation that arises with a Hilbert proof calculus where it is unclear when and on what formula the

rule of modus ponens needs to be applied backwards. Ciabattoni et al. [1] present a general solution via

cut-free hypersequent calculi for extensions of intuitionistic propositional logic (IPL) with axioms up

to P ′

3 in the substructural hierarchy. Although the hypersequent calculus is a natural generalisation of

the sequent calculus (use a multiset of sequents instead of a single sequent), from the perspective of

automated theorem proving it is much more complex to implement, and the hypersequent calculus

formalism is much less well-known outside the structural proof theory community.

A new solution is proposed by Ciabattoni et al. [2, 3]: sound and complete sequent calculi for

propositional intermediate (and substructural) logics by permitting restricted cuts (as mentioned above,

without a restriction on the cuts, the backward proof search space is simply too large). Specifically,

the cut-formulas are restricted to instantiations of the axioms with conjunctions of subformulas of the

end sequent. In the case of intermediate logics, the restricted cuts can be traded for a cut-free proof in

the intuitionistic calculus with axiom instances added to the antecedent, making use of the deduction

theorem in the latter. Consequently, the intermediate logics embed into intuitionistic logic.

Our focus is on the implementations of the theory described above, and also for first-order intermediate

logics that are obtained through the addition of quantification rules. After describing the theoretical

foundation in Section 2, we present our implementations in Section 3 and evaluate them in Section 4.

We conclude with a summary, outlook and related research in Section 5.
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2. Intermediate Logics

2.1. Preliminaries

Propositional formulas are defined inductively from propositional atoms p, q, . . . and constants ⊥ and

⊤ using the connectives ∧, ∨, →, and ¬. In the first-order setting, the propositional atoms are replaced

by predicates on terms built from variables and function symbols, and the language is extended with

first-order quantifiers. A term is a variable or f(t1, . . . , tn) for a n-ary function symbol f and terms

t1, . . . , tn. First-order formulas are defined inductively as the constants ⊥ and ⊤, P (t1, . . . , tn) for an
n-ary predicate symbol P and terms t1, . . . , tn, and A ∧ B, A ∨ B, A → B, ¬A, ∀x.A and ∃x.A for

formulas A and B. Free variables in a formula are those not in the scope of a quantifier. Also, A(t/x)
denotes the formula obtained by uniformly substituting the term t for all occurrences of the variable x
that are free.

Throughout, we identify a logic with the set of its theorems. An axiomatic extension L + A is

obtained by extending the base logic L with every instantiation of the atomic formulas of the axiom

schema A by arbitrary formulas, and closing under the axioms and rules of the proof calculus.

The Hilbert proof calculus consists of axioms and rules that directly manipulate the logical formulas.

There are many equivalent variants for IPL e.g., [4, Section 6]. A Hilbert calculus for first-order

intuitionistic logic (IL) is obtained by adding the following to IPL. Here x is not a free variable in C .

C → A(y/x)

C → ∀x.A

A(y/x) → C

∃x.A→ C
∀x.A→ A(t/x) A(t/x) → ∃x.A

For economy of notation, we use IPL to denote the set of theorems of intuitionistic propositional

logic and also its Hilbert proof calculus, and similarly for intuitionistic first-order logic IL.

A sequent calculus is a type of proof calculus that manipulates sequents of the form A1, . . . , Am ⇒
Am+1 . . . , Am+n where A1, . . . , Am+n are formulas. The intended interpretation of a sequent is the

formula A1 ∧ . . . ∧ Am → Am+1 ∨ . . . ∨ Am+n. When required, ⊤ and ⊥ serve as the identity

element for conjunction and disjunction respectively. A sequent (calculus) is single-succedent if at

most a single formula is permitted on the right-hand side of the sequent, i.e. n ∈ {0, 1}, else it is

multi-succedent. Roughly speaking, the meta-level implication and conjunction/disjunction provided

by⇒ and comma permit reasoning inside the formula (fixed depth deep inference), and this is what

enables the definition of inference rules with nice properties that aid automated theorem proving and

meta-theoretic investigations.

