
When Epsilon meets Lambda: Extended Leśniewski’s

Ontology⋆

Andrzej Indrzejczak

Department of Logic, University of Lodz, Poland

Abstract
Leśniewski’s ontology LO is an expressive calculus of names. It provides a basis for mereology but

allows also for direct formalisation of reasoning in natural languages. Recently its elementary part was

characterised by means of the cut-free sequent calculus GO. In this paper we investigate its extended

version ELO which introduces lambda terms to represent complex descriptive names. The hierarchy of

three systems is formalised in terms of sequent calculi which satisfy cut elimination and the subformula

property.

Keywords
Leśniewski, ontology, calculus of names, sequent calculus, cut elimination

1. Introduction

Despite of the great success of standard first-order languages and their priviliged role in

automated deduction, it is often difficult to apply them in a direct and satisfactory way to

formalisation of natural languages. The following two features of natural languages are usually

discussed in this context: 1) the subject-predicate structure of atomic sentences, characteristic

not only for traditional logic but also for modern linguistics with its NP+VP model of sentences

applied in generative grammar; 2) the wide class of naming expressions which are used not

only to refer to 𝑥, but also to convey information about 𝑥, and even if they refer to something it

is not necessarily the singular reference.

No wonder that several approaches alternative to FOL (first-order logic) were proposed,

attempting to obtain a formalisation of arguments in natural languages which is closer to their

original structure. One may mention here for example, the calculi of names due to Sommers

[25], the variety of relational sylogistics of Moss and Pratt-Hartmann [21], or the logic QUARC

of Ben-Yami [2]. Even in the approaches based on the standard first-order languages one may

find several proposals related to the second feature of natural languages. Thus the notion of

name was extended to non-referring terms in free logics, or the logic of intentional objects of

Paśniczek [20], and even to general names (plural reference) in the plural logic of Oliver and

Smiley [19]. Not surprisingly, in these approaches a lot of work was devoted to the development

of theories of complex names conveying information, like definite descriptions.

One of the oldest approaches of this kind is the calculus of names called Leśniewski’s ontology

(LO) (see e.g. [24], [15] or [26]). It satisfies both features mentioned above: the subject-predicate

ARQNL 2024: Automated Reasoning in Quantified Non-Classical Logics, 1 July 2024, Nancy, France

Envelope-Open andrzej.indrzejczak@filhist.uni.lodz.pl (A. Indrzejczak)

Orcid 0000-0003-4063-1651 (A. Indrzejczak)
cc-by.pdf© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

ARQNL 2024 62 PROCEEDINGS
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:andrzej.indrzejczak@filhist.uni.lodz.pl
https://orcid.org/0000-0003-4063-1651
https://creativecommons.org/licenses/by/4.0
http://iltp.de/ARQNL-2024/


structure of atomic sentences and a wide understanding of names, including empty and general

names (like ‘Pegasus’ or ‘an emperor’). LO in the original form was introduced as a formal basis

for developing another, better known theory of Leśniewski – mereology [17]. Thus LO was

introduced as an alternative to Frege’s construction of logic, while mereology was introduced

as an alternative to set theory. LO is a theory of the binary predicate 𝜀 understood as the

formalisation of the Greek ‘esti’, hence formulae of the form 𝑠𝜀𝑡 express sentences ‘(the) 𝑠 is

(a/the) 𝑡’, and their truth conditions are expressed by means of Leśniewski’s axiom 𝐿𝐴:

∀𝑥𝑦(𝑥𝜀𝑦 ↔ ∃𝑧(𝑧𝜀𝑥) ∧ ∀𝑧(𝑧𝜀𝑥 → 𝑧𝜀𝑦) ∧ ∀𝑧𝑣(𝑧𝜀𝑥 ∧ 𝑣𝜀𝑥 → 𝑧𝜀𝑣))

It roughly says that 𝑥𝜀𝑦 holds iff 𝑥 exists, is 𝑦, and is unique. The weak form of LO, called

elementary LO (cf. [24]), may be formalised as an extension of an arbitrary axiomatic system for

first-order logic (FOL) with added 𝐿𝐴. Of course one has to remember that, in spite of the name

‘elementary’, and the fact that we refer to FOL as the basis, elementary LO is not an elementary

theory in the standard sense, since name variables represent also empty and general names.

Accordingly, quantifiers have no existential import; this role is taken up by 𝜀.

Recently the elementary LO and its extension with the variety of predicates obtained well-

behaved proof-theoretic characterisation in terms of sequent calculi GO and GOP [10]. But

there is a problem, at least from the proof-theoretic standpoint, with formalising complex names

in LO. We have briefly discussed in [10] the original approach of Leśniewski to the problem

and its deficiences. As a result of these problems both GO and GOP were restricted to simple

terms only. However, the advantages of having formal tools for dealing with complex names,

like definite descriptions, were recognised in many fields, including: proof theory [11, 14, 13],

query answering, [3], knowledge representation [1], and many other.

In this paper we focus on the problem of dealing with complex names in LO. To this aim

we introduce extended LO (ELO), with lambda terms applied to represent descriptive names.

The main idea is to keep two essential features of LO: the subject-predicate structure and the

wide notion of name. However, to represent descriptive terms we admit also the application of

relational atoms from FOL, in particular inside lambda-terms. Some way of mixing LO with

FOL was already considered by Waragai [27] but he introduced special operators for this aim,

similarly like Słupecki [24]. The present approach is simpler in the sense that, except the lambda

operator, no extra machinery is needed.

