
Implementing the Fatio Protocol for Multi-Agent

Argumentation in LogiKEy

Luca Pasetto1,*, Christoph Benzmüller2,3

1University of Luxembourg
2Otto-Friedrich-Universität Bamberg
3Freie Universität Berlin

Abstract
Fatio is a dialogue protocol that has been proposed to extend the language for agent communications FIPA ACL

with locutions for dialectical argumentation. Its syntax is composed of five agent locutions, and its axiomatic

semantics is defined in terms of the mental states (beliefs and desires) of the participating agents, that are

influenced by what is uttered. LogiKEy is a framework and methodology for the design and engineering of

ethico-legal reasoners which is based on semantical embeddings of logics and logic combinations in expressive

classical higher-order logic (HOL). In this paper, we explore a modelling and present a first implementation of the

axiomatic semantics of Fatio in the Isabelle/HOL proof assistant system following the LogiKEy methodology.

Keywords
Proof assistants, Isabelle/HOL, Knowledge representation and reasoning, Automated theorem proving, Semantical

embedding, Higher-order logic, Dialogue, Argumentation, Multi-Agent systems

1. Introduction

Recent advancements in dialogue systems based on language models are pushing the boundaries of

what is possible in AI-human interaction. The rapid evolution of these technologies can set up the

stage for more intuitive and helpful AI systems in everyday life, but at the same time presents a variety

of risks. This motivates research on formal dialogue systems, based on logical languages, for which

it is possible to formally (and eventually also mechanically) prove relevant properties. In this paper,

we explore an Isabelle/HOL modelling of Fatio, a formal dialogue system based on argumentation

between multiple agents by following the LogiKEy [1] framework and methodology. For an overview

of argumentation-based dialogue, the interested reader can refer to [2].

LogiKEy [1] is a framework and methodology that can be used for the design, engineering and

experimentation of reasoning systems, with a focus on ethico-legal applications [3] and normative

reasoning [4]. The formal framework of LogiKEy is based on shallow semantical embeddings (SSE) [5] of

combinations of various logics in classical higher-order logic (HOL). This meta-logical approach allows

the use of off-the-shelf theorem provers and model finders for HOL, and therefore aids designers of

ethical intelligent agents by allowing them to employ existing technologies instead of having to face the

cumbersome task of developing completely new tools. Additionally, continuous improvements to the

theorem provers enhance the reasoning capabilities within LogiKEy without needing extra adjustments.

The methodology is represented in Figure 1: the relevant object logics are encoded in HOL and can in

turn be used to express domain theories, with the purpose of successively experimenting with concrete

applications and examples.

The rest of the paper is structured as follows: Section 2 describes the Fatio protocol as in [6], Section

3 shows its LogiKEy implementation in the Isabelle/HOL proof assistant system, and Section 4 discusses

the relevant results and the remaining challenges.

ARQNL 2024: Automated Reasoning in Quantified Non-Classical Logics, 1 July 2024, Nancy, France
∗Corresponding author.

$ luca.pasetto@uni.lu (L. Pasetto); christoph.benzmueller@uni-bamberg.de (C. Benzmüller)

� 0000-0003-1036-1718 (L. Pasetto); 0000-0002-3392-3093 (C. Benzmüller)
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

ARQNL 2024 38 PROCEEDINGS
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:luca.pasetto@uni.lu
mailto:christoph.benzmueller@uni-bamberg.de
https://orcid.org/0000-0003-1036-1718
https://orcid.org/0000-0002-3392-3093
https://creativecommons.org/licenses/by/4.0
http://iltp.de/ARQNL-2024/


L3—Applications

L2—Domain-Specific Language(s)

L1 —Object Logic(s)

L0 —Meta-Logic (HOL)

L
o
g
iK

E
y
M
e
th
o
d
o
lo
g
y

Figure 1: LogiKEy development methodology

2. The Fatio Protocol

This section summarizes the Fatio protocol for dialectical argumentation between agents that has been

introduced in [6]. The original paper motivates the protocol as an extension of the language FIPA

ACL [7] for agent interactions with the goal of addressing the criticism that it lacks a proper theory

of argumentation. The authors therefore provide a set of locutions for the requesting and providing

of reasons. The intuition is that agents that are proponents or opponents of a claim aim to establish

the truth through various locutions or dialectical moves. The protocol is defined with a syntax, an

axiomatic semantics, and an operational semantics.