The theoretical foundations can be described using any reasonable cut-free sequent calculus for

intuitionistic logic. For the sake of concreteness, we use the well-known sequent calculus LJ presented

by Gentzen [5]. In contrast, the implementations employ variants of this system that are specifically

optimized for proof searching.

2.2. Cut-restricted Sequent Calculi

In this work, we consider the propositional axiomatic extensions of IPL listed further below.

The soundness and completeness with respect to sequent calculi with restricted cuts was established

in [3]. As the reader may be unfamiliar with cut-restriction, let us sketch briefly how the completeness

result was obtained there: any theorem of the logic under consideration has a cut-free hypersequent

proof [1] with proper hypersequent structural rules e.g., the communication rule (com) in Gödel logic

which rearranges the contents of two components in the hypersequent. A hypersequent proof without

proper structural rules is obtained by repeatedly eliminating bottom-most hypersequent structural

rules. The latter is achieved by accepting an additional formula (slightly more than a subformula) in

each active component. These additional formulas are eliminated at the bottom of the proof via a cut

on an instance of a proper axiom of the logic. The cut-restricted sequent proof can now be read off the

hypersequent proof since the latter contains no proper hypersequent structural rules.
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1. Jankov logic: IPL+¬A∨¬¬A. The sequent calculus LJJ extends LJ with the cut-rule restricted

to instances of the axiom schema¬A∨¬¬A. Specifically, in a proof of⇒ F , the atomic formulaA
in the axiom schema can be replaced by any conjunction of subformulas of F .

2. Gödel logic: IPL+ (A→ B) ∨ (B → A). The sequent calculus LJG extends LJ with the cut-rule

restricted to instances of the axiom schema (A → B) ∨ (B → A) so in a proof of ⇒ F , the
atomic formulas A and B are replaced by any conjunction of subformulas of F .
While the above axiom schema for Gödel logic is the standard one, we will actually use the

equivalent axiomatisation IPL + (A → B) ∨ ((A → B) → A) + ¬A ∨ ¬¬A. As observed in

[3], this allows us to restrict cut-formulas to a much smaller set, namely instances of the axiom

schema where the atomic formulas are replaced by propositional atoms from F .

First-order axiom schemas. In the first-order setting, the above axiom schemas are written as

universal sentences. For example, ∀x̄(¬A ∨ ¬¬A) and ∀x̄((A→ B) ∨ (B → A)).
Let FLJJ and FLJG denote first-order the sequent calculi obtained from LJJ and LJG by adding the

usual Gentzen first-order quantifiers. Here, the eigenvariable y must not occur in the conclusion of the

(R∀) and (L∃) rules.

A(t/x),Γ ⇒ C
(L∀)

∀xA,Γ ⇒ C

Γ ⇒ A(y/x)
(R∀)

Γ ⇒ ∀xA

A(y/x),Γ ⇒ C
(L∃)

∃xA,Γ ⇒ C

Γ ⇒ A(t/x)
(R∃)

Γ ⇒ ∃xA

We observe that FLJJ and FLJG are sound and complete for the corresponding cut-free hypersequent

calculiHLJJ andHLJG by a straightforward extension of the argument in [3]. The latter hypersequent

calculi consist of proper hypersequent structural rules added to the base calculusHLJ for IL. Soundness

is straightforward. For completeness, we extend the transformation for propositional logics in [3] that

was sketched above. In the case of HLJG, an instance of (com) in the hypersequent proof is replaced

with a formula of the form ∧Γ → ∧Γ′ that is added to the antecedent of the of the active component.