Three versions of ELO are considered, differring in the strength of involvement of complex

terms in atomic sentences, and characterised by means of sequent calculi which are cut-free

and analytic. In section 2 we describe the language and axioms of three variants of ELO, then

we focus on the problem of constructing for them well-behaved sequent calculi called GELO.

Before proving their adequacy we focus on the characterisation of identity which provides a

necessary prerequisite for further formal development. Section 5 presents the adequacy of all

variants of GELO and section 6 provides a constructive proof of cut elimination. We close the

paper with a few remarks on open problems and possible further developments.

63



2. Extended Ontology of Leśniewski

The set of logical constants of the language of all variants of ELO consists of connectives

(¬, ∧, ∨,→,↔), quantifiers (∀, ∃), two special binary predicates (𝜀, ≡) and lambda operator 𝜆.

We assume a denumerable set of 𝑛-ary relational predicate variables 𝑅𝑛, 𝑛 > 1 and name

variables divided into bound: 𝑥, 𝑦 , 𝑧, ... (possibly with subscripts), and free: 𝑎, 𝑏, 𝑐, ... (also called

parameters). Arbitrary terms are denoted as 𝑡 , 𝑠, 𝑢 (possibly with subscripts), formulae as 𝜑, 𝜓 , 𝜒,

their finite multisets as Γ, Δ, Π, Σ. 𝜑[𝑠/𝑡] denotes the result of correct substitution of 𝑡 for all

occurrences of 𝑠.

The notion of a term and formula is defined by simultaneous recursion. Terms are simple,

i.e. name variables, and complex, i.e. lambda terms of the form 𝜆𝑥𝜑, where 𝜑 is a formula. The

set of formulae is the set of atoms closed under quantification of name variables and boolean

combinations of formulae. What is specific is that there are three kinds of atoms: relational

atoms 𝑅𝑡1...𝑡𝑛, where all arguments are simple terms, i.e. variables, identities 𝑡1 ≡ 𝑡2, where

both arguments can be simple or complex, and 𝜀-atoms 𝑡1𝜀𝑡2. Similarly as in [10] we apply

for simplicity the convention of omitting 𝜀, thus writing 𝑠𝑡 instead of 𝑠𝜀𝑡; it has a deeper sense

connected with counting the complexity of terms and formulae. Roughly, the complexity of any

term or formula (𝑐(𝑡), 𝑐(𝜑)) is the number of occurrences of logical constants, except 𝜀. Thus the

complexity of relational atoms, as well as of 𝑎𝑏 is 0, whereas 𝑐(𝑎 ≡ 𝑏) = 1. However, in general

for 𝜀-atoms and identities we have 𝑐(𝑠𝑡) = 𝑐(𝑠) + 𝑐(𝑡) and 𝑐(𝑠 ≡ 𝑡) = 𝑐(𝑠) + 𝑐(𝑡) + 1.

We consider the hierarchy of three languages: weak, medium and strong, depending on what

kind of terms are admitted as arguments of 𝜀-atoms 𝑡1𝜀𝑡2:

1. 𝐿𝑤: 𝑡1 simple, 𝑡2 arbitrary;

2. 𝐿𝑚: additionally 𝜀-atoms with both arguments complex;

3. 𝐿𝑠: additionally 𝜀-atoms with 𝑡1 complex and 𝑡2 simple.

So only 𝐿𝑠 admits all possible combinations of terms, as in identities.

Note that in the setting of ELO, the axiom 𝐿𝐴 covers in fact four schemata:

𝐿𝐴1 𝑎𝑏 ↔ ∃𝑧(𝑧𝑎) ∧ ∀𝑧(𝑧𝑎 → 𝑧𝑏) ∧ ∀𝑧𝑣(𝑧𝑎 ∧ 𝑣𝑎 → 𝑧𝑣):

𝐿𝐴2 𝑎𝜆𝑥𝜓 ↔ ∃𝑧(𝑧𝑎) ∧ ∀𝑧(𝑧𝑎 → 𝑧𝜆𝑥𝜓) ∧ ∀𝑧𝑣(𝑧𝑎 ∧ 𝑣𝑎 → 𝑧𝑣);

𝐿𝐴3 𝜆𝑥𝜑𝜆𝑥𝜓 ↔ ∃𝑧(𝑧𝜆𝑥𝜑) ∧ ∀𝑧(𝑧𝜆𝑥𝜑 → 𝑧𝜆𝑥𝜓) ∧ ∀𝑧𝑣(𝑧𝜆𝑥𝜑 ∧ 𝑣𝜆𝑥𝜑 → 𝑧𝑣);

𝐿𝐴4 𝜆𝑥𝜑𝑏 ↔ ∃𝑧(𝑧𝜆𝑥𝜑) ∧ ∀𝑧(𝑧𝜆𝑥𝜑 → 𝑧𝑏) ∧ ∀𝑧𝑣(𝑧𝜆𝑥𝜑 ∧ 𝑣𝜆𝑥𝜑 → 𝑧𝑣).

They form a hierarchy of the commitment of complex terms in forming atoms of ELO,

representing different strength of expression. Moreover, in the sequent system, they will be

dealt with different kinds of rules. Accordingly, we will be talking about three variants of ELO

formalised in respective languages:

1. weak ELO𝑤 in 𝐿𝑤 satisfying 𝐿𝐴1, 𝐿𝐴2;

2. medium ELO𝑚 in 𝐿𝑚 satisfying 𝐿𝐴1, 𝐿𝐴2, 𝐿𝐴3;

3. strong ELO𝑠 in 𝐿𝑠 satisfying 𝐿𝐴1, 𝐿𝐴2, 𝐿𝐴3, 𝐿𝐴4.