2.1. Syntax

The general syntax for utterances is illocution(Pi,ϕ) or illocution(Pi,Pj ,ϕ), where illocution
is an illocutionary act, Pi is an identifier for the agent making the utterance (the speaker), Pj (with

Pj 6= Pi) denotes an agent at whom the utterance is directed, and ϕ is the content of the utterance.

Utterances are intended to be made to the entire group involved in the dialogue. For the content of

the utterance, any agreed formal language can be used, but the authors assume that the content layer

is represented in a propositional language, with lower-case Greek letters as propositions. The set of

well-formed content formulae, closed under the usual connectives, is denoted as C. Since the protocol is
used to exchange justifications for claims, some utterances also contain content comprising arguments

(e.g., premises and inference-rules), which are represented by upper-case Greek letters. The set of

well-formed argument formulae, closed under the usual connectives, is denoted as A, with C ⊂ A.

If ϕ ∈ C is a proposition in the content language and Φ ∈ A is a justification, Φ ⊢+ ϕ is written to

indicate that Φ is an argument in support of ϕ, and Φ ⊢− ϕ to indicate that Φ is an argument against

ϕ. In order to keep track of commitments to provide justifications for utterances, the concept of a

dialectical obligation is introduced and is used to refer to previous commitments in the dialogue. The

syntax is made up of five locutions or dialectical moves [6]:

• F1 – assert(Pi, ϕ): A speaker Pi asserts a statement ϕ. By doing so, Pi creates a dialectical

obligation to provide justification for ϕ, if subsequently required by another participant.

• F2 – question(Pj , Pi, ϕ): A speaker Pj questions a prior utterance of assert(Pi, ϕ) and
seeks a justification for ϕ. The speaker Pj of the question creates no dialectical obligations.

• F3 – challenge(Pj , Pi, ϕ): A speaker Pj challenges a prior utterance of assert(Pi, ϕ) and
seeks a justification for ϕ. Unlike a question, Pj also creates a dialectical obligation on himself

to provide a justification for not asserting ϕ, such as an argument against ϕ, if questioned or

challenged. Therefore, challenge(Pj , Pi, ϕ) is considered stronger than question(Pj , Pi, ϕ).

• F4 – justify(Pi, Φ ⊢+ ϕ): A speaker Pi, who had previously uttered assert(Pi, ϕ) and was

then questioned or challenged, is able to provide a justification Φ for the initial statement ϕ.

39



• F5 – retract(Pi, ϕ): A speaker Pi, who had previously made an assertion assert(Pi, ϕ) or jus-
tification justify(Pi, Φ ⊢+ ϕ), can withdraw this statement with the utterance of retract(Pi,

ϕ) or retract(Pi, Φ ⊢+ ϕ), respectively. This removes the earlier dialectical obligation on Pi to

justify ϕ or Φ, if questioned or challenged.

The locutions are also subject to combination rules, introduced in [8], that constrainwhen an utterance

can be made within the dialogue, ensuring structured interaction based on assertions, questions,

challenges, justifications, and retractions. For instance, they ensure that the utterance assert(Pi, ϕ)
may be made at any time, and that immediately following an utterance of question(Pj , Pi, ϕ) or
challenge(Pj , Pi, ϕ), the speaker Pi of assert(Pi, ϕ) must reply with justify(Pi, Φ ⊢+ ϕ), for
some Φ ∈ A.

2.2. Axiomatic Semantics

The axiomatic semantics gives a set of axioms in terms of pre-conditions and post-conditions for each

locution of Fatio, and it involves beliefs and desires of the participating agents. Mental states such

as beliefs and desires are used in order to be consistent with the axiomatic semantics of FIPA ACL.