Here ∧Γ is the conjunction of all formulas in Γ. The remaining rules in the cut-free hypersequent proof

are faithfully simulated in the sequent proof that is ultimately obtained. It remains to simulate the

quantifier rules inHLJG with the quantifier rules in LJG and verify by inspection that the eigenvariable

condition for the former implies it for the latter even in the presence of the added formulas.

It still remains to clarify the relationship between the first-order hypersequent calculus and the

Hilbert calculus1. Consider the following Hilbert calculus rule with the condition that x is not free in C .

∀x(C ∨A(y/x))
(QSR)

C ∨ ∀xA

Armed with this rule, for each rule in the hypersequent calculus, there is a derivation in the Hilbert

calculus of the conclusion from the premises under the standard formula translation. It follows that FLJJ

is sound for IL+ ∀x̄(¬A∨¬¬A) + (QSR). Completeness is immediate sinceHLJJ has cut-elimination.

Similarly, FLJG is sound and complete for IL+ ∀x̄(A→ B ∨B → A) + (QSR).
In certain cases, the (QSR) rule may be replaced by an axiom schema. For example, it is easy to see that

IL+∀x̄(A→ B∨B → A)+(QSR) is equivalent to IL+∀x̄(A→ B∨B → A)+∀z̄∀x(C∨A(y/x)) →
∀z̄(C ∨ ∀x̄A) where x is not free in C in the latter axiom.

2.3. Cut-restricted Sequent Calculi and Embeddings

We have already noted that the sequent calculi obtained in [3] restrict the cut formulas to certain axiom

instances that depend on the formula F that is being proved. Specifically, the set of cut formulas that

are required in a proof of⇒ F is defined by the function below, with the set A of axiom schemas as

parameter, and with the help of an auxiliary function ψ.

F 7→ {A | A ∈ ψ(A, F )}

1The third author thanks Timo Lang for a helpful discussion on this topic.
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Ciabattoni et al. [3] identify several candidates for ψ.

• The set-bounding function ψs(A, F ) contains all instances of formulas in A whose atomic

formulas are substituted by non-repeating conjunctions of subformulas of F .

• The formula-bounding function ψf (A, F ) contains all instances of formulas in A whose atomic

formulas have been substituted by subformulas of F .

• The variable-bounding function ψv(A, F ) contains all instances of formulas in A whose atomic

formulas have been substituted by atoms in F .

We have omitted the multiset-bounding function, as it is not relevant for intermediate logics. Observe

that the set-bounding function has as image a set whose size is exponential in the size of F .
Notice that ψv(A, F ) ⊂ ψf (A, F ) ⊂ ψs(A, F ) for any F containing two distinct subformulas. In

certain cases including Jankov logic and Gödel logic, it is possible to identify an axiomatisation that

supports the preferred variable-bounding function. As Ciabattoni et al. [3] observe: for axiomatisations

that satisfy the {∧}-propagation property, the formula-bounding function can be used. Also, for

axiomatisations that satisfy the {∧,∨,→}-propagation property, the variable-bounding function can

be used.

The set of axiom instances (and hence cut formulas) that are required in a proof of F in Jankov logic

and Gödel logic are explicitly described below. It is precisely this variable-bounding function that we

implement in the embedding-preprocessing step of the provers.

Jankov logic {¬A ∨ ¬¬A | A 7→ atoms in F}

Gödel logic {(A→ B) ∨ ((A→ B) → A) | A,B 7→ atoms in F} ∪
{¬A ∨ ¬¬A | A 7→ atoms in F}

From Restricted Cuts to Embedding into Intuitionistic Logic

Observe that a proof of ⇒ F in the intuitionistic calculus with cuts from a finite set Ω (in the present

setting, this represents the image of the bounding function) can be transformed to a proof of ∧Ω ⇒ F ;

simply replace each left premise Γ ⇒ A of a cut instance (A ∈ Ω) with the trivial proof in LJ, where

(L∧)* denotes multiple applications of the left conjunction rule.