64



However, even ELO𝑠 is in a sense too weak for real applications to the analysis of reasoning

in natural languages. For example, we are not able to demonstrate the validity of such simple

argument as ‘Ann is the oldest daughter of Betty. Therefore, she is Betty’s daughter.’ It may be

formalised as 𝑎𝜆𝑥(𝐷𝑎𝑏 ∧ ∀𝑦(𝐷𝑦𝑏 → 𝑂𝑎𝑦)) / 𝑎𝜆𝑥𝐷𝑎𝑏 but to derive the conclusion we need some

ways of unfolding the content of lambda term. To resolve this problem we introduce a kind of

𝛽-conversion (𝐵𝐶) of the form:

𝑎𝜆𝑥𝜑 ↔ 𝑎𝑎 ∧ 𝜑[𝑥/𝑎]

where 𝑎𝑎 is added to restrict 𝑎 to individual names. Similar principles were considered by

Waragai [27] and Słupecki [24] for their special operators for making complex terms.

Finally, mainly for technical reasons, we introduce as the primitive notion the predicate of

strong identity ≡ axiomatised by the following equivalence 𝑆𝐼:

𝑡 ≡ 𝑠 ↔ ∀𝑥(𝑥𝑡 ↔ 𝑥𝑠)

Summing up, we assume that in each variant of ELO we have 𝐵𝐶 and 𝑆𝐼 as axioms added

to FOL, and suitable forms of 𝐿𝐴, namely: 𝐿𝐴1, 𝐿𝐴2 in LO𝑤, 𝐿𝐴1, 𝐿𝐴2, 𝐿𝐴3 in LO𝑚, and

𝐿𝐴1, 𝐿𝐴2, 𝐿𝐴3, 𝐿𝐴4 in LO𝑠.

3. Sequent Calculi GELO

All variants of ELO will be characterised in terms of sequent calculi called GELO. First we

introduce the auxiliary calculus GOI which is the subsystem of the modular extension of GO

called GOP (GO with predicates) from [10]. It consists of the rules defined on sequents Γ ⇒ Δ

and specified in Fig. 1. Formulae displayed in the schemata are active, the remaining ones are

parametric, or form a context. In particular, all active formulae in the premisses are called side

formulae, and the one in the conclusion is the principal formula of this rule application. Proofs

are finite trees with nodes labelled by sequents. The height of a proof 𝐷 of Γ ⇒ Δ is defined as

the number of nodes of the longest branch in 𝐷. ⊢𝑘 Γ ⇒ Δ means that Γ ⇒ Δ has a proof of the

height at most 𝑘. In general, when presenting proofs, we omit structural rules to save space.

Incidentally we use underlining for side formulae and bold type letters for principal formulae

of some steps to facilitate reading of proofs.

GOI is cut-free, satisfies the interpolation theorem and 𝐿𝐴1 (the essential rules are

(𝑅), (𝑇 ), (𝑆), (𝐸); see [10, 12]). We assume for further investigations that GOI is the core calculus

for obtaining three variants of GELO in their respective languages. But GOI, even if formulated

in any of the languages 𝐿𝑤, 𝐿𝑚, 𝐿𝑠, i.e. with added relational atoms and lambda terms, is too

weak to obtain any specific results related to complex terms. Moreover, with quantifier rules

(∀ ⇒), (⇒ ∃) admitting only parameters as instantiated terms it is incomplete. We could admit

arbitrary term 𝑡 instead of parameter 𝑏 in these rules, like we did for (≡⇒), (⇒≡)which were also

formulated for parameters only in [10], but it destroys the subformula property. Fortunatelly,

much better solution is possible.

To obtain GELO𝑤 we have to add to GOI (in 𝐿𝑤) the rules from Fig. 2. The most direct way to

obtain the system capable of proving 𝐿𝐴2 is to strengthen the rules (𝑅), (𝑇 ), (𝑆), (𝐸) in the sense

65



(𝐶𝑢𝑡)
Γ ⇒ Δ, 𝜑 𝜑, Π ⇒ Σ

Γ, Π ⇒ Δ, Σ
(𝐴𝑋) 𝜑 ⇒ 𝜑

(¬⇒)
Γ ⇒ Δ, 𝜑

¬𝜑, Γ ⇒ Δ
(⇒¬)

𝜑, Γ ⇒ Δ

Γ ⇒ Δ, ¬𝜑
(𝑊⇒)

Γ ⇒ Δ

𝜑, Γ ⇒ Δ

(⇒∧)
Γ ⇒ Δ, 𝜑 Γ ⇒ Δ, 𝜓

Γ ⇒ Δ, 𝜑 ∧ 𝜓
(∧⇒)

𝜑, 𝜓 , Γ ⇒ Δ

𝜑 ∧ 𝜓 , Γ ⇒ Δ
(⇒𝑊)

Γ ⇒ Δ

Γ ⇒ Δ, 𝜑

(∨⇒)
𝜑, Γ ⇒ Δ 𝜓 , Γ ⇒ Δ

𝜑 ∨ 𝜓 , Γ ⇒ Δ
(⇒∨)

Γ ⇒ Δ, 𝜑, 𝜓

Γ ⇒ Δ, 𝜑 ∨ 𝜓
(𝐶⇒)

𝜑, 𝜑, Γ ⇒ Δ

𝜑, Γ ⇒ Δ

(→⇒)
Γ ⇒ Δ, 𝜑 𝜓 , Γ ⇒ Δ

𝜑 → 𝜓, Γ ⇒ Δ
(⇒→)