The concept of a dialectical obligation is also clarified at this point, as the authors introduce, for each

participant Pi, one dialectical obligations store DOS(Pi) to record dialectical obligations. The contents

of DOS(Pi) are triples (Pi, X, Y ), where Pi is a participant, X ∈ C or X ∈ A, and Y ∈ {+,−}.
The intuition is that (Pi, ϕ,+) ∈ DOS(Pi) indicates that participant Pi has a dialectical obligation to

provide a justification in support of ϕ. Two classes of modal operators are used in the semantics: one

for beliefs Bi and one for desires Di, where i is an agent identifier. Also, an element from FIPA’s action

language is used: Done [illocution(Pi, ϕ), pre-con] indicates that illocution(Pi, ϕ) has been uttered by

participant Pi with content ϕ, and with pre-conditions pre-con true. For the purposes of the current

implementation, we do not consider pre-con and use Done [illocution(Pi, ϕ)]. The pre-conditions and
post-conditions are then [6]:

• assert(Pi, ϕ)

– Pre-conditions: A speaker Pi does not have yet the dialectical obligation to provide

justification for ϕ, and Pi desires that each participant Pj(j 6= i) believes that Pi believes

the proposition ϕ ∈ C . Formally, ((Pi, ϕ,+) /∈ DOS(Pi)) ∧ (∀j 6= i)(DiBjBiϕ).

– Post-conditions: Each participant Pk(k 6= i), believes that participant Pi desires that

each participant Pj(j 6= i) believe that Pi believes ϕ. Moreover, the dialectical obligation

(Pi, ϕ,+) is added to DOS(Pi).
Formally, (Pi, ϕ,+) ∈ DOS(Pi) ∧ (∀k 6= i)(∀j 6= i)(BkDiBjBiϕ).

• question(Pj , Pi, ϕ)

– Pre-conditions: Some participant Pi(i 6= j) has a dialectical obligation to sup-

port ϕ and participant Pj desires that each other participant Pk(k 6= j), believes
that Pj desires that Pi utter a justify locution for ϕ. Formally, ∃i(i 6= j)
((Pi, ϕ,+) ∈ DOS(Pi) ∧ (∀k 6= j)DjBkDj (∃∆ ∈ A) Done [justify(Pi,∆ ⊢+ ϕ)]) .

– Post-conditions: Participant Pi must utter a justify locution. There is no change on the

dialectical obligations. Formally, (∃∆ ∈ A) Done [justify(Pi,∆ ⊢+ ϕ)] .

• challenge(Pj , Pi, ϕ)

– Pre-conditions: Some participant Pi(i 6= j) has a dialectical obligation to support ϕ.
Participant Pj desires that each other participant Pk(k 6= j), believe both that Pj desires

that Pi utter a justify(Pi,∆ ⊢+ ϕ) locution for some∆ ∈ A and that Pj does not believe

ϕ. Formally, ∃i(i 6= j) ((Pi, ϕ,+) ∈ DOS(Pi) ∧ (∀k 6= j)(DjBk¬Bjϕ)
∧ (∀k 6= j)DjBkDj (∃∆ ∈ A) Done [justify(Pi,∆ ⊢+ ϕ)]).

– Post-conditions: Participant Pi must utter a justify locution. Moreover, the dialec-

tical obligation (Pj , ϕ,−) is added to DOS(Pj). Formally, ((Pj , ϕ,−) ∈ DOS(Pj)
∧ (∃∆ ∈ A) Done [justify (Pi,∆ ⊢+ ϕ)]).