A,Γ ⇒ A
(L∧)*

∧Ω,Γ ⇒ A

Now proceed downwards, applying the obvious weakenings and contractions as required; the end

sequent is then transformed to ∧Ω ⇒ F . By cut-elimination in the intuitionistic calculus, we obtain

a cut-free proof of the latter sequent that witnesses an embedding of the intermediate logic into

intuitionistic logic. What this means is that the prover can now conduct backward proof search in the

setting of a cut-free intuitionistic proof of ∧Ω ⇒ F . This is the embedding perspective [3] that our

provers adopt.

We remark that the number of subformulas of F is bounded by the size |F | of F , and the number of

atomic formulas in each of the Gödel axioms listed above is ≤ 2, and the Jankov axiom has just a single

atomic formula. Hence the set-bounding function yields an exponential embedding of Gödel logic into

intuitionistic logic, and the variable-bounding function that we actually implement in the prover yields

a linear and quadratic embedding of Jankov and Gödel logic, respectively.

3. Implementations

3.1. SuperJ Prover

SuperJ is an automated theorem prover written in Haskell that supports many intermediate propositional

logics via an embedding-preprocessing step followed by intuitionistic proof search.
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A,Γ ⇒ B
(R→)

Γ ⇒ ∆, A→ B

A,B,Γ ⇒ ∆
(mp)

A,A→ B,Γ ⇒ ∆

A→ (B → C),Γ ⇒ ∆
(L→∧)

(A ∧B) → C,Γ ⇒ ∆

A→ p,B → p, p→ C,Γ ⇒ ∆
(L→∨) fresh atomic p

(A ∨B) → C,Γ ⇒ ∆

A, p→ C,B → p,Γ ⇒ p C,Γ ⇒ ∆
(L→→) fresh atomic p

(A→ B) → C,Γ ⇒ ∆

Figure 1: Implication rules of the intuitionistic sequent calculus.

SuperJ automatically selects one of the three bounding functions mentioned earlier based on the

propagation properties in the embedding step. Besides supporting arbitrary axiomatisations, the prover

explicitly supports Classical Propositional Logic (CPL), IPL, Jankov logic and Gödel logic. For IPL the

embedding step is omitted, and for CPL the prover immediately switches to classical proof search. The

two intermediate logics are supported through the variable-bounded axiomatisations as noted in the

previous section.

The intuitionistic proof search procedure of SuperJ is based on that of Avellone et al. [6]. It uses a

contraction-free multi-succedent intuitionistic calculus equivalent to LJ and is decidable in O(n log n)-
Space [7]. This calculus can be seen as a refinement of Dyckhoff’s LJT* [8], it includes rules for negation

and uses fresh propositional variables in two of the left implication rules (as shown in Figure 1) to

restrict the size of proofs. As in the original procedure by Avellone et al., SuperJ classifies formulas in

the sequent into six groups according to their behavior with respect to branching and backtracking,

which can be considered a naive form of focusing [9].

The most important optimization follows from the addition of boolean simplification and replacement

rules [6, 10, 11]. The atomic replacement rules below are adjusted to sequent calculus notation, where

[A/B] denotes the uniform substitution of A for all occurrences of B. This implemented optimization

works well for our intermediate logics, since even though the embedding step may introduce new

formulas into the sequent, these are all composed of subformulas of the end sequent.

(Γ ⇒ ∆)[⊤/p]
(L rep)

p,Γ ⇒ ∆

(Γ ⇒ ∆)[⊥/p]
(L¬ rep)

¬p,Γ ⇒ ∆

When possible, SuperJ reverts to classical proof search through the sequent calculi LK* [12] for

classical logic. This happens whenever the succedent of the sequent is empty. Furthermore, the classical

provability of the sequent is checked before attempting to apply a left non-invertible left rule, which

allows pruning of the search space when false. Finally, for non-invertible right rules, backtracking can

be avoided in the case of a singleton succedent.