𝜑, Γ ⇒ Δ, 𝜓

Γ ⇒ Δ, 𝜑 → 𝜓
(⇒𝐶)

Γ ⇒ Δ, 𝜑, 𝜑

Γ ⇒ Δ, 𝜑

(↔⇒)
Γ⇒ Δ, 𝜑, 𝜓 𝜑, 𝜓 , Γ⇒ Δ

𝜑↔𝜓, Γ⇒ Δ
(∀⇒)

𝜑[𝑥/𝑏], Γ⇒ Δ

∀𝑥𝜑, Γ⇒ Δ
(⇒∃)

Γ⇒ Δ, 𝜑[𝑥/𝑏]

Γ⇒ Δ, ∃𝑥𝜑

(⇒↔)
𝜑, Γ⇒ Δ, 𝜓 𝜓 , Γ ⇒ Δ, 𝜑

Γ⇒ Δ, 𝜑↔𝜓
(⇒∀)

Γ⇒ Δ, 𝜑[𝑥/𝑎]

Γ⇒ Δ, ∀𝑥𝜑
(∃⇒)

𝜑[𝑥/𝑎], Γ⇒ Δ

∃𝑥𝜑, Γ⇒ Δ

(≡⇒)
Γ⇒ Δ, 𝑏𝑡, 𝑏𝑠 𝑏𝑡, 𝑏𝑠, Γ⇒ Δ

𝑡 ≡ 𝑠, Γ⇒ Δ
(⇒≡)

𝑎𝑡, Γ⇒ Δ, 𝑎𝑠 𝑎𝑠, Γ ⇒ Δ, 𝑎𝑡

Γ⇒ Δ, 𝑡 ≡ 𝑠

(𝑅)
𝑏𝑏, Γ⇒ Δ

𝑏𝑐, Γ⇒ Δ
(𝑇 )

𝑏𝑑, Γ⇒ Δ

𝑏𝑐, 𝑐𝑑, Γ⇒ Δ
(𝑆)

𝑐𝑏, Γ⇒ Δ

𝑏𝑐, 𝑐𝑐, Γ⇒ Δ

(𝐸)
𝑎𝑏, Γ⇒ Δ, 𝑎𝑐 𝑎𝑐, Γ⇒ Δ, 𝑎𝑏 𝑐𝑑, Γ ⇒ Δ

𝑏𝑑, Γ ⇒ Δ

where 𝑎 is a fresh parameter (eigenvariable), not present in Γ, Δ and 𝜑, whereas 𝑏, 𝑐, 𝑑 are arbitrary
parameters, 𝑡 , 𝑠 are arbitrary terms.

Figure 1: Calculus GOI

(𝛽 ⇒)
𝜑[𝑥/𝑏], Γ⇒ Δ

𝑏𝜆𝑥𝜑, Γ⇒ Δ
(⇒ 𝛽)

Γ⇒ Δ, 𝑏𝑏 Γ⇒ Δ, 𝜑[𝑥/𝑏]

Γ⇒ Δ, 𝑏𝜆𝑥𝜑

(≡⇒ 𝐸)
𝑎 ≡ 𝑡, Γ⇒ Δ

Γ⇒ Δ
(⇒≡ 𝐸)

Γ⇒ Δ, 𝑏 ≡ 𝑐 Γ⇒ Δ, 𝜑[𝑥/𝑐]

Γ⇒ Δ, 𝜑[𝑥/𝑏]

where 𝑎 is a fresh parameter (eigenvariable), 𝑏, 𝑐 are arbitrary parameters, 𝑡 ∈ 𝑡𝑒𝑟𝑚(Γ ∪ Δ) [the set of
complex terms of Γ ∪ Δ] in (≡⇒ 𝐸), and 𝜑 in (⇒≡ 𝐸) is a relational atom.

Figure 2: The rules for GELO𝑤

of admitting atoms of the form 𝑏𝜆𝑥𝜑. The identical proofs as those provided in [10] would do the

job. But the most direct does not mean the best. If any of (𝑅), (𝑇 ), (𝑆), (𝐸) admits 𝜀-atoms 𝑏𝜆𝑥𝜑

it is possible that cut formula of this form is introduced in the left premiss of (𝐶𝑢𝑡) by (⇒ 𝛽) and

in the right premiss by any of (𝑅), (𝑇 ), (𝑆), (𝐸). In such situation it is not possible to eliminate

cut. It is worth emphasizing the important fact: we don’t need to modify (𝑅), (𝑇 ), (𝑆), (𝐸) to

obtain 𝐿𝐴2; the rules which apparently characterise only 𝐿𝐴1 are sufficient for this aim (it will

be shown in section 5), and it is crucial for proving cut elimination in section 6.

(⇒ 𝛽) and (𝛽 ⇒) adequately characterise our principle BC. Two sequents giving by (⇒↔)

66



the effect of BC are easily provable; on the other hand, two 𝛽-rules are easily derivable if such

sequents are used as additional axioms.

(≡⇒ 𝐸) is not much related to the characterisation of ≡ since it is adequately expressed by

(⇒≡), (≡⇒), which may be shown in a similar way as in the case of BC versus (⇒ 𝛽), (𝛽 ⇒).

This rule rather uses ≡ as a vehicle for introducing new parameters representing complex terms.