40



• justify(Pi,Φ ⊢+ ϕ)

– Pre-conditions: A speaker Pi has a dialectical obligation to support ϕ. Another speaker
Pj(j 6= i) has uttered a question(Pj , Pi, ϕ) or a challenge(Pj , Pi, ϕ) locution. Further-
more, Pi desires that each participant Pk(k 6= i) believes that Pi believes that Φ ∈ A is

an argument for ϕ. Formally, ((Pi, ϕ,+) ∈ DOS(Pi)) ∧ (Done [question (Pj , Pi, ϕ)] ∨
Done [challenge (Pj , Pi, ϕ)) ∧ (∃Φ ∈ A) (∀k 6= i)DiBkBi (Φ ⊢+ ϕ) .

– Post-conditions: Each participant Pk(k 6= i) believes that Pi desires that each participant

Pj(j 6= i) believes that Pi believes that Φ ∈ A is an argument for ϕ. Moreover, the

dialectical obligation (Pi,Φ,+) is added toDOS(Pi). Formally, ((Pi,Φ,+) ∈ DOS(Pi))∧
(∀k 6= i) (∀j 6= i)BkDiBjBi (Φ ⊢+ ϕ) .

• retract(Pi, ϕ)

– Pre-conditions: For the proposition ϕ ∈ C , it is required that (Pi, ϕ,+) ∈ DOS(Pi).
Participant Pi desires that each participant Pj(j 6= i) believes that Pi no longer believes ϕ.
Additionally, Pi desires that each participant Pj(j 6= i) understands that Pi no longer

maintains a disbelief in ϕ. Formally, ((Pi, ϕ,+) ∈ DOS(Pi) ∧ (∀j 6= i)DiBj¬Biϕ)∨
((Pi, ϕ,−) ∈ DOS(Pi) ∧ (∀j 6= i)DiBj¬¬Biϕ) .

– Post-conditions: Depending on the case outlined in the pre-conditions, either each

participant Pk(k 6= i) believes that participant Pi desires that each participant

Pj(j 6= i) believes that Pi no longer believes ϕ, or each participant Pk(k 6= i)
believes that participant Pi desires that each participant Pj(j 6= i) believes that

Pi no longer disbelieves ϕ. Moreover, either (Pi, ϕ,+) or (Pi, ϕ,−) is removed

from DOS(Pi). Formally, ((Pi, ϕ,+) /∈ DOS(Pi) ∧ (∀k 6= i) (∀j 6= i)BkDiBj¬Biϕ)∨
((Pi, ϕ,−) /∈ DOS(Pi) ∧ (∀k 6= i) (∀j 6= i)BkDiBj¬¬Biϕ) .

2.3. Operational Semantics

The operational semantics is given in terms of internal decision mechanisms for agents that in the

protocol are not specified and are left to be implemented, for example through reasoning methods based

on formal argumentation. For instance, a decision mechanism is used by an agent to decide whether to

assert a given statement at a given point of the dialogue, and another decision mechanism is used by

an agent with a dialectical obligation to justify a statement or argument to identify the best possible

justification at a given point of the dialogue. We do not go into more details of the operational semantics

here, as for now we only focused on the encoding of the axiomatic semantics.

3. Fatio in LogiKEy

The possibility of using the existing LogiKEy infrastructure has allowed for rapid prototyping of the

Fatio protocol in the Isabelle/HOL proof assistant system [9]. Figure 2 shows the layers of the LogiKEy

methodology applied to Fatio.

The layers are as follows:

• L0 is the underlying Meta-Logic (HOL) layer;

• L1 represents the combination of object logics: (L1.1) a deeply embedded logic to be used to

express the content of the Fatio locutions and (L1.2) a shallowly embedded logic to represent the

axiomatic semantics in terms of beliefs and desires;

• L2 is about domain-specific languages: (L2.1) is the encoding of world knowledge using L1.2 and

(L2.2) is the actual language of Fatio, based on agents uttering locutions; and

• L3 is the layer for dialogue applications, that use in turn the L2 languages.