3.2. ileanSeP-im and ileanTAP-im

The theorem prover ileanSeP-im is an axiomatic extension of the intuitionistic sequent prover ileanSeP

for Jankov and Gödel first-order logics. ileanSeP is a compact Prolog implementation of the single-

succedent intuitionistic sequent calculus. Similar to tableau calculi, it uses a bottom-up proof search,

free variables and a dynamic skolemization to deal with quantifiers. Together with the occurs check of

term unification, this ensures that the eigenvariable condition is respected.

The theorem prover ileanTAP-im is an axiomatic extension of the intuitionistic tableau prover ileanTAP

for Jankov and Gödel first-order logics. ileanTAP [13] is a compact Prolog implementation of a prefixed

tableau calculus, similar to Fitting [14]. It extends the classical calculus [15] by adding prefixes to capture

the Kripke semantics of intuitionistic logic, uses free prefix variables [16] and extends skolemization to

prefix constants. First, ileanTAP-im performs a classical proof search collecting prefixes of literals that

close branches. If this search succeeds, a prefix unification is used to unify these prefixes.
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Table 1

The (prefixed) non-clausal matrix for intuitionistic logic.

type F pol : p M(F pol : p)

atomic A0 : p {{A0 : pa∗}}
α (G ∧H)1 : p {{M(G1 : p)}}, {{M(H1 : p)}}

(G ∨H)0 : p {{M(G0 : p)}}, {{M(H0 : p)}}
(G→ H)0:p {{M(G1 : pa∗)}}, {{M(H0 : pa∗)}}

β (G ∧H)0 : p {{M(G0 : p),M(H0 : p)}}
(G ∨H)1 : p {{M(G1 : p),M(H1 : p)}}
(G→ H)1:p {{M(G0 : pV ∗),M(H1 : pV ∗)}}

type F pol : p M(F pol : p)

atomic A1 : p {{A1 : pV ∗}}
α (¬G)0 : p M(G1 : pa∗)

(¬G)1 : p M(G0 : pV ∗)
γ (∀xG)1 : p M(G[x\x∗]1 : pV ∗)

(∃xG)0 : p M(G[x\x∗]0 : p)
δ (∀xG)0 : p M(G[x\t∗]0 : pa∗)

(∃xG)1 : p M(G[x\t∗]1 : p)

3.3. nanoCoP-im

The automated theorem prover nanoCoP-im is an axiomatic extension of the intuitionisitic non-clausal

connection prover nanoCoP-i for the Jankov and Gödel first-order logics. nanoCoP-i is a compact

Prolog implementation of the non-clausal connection calculus for first-order intuitionistic logic (with

equality) [17, 18] and an extension of the classical prover nanoCoP [19, 20]. It is based on a prefixed

non-clausal connection calculus [17]. In contrast to sequent and tableau calculi, which are connective-

driven, connection calculi use a connection-driven search strategy. A connection is a set {A1
0, A2

1} of
literals with the same predicate symbol but different polarities.

The non-clausal connection calculus works on non-clausal matrices, where a matrixM is a set of

clauses and a clause C is a set of literals L and (sub)matrices. It represents a formula in negation normal

form. A prefix is a string consisting of variables (V ) and constants (a) and assigned to each literal.

For a formula F , polarity pol ∈ {0, 1} and prefix p, the intuitionistic non-clausal matrix M(F pol)
of F pol is defined inductively according to Table 1. x* is a new term variable, t* is the Skolem term

f*(x1, . . . , xn), V
* is a new prefix variable, a* is the prefix constant of the form f*(x1, . . . , xn), f

* is a

new function symbol and x1, . . . , xn are all free term and prefix variables in the corresponding formula

F pol : p. The intuitionistic non-clausal matrix M i(F ) of F is the matrixM(F 0 : ε). A term substitution

σT assigns terms to variables, a prefix substitution σP assigns strings to prefix variables (and is calculated

by a prefix unification). For intuitionistic logic, a connection {A0
1 : p1, A

1
2 : p2} is σ-complementary iff

σT (A1) = σT (A2) and σP (p1) = σP (p2) for a combined substitution σ = (σT , σP ).
The non-clausal connection calculus for intuitionistic logic [17] is given in Figure 2. An intuitionistic

connection proof for F is a derivation of ε,M i(F ), ε. Compared to the formal clausal connection

calculus [21, 22], the extension rule is generalized and a decomposition rule is added [23, 19].