It makes possible to use in our calculi (∀ ⇒), (⇒ ∃) restricted to arbitrary 𝑏 instead of 𝑡, in the

way we already exploited for free logics [7] and the Russelian theory of descriptions [11]. As

a result, these restricted quantifier rules are sufficiently strong to obtain everything which is

provable by means of unrestricted rules admitting arbitrary terms as instances of variables.

Formally it may be shown by proving derivability of stronger variants. Here is the case of

unrestricted (∀ ⇒):

𝑎 ≡ 𝑡, 𝜑[𝑥/𝑎] ⇒ 𝜑[𝑥/𝑡]
(∀ ⇒)

𝑎 ≡ 𝑡, ∀𝑥𝜑 ⇒ 𝜑[𝑥/𝑡]
(≡⇒ 𝐸)

∀𝑥𝜑 ⇒ 𝜑[𝑥/𝑡] 𝜑[𝑥/𝑡], Γ ⇒ Δ
(𝐶𝑢𝑡)

∀𝑥𝜑, Γ ⇒ Δ

where the left top sequent is a provable instance of Leibniz Law 𝐿𝐿 (see section 4). In a similar

way we prove derivability of unrestricted (⇒ ∃). On the other hand, (≡⇒ 𝐸) is easily derivable

in the calculus with unrestricted (⇒ ∃):

𝑎𝑡 ⇒ 𝑎𝑡 𝑎𝑡 ⇒ 𝑎𝑡(⇒≡)
⇒ 𝑡 ≡ 𝑡(⇒ ∃)

⇒ ∃𝑥(𝑥 ≡ 𝑡)

𝑎 ≡ 𝑡, Γ ⇒ Δ
(∃ ⇒)

∃𝑥(𝑥 ≡ 𝑡), Γ ⇒ Δ
(𝐶𝑢𝑡)

Γ ⇒ Δ

Since (⇒≡), (≡⇒) deal only with 𝜀-atoms, (⇒≡ 𝐸) is added to extend the applicability of ≡

to relational atoms. In the effect we get a calculus where ≡ can express Leibniz law (𝐿𝐿) in the

unrestricted way. There are several possible rules to obtain this effect (see [8]) and one may

think that, for instance, the popular solution due to Negri and von Plato [18] would be more

convenient. However, with other kind of rules we face the same problem of the failure of cut

elimination as indicated above, in the context of discussion on modified (𝑅), (𝑇 ), (𝑆), (𝐸) versus

(⇒ 𝛽). To avoid such problems and to allow one to prove cut elimination, this form of the extra

rule for ≡ is optimal.

To obtain GELO𝑚 we add the rules from Fig. 3 to GELO𝑤 formulated in 𝐿𝑚. These rules

are similar to the rules introduced in [13] to characterise the Russellian theory of definite

descriptions with lambda terms. 𝐿𝐴 is very similar to the Russellian schema of elimination for

descriptions, hence this solution works here as well. Eventually to obtain GELO𝑠 we change the

language for 𝐿𝑠 and relax the proviso concerning 𝑡 in rules from Fig. 3: 𝑡 may be an arbitrary

term.

Summing up the calculi for three versions of ELO are constructed as follows:

• GELO𝑤 is obtained by addition of the rules from Fig. 2 to GOI in 𝐿𝑤;

• GELO𝑚 is obtained by addition of the rules from Fig. 3 to GELO𝑤 in 𝐿𝑚;

• GELO𝑠 is obtained by relaxing the condition on 𝑡 in rules from Fig. 3 in 𝐿𝑠.

67



(𝜆 ⇒ 1)
𝑎𝜆𝑥𝜑, 𝑎𝑡, Γ⇒ Δ

𝜆𝑥𝜑𝑡, Γ⇒ Δ
(𝜆 ⇒ 2)

Γ⇒ Δ, 𝑐𝜆𝑥𝜑 Γ⇒ Δ, 𝑑𝜆𝑥𝜑 𝑐𝑑, Γ ⇒ Δ

𝜆𝑥𝜑𝑡, Γ ⇒ Δ

(⇒ 𝜆)
Γ⇒ Δ, 𝑐𝜆𝑥𝜑 Γ⇒ Δ, 𝑐𝑡 𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑, Γ ⇒ Δ, 𝑎𝑏

Γ ⇒ Δ, 𝜆𝑥𝜑𝑡

where 𝑎, 𝑏 are new parameters (eigenvariable), 𝑐, 𝑑 are arbitrary, 𝑡 is complex.

Figure 3: The rules for GELO𝑚

We finish this section with an example of a cut-free proof of the sequent which will be useful

in further considerations:

Lemma 1. The following sequent is cut-free provable in GELO𝑤 and all its extensions:

𝑏𝜆𝑥𝜑 ⇒ 𝑏𝑐, 𝑏𝜆𝑥𝜑
𝑎𝑐 ⇒ 𝑎𝑐 (𝑇 )

𝑏𝑐, 𝑏𝜆𝑥𝜑, 𝑎𝑏 ⇒ 𝑎𝑐
(≡⇒)

𝑐 ≡ 𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑, 𝑎𝑏 ⇒ 𝑎𝑐, 𝑎𝜆𝑥𝜑 𝑎𝑐, 𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑
(≡⇒)

𝑐 ≡ 𝜆𝑥𝜑, 𝑎𝑏, 𝑏𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑
(≡⇒ 𝐸)

𝑎𝑏, 𝑏𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑

4. Identity

Before we show the adequacy of our calculi we need to prove some properties of ≡, in particular

the provability of the full form of 𝐿𝐿 (Leibniz Law).