41



L3—Dialogue Applications

L2.2 — Fatio Language

L2.1 — Encoding of
World Knowledge

L1.3 — Logic Combination

L1.1 —Content
Logic (Deep
Embedding)

L1.2 —BD
Logic (Shallow
Embedding)

L0 —Meta-Logic (HOL)

L
o
g
iK

E
y
M
e
th
o
d
o
lo
g
y

Figure 2: LogiKEy development methodology for Fatio

The architecture shows that at layer L1 we have both a shallow and a deep embedding of logics, but

additionally the situation is even more complex, as the two logics are also nested within each other. We

now go through the main parts of the implementation and describe choices and challenges.1

We begin with layer L1.2, showing the higher-order multimodal logic that we then use to represent

beliefs and desires of agents. Here, σ is the type of world depended formulas, and complex formulas are

built by following the semantics of the logical connectives.

This logic is shallowly embedded, and after defining a datatype for speakers (for simplicity, at this

moment we list only three possible speakers a, b and c) we define the two modal operators Bi and Di

for each speaker i.

1The code of the Isabelle/HOL implementation that we describe here is available at https://github.com/cbenzmueller/LogiKEy/

tree/master/Fatio/v1

42

https://github.com/cbenzmueller/LogiKEy/tree/master/Fatio/v1
https://github.com/cbenzmueller/LogiKEy/tree/master/Fatio/v1


At layer L1.1 (on the left below) we have a deeply embedded propositional logic, with for-

mulas of type Formula. This logic is then used inside the Fatio language of type FatioL to

represent the content of the Fatio locutions: we show the syntax of the Fatio language at layer

L2.2 (on the right below), with the five above mentioned kinds of locutions and content of type Formula.

In the axiomatic semantics, the beliefs and desires of the agents are about formulas that have been

uttered during the dialogue using the content language, that is, the deeply embedded one. However,

the axiomatic semantics is expressed in the shallowly embedded higher-order multimodal logic.

Therefore, at layer L1.3 it is necessary to have a mapping between the deeply embedded content

formulas (L1.1) and the shallowly embedded higher-order multimodal logic formulas (L1.2). This is

built starting from the atoms of the languages with mkHOMMLatom (on the left below) and arriving to

the complex formulas with the function Map1 specified on the relative connectives (on the right below).

We also map to the higher-order multimodal logic the special formulas that appear in the axiomatic

semantics for Done [illocution(Pi, ϕ)] (with MapDone) and for Φ ⊢+ ϕ in justify(Pi, Φ ⊢+ ϕ) (with
MapEntailment).

We show then some experiments to clarify the differences between the deep and the shallow

embedding. First, while for the deeply embedded logic of L1.1 we can find a counterexample to show

that it does not hold that p → p = ¬⊥, when this is mapped to the shallowly embedded logic of L1.2 we

can prove that it holds that Map1(p → p) = Map1(¬⊥) (on the left below). Indeed, the deep embedding

is motivated by the need to differentiate two same Fatio locutions that involve different but semantically

equivalent formulas of the content language, while with the shallow embedding we cannot distinguish

between formulas like p → p and ¬⊥. We can find a counterexample to show that it does not hold

that assert(a, p → p) = assert(a, ¬⊥), but also there is a counterexample to show that it does not

hold that Done [assert(a, p → p)] = Done [assert(a,¬⊥)] (on the right below). This is the intended be-

haviour for Done, as in this case wemight be in a dialogue where agent a has asserted¬⊥ but not p → p.

We proceed now with the modelling of the axiomatic semantics of the protocol. The first ingredient is

the dialectical obligations storeDOS, that we represent as a list of triples (Speaker, Formula, Sign).
The function to update DOS when a Fatio locution is executed is then shown below here on the right:

assert, justify, and challenge add an element to DOS, retract removes an element from

DOS, while question does not change DOS.