First, nanoCoP-im performs a classical proof search, in which the prefixes of each connection are

collected. If the search succeeds the prefixes of the literals in each connection are unified. Additional

optimization techniques are regularity, lemmata, restricted backtracking and strategy scheduling [24, 18].

Axiom (A)
{},M, Path

Start (S)
C2,M, {}

ε, M, ε
and C2 is copy of C1∈M

Reduction (R)
C,M, Path∪{L2: p2}

C∪{L1 : p1},M, Path∪{L2 : p2}
and {L1:p1, L2:p2} is σ-complementary

Extension (E)
C3,M [C1\C2], Path∪{L1 : p1} C,M, Path

C∪{L1: p1},M, Path

C3:=β-clauseL2
(C2), C2 is copy of C1,

C1 is e-clause ofM wrt. Path∪{L1 : p1},
C2 contains L2 : p2, {L1:p1, L2:p2} is σ-
complementary

Decomposition (D)
C ∪ C1,M, Path

C∪{M1},M, Path
and C1∈M1

Figure 2: The non-clausal connection calculus for intuitionistic logic.
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4. Experimental Evaluation

4.1. Benchmark Problems

At present, sets of formulas for testing automated theorem provers for intermediate logic are not

available. As the syntax of intermediate logic is the same as classical and intuitionistic logic, we can use

existing benchmark formulas of these logics. As intermediate logics are an extension of intuitionistic

logic, we decided to use the ILTP problem library for intuitionistic logic [25].

Version 1.1.2 of the ILTP problem library contains 274 propositional and 2550 first-order formulas with

status and difficulty rating information. The problems are in TPTP syntax and divided into 24 categories.

While the propositional formulas belong mainly to the intuitionistic syntactic category (SYJ), the first-

order formulas are taken from a wide range of domains, from general algebra (ALG), computing (COM),

set (SET) and number (NUM) theory to software creation (SWC) and verification (SWV).

4.2. Propositional Logic

The SuperJ prover described in Section 3 was evaluated on all 274 propositional problems of the ILTP

library v1.1.2. The test were conducted on a 3.6 GHz Ryzen system with 32 GB of RAM running

Ubuntu 23.10 with kernel version 5.15. Running time was restricted to 60 seconds of CPU time per

individual problem. Table 2 shows the number of problems solved within the time limit, and the required

time in seconds, best results for each logic are marked bold.

Performance results of intuitRIL have also been collected for comparison. This intermediate proposi-

tional logic prover, due to Fiorentini and Ferrari [26], is the only automated theorem prover known

to us that supports the same selection of intermediate propositional logics. It was obtained through

modification of an existing SAT-based theorem prover for intuitionistic propositional logic. Their

methods have similar theoretical foundations, though more akin to using restricted cuts, as opposed to

our embedding approach.

intuitRIL outperforms (or matches) SuperJ in intuitionistic propositional logic, particularly so for

domains SYJ206 and SYJ209. Except for SYJ208, SuperJ is only ever faster with a minimal constant

factor, this might be due to there being a slightly smaller preprocessing overhead compared to intuitRIL

that uses a clausification procedure.

For Jankov logic, intuitRIL solved the same number of problems within almost the same amount of

time as for IPL. There is no real slowdown by the addition of the axiom instantiations for this prover.

The SuperJ prover is more sensitive to the addition of the axiom instantiations, e.g., it finds a proof

earlier for problems in SYJ209 but is slower in SYJ201-SYJ205, SYJ211 and SYJ212.