Lemma 2. The following sequents are cut-free provable in all variants of GELO for arbitrary 𝑠, 𝑡 , 𝑢:

1. ⇒ 𝑡 ≡ 𝑡

2. 𝑠 ≡ 𝑡 ⇒ 𝑡 ≡ 𝑠

3. 𝑠 ≡ 𝑡, 𝑠 ≡ 𝑢 ⇒ 𝑡 ≡ 𝑢

4. 𝑠 ≡ 𝑡, 𝑢 ≡ 𝑠 ⇒ 𝑢 ≡ 𝑡

5. 𝑡 ≡ 𝑠, 𝑠 ≡ 𝑢 ⇒ 𝑡 ≡ 𝑢

6. 𝑡 ≡ 𝑠, 𝑢 ≡ 𝑠 ⇒ 𝑢 ≡ 𝑡

Proof. Case 1 is trivial, by one application of (⇒≡). Case 2:

𝑎𝑡 ⇒ 𝑎𝑠, 𝑎𝑡 𝑎𝑠, 𝑎𝑡 ⇒ 𝑎𝑠
(≡⇒)

𝑎𝑡, 𝑠 ≡ 𝑡 ⇒ 𝑎𝑠
𝑎𝑠 ⇒ 𝑎𝑠, 𝑎𝑡 𝑎𝑠, 𝑎𝑡 ⇒ 𝑎𝑡

(≡⇒)
𝑎𝑠, 𝑠 ≡ 𝑡 ⇒ 𝑎𝑡

(⇒≡)
𝑠 ≡ 𝑡 ⇒ 𝑡 ≡ 𝑠

Case 3:

𝑎𝑡 ⇒ 𝑎𝑠, 𝑎𝑡
𝑎𝑠 ⇒ 𝑎𝑠, 𝑎𝑢 𝑎𝑠, 𝑎𝑢 ⇒ 𝑎𝑢

(≡⇒)
𝑎𝑠, 𝑎𝑡, 𝑠 ≡ 𝑢 ⇒ 𝑎𝑢

(≡⇒)
𝑠 ≡ 𝑡, 𝑠 ≡ 𝑢, 𝑎𝑡 ⇒ 𝑎𝑢 𝑠 ≡ 𝑡, 𝑠 ≡ 𝑢, 𝑎𝑢 ⇒ 𝑎𝑡

(⇒≡)
𝑠 ≡ 𝑡, 𝑠 ≡ 𝑢 ⇒ 𝑡 ≡ 𝑢

68



where the rightmost sequent is provable in symmetric way.

Case 4: For 𝑠 ≡ 𝑡, 𝑢 ≡ 𝑠 ⇒ 𝑢 ≡ 𝑡 the proof is similar.

Cases 5 and 6 are provable in the same way as 3 and 4, since the only difference is that the

respective applications of (≡⇒) to 𝑡 ≡ 𝑠 give 𝑎𝑡, 𝑎𝑠 instead of 𝑎𝑠, 𝑎𝑡 in premisses and the order

does not matter.

Now we are in the position to prove that 𝐿𝐿 holds for all variants of GELO.

Lemma 3. GELO𝑤 ⊢ 𝑠 ≡ 𝑡, 𝜑[𝑥/𝑠] ⇒ 𝜑[𝑥/𝑡]

Proof. The proof is by induction on the complexity of 𝜑. In the basis we must show that it holds

for 𝜑 atomic. Since, the previous lemma guarantees the result for identities, and (⇒≡ 𝐸) for

relational atoms, it remains to show that the following cases hold:

1. 𝑠 ≡ 𝑡, 𝑢𝑠 ⇒ 𝑢𝑡

2. 𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

3. 𝑡 ≡ 𝑠, 𝑢𝑠 ⇒ 𝑢𝑡

4. 𝑡 ≡ 𝑠, 𝑠𝑢 ⇒ 𝑡𝑢

Case 1: 𝑢 must be simple (the character of 𝑠, 𝑡 does not matter):

𝑢𝑠 ⇒ 𝑢𝑠, 𝑢𝑡 𝑢𝑠, 𝑢𝑡 ⇒ 𝑢𝑡
(≡⇒)

𝑠 ≡ 𝑡, 𝑢𝑠 ⇒ 𝑢𝑡

Case 2: 𝑠, 𝑡 are simple; let 𝑢 be simple (subcase 2.1):

𝑎𝑠 ⇒ 𝑎𝑠, 𝑎𝑡 𝑎𝑠, 𝑎𝑡 ⇒ 𝑎𝑡
(≡⇒)

𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡
𝑎𝑡 ⇒ 𝑎𝑠, 𝑎𝑡 𝑎𝑠, 𝑎𝑡 ⇒ 𝑎𝑠

(≡⇒)
𝑠 ≡ 𝑡, 𝑎𝑡 ⇒ 𝑎𝑠 𝑡𝑢 ⇒ 𝑡𝑢

(𝐸)
𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

Subcase 2.2: let 𝑢 be complex:

𝑠𝑢 ⇒ 𝑠𝑐, 𝑠𝑢
𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡 𝑠 ≡ 𝑡, 𝑎𝑡 ⇒ 𝑎𝑠

𝑡𝑐 ⇒ 𝑡𝑐, 𝑡𝑢 𝑡𝑐, 𝑡𝑢 ⇒ 𝑡𝑢
(≡⇒)

𝑡𝑐, 𝑠𝑢, 𝑐 ≡ 𝑢 ⇒ 𝑡𝑢
(𝐸)

sc, 𝑠𝑢, 𝑐 ≡ 𝑢, 𝑠 ≡ 𝑡 ⇒ 𝑡𝑢
(≡⇒)

𝑐 ≡ 𝑢, 𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢
(≡⇒ 𝐸)

𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

where sequent 𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡 is the case 1, already proven, and 𝑠 ≡ 𝑡, 𝑎𝑡 ⇒ 𝑎𝑠 is the case 3, which

is provable exactly as case 1, according to the observation made by the end of the proof of

lemma 2. The same applies to case 4 which is proved in the same way as case 2.