43



For layer L1.3, the next step is to encode the pre-conditions of each locution. In order to do that,

the formal definitions of the original paper should be clear and not leave space for ambiguity. If we

consider the pre-conditions of question and challenge, we have that ∃∆ appears after the modal

operatorsDjBkDj in (∀k 6= j)DjBkDj (∃∆ ∈ A) Done [justify(Pi,∆ ⊢+ ϕ)] . It is not completely

clear if the authors actually intended the modal operators to operate on a quantified formula, or if they

intended the existential quantifier as a meta-language element. To better understand the situation, we

experimented with the expression and tried to move the existential quantifier outside of the modal

operators, obtaining (∀k 6= j) (∃∆ ∈ A)DjBkDjDone [justify(Pi,∆ ⊢+ ϕ)] . Indeed, the two

formulas are not equivalent, and we found out that while the second one implies the first one (lemma

ent3), the inverse does not hold (counterexample for lemma ent2). For now, we decided to follow

strictly the contents of the paper, so we kept the first formula for the pre-conditions, but this might be a

knowledge representation choice that can be changed in favor of the formula that better encodes the

desired effects.

We can then proceed with the encoding of the pre-conditions. We write function PreCond that

checks whether the pre-conditions of a locution are satisfied, given a current dialectical obligations store

DOS and a current set Γ of shallowly embedded formulas that represent the encoded world knowledge

of layer L2.1.

44



The post-conditions are encodedwith the GammaAdd function, that takes a locution and gives the set of

formulas representing its post-conditions. At this point, in the axiomatic semantics of the paper the post-

conditions of question and challenge contain a formula (∃∆ ∈ A) Done [justify(Pi,∆ ⊢+ ϕ)],
which means that the relevant justify locution is uttered. However, we think that this would be

better handled by combination rules or operational semantics, and the justify locution cannot have

been uttered already when the post-conditions of question and challenge are imposed. For this

reason, we simplified the post-conditions of these two locutions.

The actual evolution of the set of formulas Γ is encoded by GammaUpdate, that outputs the updated

set of formulas Γ′ given a current locution and a current set of formulas Γ. It does so by including (1)

the new formulas added with GammaAdd, (2) the formulas that are already in Γ and are consistent with

(1), and (3) the relevant MapDone formula for the current locution.

A FatioState is defined as a triple (FatioL list, DOS list, Γ). The function FatioCheck

goes from one FatioState to the next by executing its first locution, and the function FatioCheckRec

executes an entire dialogue by a series of recursive calls, and outputs True if the final state is suc-

cessful, that is, the pre-conditions of each executed locution are satisfied after having imposed the

post-conditions of the previous locution.

45



4. Discussion

We presented a first modelling and implementation of the Fatio protocol in the LogiKEy framework.

The next step is obviously to carry out more extensive experiments on it, in order to test it and possibly

to improve it accordingly. At this point, we ran only a few experiments with some small dialogues.

While the reasoning system is promising, and up to our knowledge it is the first implementation of

Fatio that actually uses the intended modal logic semantics, the modelling is not simple and there are a

few sources of complexity that emerged:

• complexity of the relationship between the embeddings of the logics (the deep embedding is being

mapped to the shallow embedding, and the Fatio language, that uses the deeply embedded logic,

is again being mapped to the shallow embedding);

• complexity in terms of how Isabelle/HOL can cope with the modelling, as

– we had a few technical issues related to the parsing of the formulas combining different

logics, and in order to solve them at this point we are using a large quantity of brackets to

speed-up the disambiguation process, and

– we had some issues regarding the responsiveness of the theorem provers called by

sledgehammer, caused by the complexity of the involved formulas;

• complexity in terms of human usability/readability for experimentation (the formulas to be used

to encode the world knowledge and to satisfy the pre-conditions in the axiomatic semantics

involve complex nesting of beliefs and desires that might be hard to grasp for a human user of

the protocol, and moreover as already mentioned the formulas have to involve large numbers of

brackets to help the parser).

An additional challenge in this kind of work is that in the original paper there are extra-logical aspects

that have to be clarified in order to implement the protocol. As it is natural with implementations, there

are differences between the paper and the code, and during the implementation things can be simplified

or might need to be made more explicit. In our case, for example, we simplified the post-conditions of

question and challenge, and we modelled the dialectical obligations store DOS in a slightly simpler

way compared to the original paper. At the same time, we had to make (temporary) choices about

how to model the Done operator and on where to put the existential quantifier in the pre-conditions of

question and challenge. These are cases where the experimental approach proposed with LogiKEy

can be impactful, as we made these choice with the support of small experiments.