Table 2

Results on the propositional problems of the ILTP library

SuperJ (IPL) intuitRIL (IPL) SuperJ (Jan) intuitRIL (Jan) SuperJ (Göd) intuitRIL (Göd)

Domain Total Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

LCL 2 2 0.023 2 0.024 2 0.023 2 0.024 2 0.023 2 0.024

SYJ1 12 12 0.138 12 0.145 12 0.138 12 0.144 8 0.092 12 0.144

SYJ201 20 20 6.533 20 2.765 14 53.583 20 2.754 1 0.022 20 2.754

SYJ202 20 9 28.834 10 14.282 4 15.417 10 14.322 1 0.012 10 14.352

SYJ203 20 20 0.232 20 0.242 20 5.162 20 0.243 3 1.724 20 0.244

SYJ204 20 20 0.234 20 0.241 20 15.192 20 0.244 3 0.326 20 0.242

SYJ205 20 20 0.232 20 0.242 12 70.909 20 0.248 0 — 20 0.242

SYJ206 20 11 25.887 20 0.240 11 29.026 20 0.239 4 3.946 20 0.243

SYJ207 20 20 0.674 20 0.613 20 0.231 20 0.612 20 0.496 20 1.054

SYJ208 20 20 0.856 20 2.296 20 0.771 20 2.306 10 1.446 17 165.925

SYJ209 20 8 6.862 20 0.243 9 56.864 20 0.240 4 23.207 20 0.264

SYJ210 20 20 0.230 20 0.241 20 16.641 20 0.240 4 4.636 20 0.313

SYJ211 20 20 97.895 20 0.241 12 45.389 20 0.241 1 3.132 20 97.985

SYJ212 20 20 0.720 20 0.242 12 48.558 20 0.241 5 19.868 20 0.302

SYN 20 20 11.423 20 0.240 19 0.217 20 0.239 19 0.218 20 0.252
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Finally, for Gödel logic, intuitRIL again managed to solve most of the problems within the time

limit. However, compared to itself for other logics, it is slower for domains SYJ208 and SYJ211. The

performance of SuperJ on the same logic is below that of intuitRIL, except for domains LCL and SYJ207.

Perhaps this is not so surprising, considering the axiomatisation of Gödel logic contains (nested)

implications, a known weak point for sequent based provers such as SuperJ.

4.3. First-Order Logic

The automated theorem provers for first-order intermediate logic described in Section 3 were evaluated

on the problems of the ILTP library. All test were conducted on a 2.0 GHz Xeon server with 64 GB of

RAM running Linux Mint with kernel version 3.10 and ECLiPSe Prolog 5.10. Table 3 shows the results of

the evaluation on all 2550 first-order problems of the ILTP library v1.1.2 [25] for a CPU time limit of 10

seconds. Included are the provers ileanSeP-im 1.0, ileanTAP-im 1.17 and nanoCoP-im 2.0. Each of these

implementations were tested for intuitionistic logic (“IL”), Jankov logic (“Jan”) and Gödel logic (“Göd”).

Furthermore, the prover leanCoP 2.2 for classical first-order logic was included, which provides an

upper limit for the number of problems that can be proved by one of the provers for intermediate logic.

Table 3

Results on the first-order problems of the ILTP library

— ileanSeP-im — — ileanTAP-im — — nanoCoP-im — leanCoP 2.2
Logic IL Jan Göd IL Jan Göd IL Jan Göd Classical

proved 298 238 222 310 196 163 788 750 604 1064

0 to 1sec. 266 214 184 305 190 161 695 602 496 936

1 to 10sec. 32 24 38 5 6 2 93 148 108 128

refuted 4 0 0 4 0 0 88 60 33 28

error 35 53 7 54 323 234 3 3 3 0

nanoCoP-im proves the most problems for each of the non-classical logics. ileanSeP-im proves

slightly less problems than ileanTAP-im for IL, but more problems than ileanTAP-im for Jankov and

Gödel logic. nanoCoP-im also refutes the largest number of problems for all three logics.

All three provers prove less problems for Jankov logic than for IL and less problems for Gödel logic

than for Jankov logic. This is explained by the overhead in the search space caused by the additional

intermediate axioms that are added to the formulas. In general, the problems proved in Gödel logic are

a subset of the problems proved in Jankov logic, which are again a subset of the problems proved in IL.

Table 4 shows the few exceptions where a problem was proved in Jankov (or Gödel) logic but not in IL,

or proved in Gödel logic but not in Jankov logic. The entries show the CPU time in seconds necessary

to prove a problem or (in parentheses) to refute it. These problems are from the domains Set Theory

(SET), Software Verification (SWV) and Syntactic (SYN). Given a larger CPU time limit, the problems in

the SET and SWV domains can be proved in IL by nanoCoP-i or Slakje [18], i.e., they are valid in IL.

Table 4

Detailed results for selected problems of the ILTP library

— ileanSeP-im — — ileanTAP-im — — nanoCoP-im — leanCoP 2.2
Logic IL Jan Göd IL Jan Göd IL Jan Göd Classical

SET095+4 – – – – – – – 7.5 – 0.6

SET638+3 – – – – – – – 7.9 – 0.1

SWV181+1 – – – – – – – 9.7 – 0.3

SWV188+1 – – – – – – – 8.9 – –

SWV189+1 – – – – – – – 9.3 – 2.1

SYN081+1 – – – – – – – 0.2 0.2 0.1

SYN416+1 (0.1) – 0.1 (0.1) – 0.1 (0.1) (0.1) 0.1 0.1
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5. Conclusion

We implemented four provers for Jankov and Gödel logic via proof search for intuitionistic logic and

bounding functions: SuperJ for the propositional Jankov and Gödel logics and ileanSeP-im, ileanTAP-im

and nanoCoP-im for the first-order Jankov and Gödel logics. The SuperJ implementation is available

at https://github.com/bhaaksema/superintuition, the ileanSeP-im, ileanTAP-im and nanoCoP-im imple-

mentations are available at https://leancop.de/imed/. While bounding functions could be added to any

existing intuitionistic theorem prover, SuperJ is a new prover aimed at facilitating quick experimentation

with heuristics. To the best of our knowledge, ileanSeP-im, ileanTAP-im and nanoCoP-im are the first

provers for first-order Jankov and first-order Gödel logic.

Our tests have shown that very few problems in the ILTP library which are valid in Jankov or Gödel

logic are not valid in intuitionistic logic. Therefore, it seems advisable to build a collection of such

problems for future benchmarking, possibly generated by (forward) proofs in the sequent calculus.

The methodology applies to other intermediate logics, e.g., Scott’s and Kreisel-Putnam logic axioma-

tized over IPL respectively by ((¬¬A→ A) → (A ∨ ¬A)) → (¬¬A ∨ ¬A) and (¬A→ (B ∨ C)) →
((¬A → B) ∨ (¬A → C)). It would also be interesting to extend the methodology to substructural

logics.

Fiorentini and Ferrari [26] give a propositional intermediate logic prover intuitRIL that modularly

extends a SAT-based prover for IPL. Fiorino [27, 28] present duplication-free tableau calculi for Gödel

logic and three other propositional intermediate logics, including Jankov logic. Kuznets and Lellmann

[29] give semantically inspired constructions of nested sequent calculi for propositional intermediate

logics including Gödel logic, and a prototype proof search implementation was also presented.

For classical logic, many state-of-the-art theorem provers use heuristics that select a subset of

appropriate axioms in a preprocessing step before the actual proof search [30]. As our approach

adds many axioms to the formula to be proven, integrating such heuristics will likely improve the

performance of our provers. This will be part of future work, along with further optimization and

evaluations of the provers.
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