The point of how to assess the correctness of our method is important to discuss. A pen and paper

proof would be possible if we had a proper target semantics, but in the process of implementing the

protocol we actually had to make changes to the original semantics. Therefore, a contribution of this

paper is in making more clear how the target semantics should look like, so to possibly simplify it. In

general, an overall future goal is to simplify the modelling to solve some of the challenges listed above.

For instance, as already stated, the relationship between the shallow and the deep embedding is not

straightforward. Therefore, streamlining it (e.g., by only using a shallow embedding, even though a

more sophisticated one) would help to fix some of the complexities we have with the integration of the

different reasoning mechanisms.

46



Acknowledgments

This work was supported by the Luxembourg National Research Fund (FNR) through the project Logical

methods for Deontic Explanations (INTER/DFG/23/17415164/LODEX) and the project Deontic Logic

for Epistemic Rights (OPEN O20/14776480).

The authors would like to thank Prof. Leon van der Torre for sharing the enthusiasm about Fatio, and

David Fuenmayor and Daniel Kirchner for helpful comments.

References

[1] C. Benzmüller, X. Parent, L. van der Torre, Designing normative theories for ethical and legal

reasoning: LogiKEy framework, methodology, and tool support, Artificial Intelligence 287 (2020)

103348. doi:10.1016/j.artint.2020.103348.

[2] E. Black, N. Maudet, S. Parsons, Argumentation-based dialogue, Handbook of Formal Argumenta-

tion, Volume 2 (2021).

[3] C. Benzmüller, D. Fuenmayor, B. Lomfeld, Modelling value-oriented legal reasoning in LogiKEy,

Logics 2 (2024) 31–78. doi:10.3390/logics2010003, preprint arXiv:2006.12789.

[4] X. Parent, C. Benzmüller, Automated verification of deontic correspondences in Isabelle/HOL –

first results, in: C. Benzmüller, J. Otten (Eds.), ARQNL 2022: Automated Reasoning in Quantified

Non-Classical Logics. Proceedings of the 4th International Workshop on Automated Reasoning in

Quantified Non-Classical Logics (ARQNL 2022) affiliated with the 11th International Joint Confer-

ence on Automated Reasoning (IJCAR 2022). Haifa, Israel, August 11, 2022, volume 3326, CEUR

Workshop Proceedings, CEUR-WS.org, 2023, pp. 92–108. URL: https://ceur-ws.org/Vol-3326/.

[5] C. Benzmüller, Universal (meta-)logical reasoning: Recent successes, Science of Computer Pro-

gramming 172 (2019) 48–62. doi:10.1016/j.scico.2018.10.008.

[6] P. McBurney, S. Parsons, Locutions for argumentation in agent interaction protocols, in: R. M. van

Eijk, M.-P. Huget, F. Dignum (Eds.), Agent Communication, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005, pp. 209–225.

[7] Fipa. communicative act library specification, Standard SC00037J, 2002. Foundation for Intelligent

Physical Agents.

[8] P. McBurney, S. Parsons, Games that agents play: A formal framework for dialogues between au-

tonomous agents, J. Log. Lang. Inf. 11 (2002) 315–334. URL: https://doi.org/10.1023/A:1015586128739.

doi:10.1023/A:1015586128739.

[9] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL - A Proof Assistant for Higher-Order Logic,

volume 2283 of Lecture Notes in Computer Science, Springer, 2002.

47

http://dx.doi.org/10.1016/j.artint.2020.103348
http://dx.doi.org/10.3390/logics2010003
https://ceur-ws.org/Vol-3326/
http://dx.doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.1023/A:1015586128739
http://dx.doi.org/10.1023/A:1015586128739