The induction step for non-atomic cases is provable as in FOL.

Lemma 4. GELO𝑚 ⊢ 𝑠 ≡ 𝑡, 𝜑[𝑥/𝑠] ⇒ 𝜑[𝑥/𝑡]

Proof. We need to demonstrate the same cases as in the previous lemma but now for atoms

which have complex terms as both arguments.

Case 1 with all terms complex:

69



𝑎𝑢 ⇒ 𝑎𝑢 𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡

𝑏𝑢 ⇒ 𝑏𝑢 𝑐𝑢 ⇒ 𝑐𝑢 𝑏𝑐 ⇒ 𝑏𝑐
(𝜆 ⇒ 2)

us, 𝑏𝑢, 𝑐𝑢 ⇒ 𝑏𝑐
(⇒ 𝜆)

𝑠 ≡ 𝑡, 𝑎𝑢, 𝑎𝑠, 𝑢𝑠 ⇒ ut
(𝜆 ⇒ 1)

𝑠 ≡ 𝑡, 𝑢𝑠 ⇒ 𝑢𝑡

where sequent 𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡 is the case 1 of the previous lemma.

Case 2. This time what matters is the character of 𝑠 and 𝑡 with 𝑢 fixed complex. Since the

case of 𝑠, 𝑡 both simple was proven in the preceding lemma, there are three subcases:

2.1. all terms complex:

𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡 𝑎𝑢 ⇒ 𝑎𝑢 𝑠 ≡ 𝑡, 𝑠𝑢, 𝑏𝑡, 𝑐𝑡 ⇒ 𝑏𝑐
(⇒ 𝜆)

𝑠 ≡ 𝑡, 𝑎𝑠, 𝑎𝑢, 𝑠𝑢 ⇒ tu
(𝜆 ⇒ 1)

𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

where 𝑠 ≡ 𝑡, 𝑎𝑠 ⇒ 𝑎𝑡 is the case 1 of the previous lemma and 𝑠 ≡ 𝑡, 𝑠𝑢, 𝑏𝑡, 𝑐𝑡 ⇒ 𝑏𝑐 is proven as

follows:

𝑏𝑡 ⇒ 𝑏𝑠, 𝑏𝑡

𝑐𝑡 ⇒ 𝑐𝑠, 𝑐𝑡

𝑏𝑠 ⇒ 𝑏𝑠 𝑐𝑠 ⇒ 𝑐𝑠 𝑏𝑐 ⇒ 𝑏𝑐
(𝜆 ⇒ 2)

𝑐𝑠, 𝑐𝑡 , su, 𝑏𝑠 ⇒ 𝑏𝑐
(≡⇒)

𝑏𝑠, 𝑏𝑡, 𝑠 ≡ 𝑡, 𝑠𝑢, 𝑐𝑡 ⇒ 𝑏𝑐
(≡⇒)

𝑠 ≡ 𝑡, 𝑠𝑢, 𝑏𝑡, 𝑐𝑡 ⇒ 𝑏𝑐

2.2: 𝑠 simple, 𝑡 complex:

𝑠𝑢 ⇒ 𝑠𝑎, 𝑠𝑢

𝑠𝑠 ⇒ 𝑠𝑠, 𝑠𝑡 𝑠𝑠, 𝑠𝑡 ⇒ 𝑠𝑡
(≡⇒)

𝑠 ≡ 𝑡, 𝑠𝑠 ⇒ 𝑠𝑡 𝑠𝑢 ⇒ 𝑠𝑢 𝑠 ≡ 𝑡, 𝑠𝑠, 𝑏𝑡, 𝑐𝑡 ⇒ 𝑏𝑐
(⇒ 𝜆)

𝑠 ≡ 𝑡, 𝑠𝑠, 𝑠𝑢 ⇒ tu
(𝑅)

sa, 𝑠𝑢, 𝑠 ≡ 𝑡 ⇒ 𝑡𝑢
(≡⇒)

𝑎 ≡ 𝑢, 𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢
(≡⇒ 𝐸)

𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

where the rightmost sequent is proved as follows:

𝑏𝑡 ⇒ 𝑏𝑠, 𝑏𝑡

𝑐𝑡 ⇒ 𝑐𝑠, 𝑐𝑡

𝑏𝑐 ⇒ 𝑏𝑐 (𝑇 )
𝑠𝑐, 𝑏𝑠 ⇒ 𝑏𝑐

(𝑆)
cs, 𝑐𝑡 , ss, 𝑏𝑠 ⇒ 𝑏𝑐

(≡⇒)
𝑏𝑠, 𝑏𝑡, 𝑠 ≡ 𝑡, 𝑠𝑠, 𝑐𝑡 ⇒ 𝑏𝑐

(≡⇒)
𝑠 ≡ 𝑡, 𝑠𝑠, 𝑏𝑡 , 𝑐𝑡 ⇒ 𝑏𝑐

2.3. 𝑠 complex, 𝑡 simple:

𝑎𝑢 ⇒ 𝑎𝑐, 𝑎𝑢
𝐷1 𝐷2

𝑡𝑐 ⇒ 𝑡𝑐, 𝑡𝑢 𝑡𝑐, 𝑡𝑢 ⇒ 𝑡𝑢
(≡⇒)

𝑡𝑐, 𝑐 ≡ 𝑢 ⇒ 𝑡𝑢
(𝐸)

ac, 𝑎𝑢, 𝑐 ≡ 𝑢, 𝑠 ≡ 𝑡, 𝑎𝑠, 𝑠𝑢 ⇒ 𝑡𝑢
(≡⇒)

𝑐 ≡ 𝑢, 𝑠 ≡ 𝑡, 𝑎𝑠, 𝑎𝑢, 𝑠𝑢 ⇒ 𝑡𝑢
(≡⇒ 𝐸)

𝑠 ≡ 𝑡, 𝑎𝑠, 𝑎𝑢, 𝑠𝑢 ⇒ 𝑡𝑢
(𝜆 ⇒ 1)

𝑠 ≡ 𝑡, 𝑠𝑢 ⇒ 𝑡𝑢

where 𝐷1 is:

70



𝑏𝑡 ⇒ 𝑏𝑠, 𝑏𝑡

𝑏𝑠 ⇒ 𝑏𝑠 𝑎𝑠 ⇒ 𝑎𝑠 𝑏𝑎 ⇒ 𝑏𝑎
(𝜆 ⇒ 2)

𝑏𝑠, 𝑏𝑡, 𝑎𝑠, su ⇒ 𝑏𝑎
(≡⇒)

𝑠 ≡ 𝑡, 𝑎𝑠, 𝑠𝑢, 𝑏𝑡 ⇒ 𝑏𝑎

and 𝐷2 is:

𝑏𝑎, 𝑎𝑠 ⇒ 𝑏𝑠
(⇒ 𝑊)

𝑎𝑠, 𝑏𝑎 ⇒ 𝑏𝑠, 𝑏𝑡 𝑏𝑠, 𝑏𝑡 ⇒ 𝑏𝑡
(≡⇒)

𝑠 ≡ 𝑡, 𝑎𝑠, 𝑏𝑎 ⇒ 𝑏𝑡

where 𝑏𝑎, 𝑎𝑠 ⇒ 𝑏𝑠 is a generalised transitivity cut-free provable by lemma 1.

Proving 𝐿𝐿 for GELO𝑠, i.e. for the cases 𝜆𝑥𝜑𝑏, is in some cases identical and in some other

simpler than in the previous lemma, hence we omit the proof.

5. Adequacy of GELO

To show that all variants of GELO adequately characterise respective forms of ELO we demon-

strate that different variants of 𝐿𝐴 are provable and that these rules are derivable if we use

respective forms of 𝐿𝐴 as additional axioms. 𝐿𝐴1 was proved in [10] by means of the rules

(𝑅), (𝑆), (𝑇 ), (𝐸), which were in turn shown derivable in the presence of 𝐿𝐴1. These proofs are

correct in GELO𝑤 so we only need to prove 𝐿𝐴2:

Lemma 5. 𝑎𝜆𝑥𝜓 ↔ ∃𝑥(𝑥𝑎) ∧ ∀𝑥(𝑥𝑎 → 𝑥𝜆𝑥𝜓) ∧ ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) is provable in GELO𝑤.

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝑏, 𝑎𝜆𝑥𝜑

𝑎𝑎 ⇒ 𝑎𝑎 (⇒ ∃)
𝑎𝑎 ⇒ ∃𝑥(𝑥𝑎)

(𝑅)
𝑎𝑏, 𝑎𝜆𝑥𝜑 ⇒ ∃𝑥(𝑥𝑎)

(≡⇒)
𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑 ⇒ ∃𝑥(𝑥𝑎)

(≡⇒ 𝐸)
𝑎𝜆𝑥𝜑 ⇒ ∃𝑥(𝑥𝑎)

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝑐, 𝑎𝜆𝑥𝜑
𝑏𝑐 ⇒ 𝑏𝑐 (𝑇 )

𝑎𝑐, 𝑎𝜆𝑥𝜑, 𝑏𝑎 ⇒ 𝑏𝑐
(≡⇒)

𝑐 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑏𝑎 ⇒ 𝑏𝑐, 𝑏𝜆𝑥𝜑 𝑏𝑐, 𝑏𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑
(≡⇒)

𝑐 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑏𝑎 ⇒ 𝑏𝜆𝑥𝜑
(≡⇒ 𝐸)

𝑎𝜆𝑥𝜑, 𝑏𝑎 ⇒ 𝑏𝜆𝑥𝜑
(⇒→)

𝑎𝜆𝑥𝜑 ⇒ 𝑏𝑎 → 𝑏𝜆𝑥𝜑
(⇒ ∀)

𝑎𝜆𝑥𝜑 ⇒ ∀𝑥(𝑥𝑎 → 𝑥𝜆𝑥𝜑)

71



𝑎𝜆𝑥𝜑 ⇒ 𝑎𝑏, 𝑎𝜆𝑥𝜑

𝑐𝑑 ⇒ 𝑐𝑑 (𝑇 )
𝑐𝑎, 𝑎𝑑 ⇒ 𝑐𝑑

(𝑆)
𝑎𝑎, 𝑐𝑎, 𝑑𝑎 ⇒ 𝑐𝑑

(𝑅)
𝑎𝑏, 𝑎𝜆𝑥𝜑, 𝑐𝑎, 𝑑𝑎 ⇒ 𝑐𝑑

(≡⇒)
𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑐𝑎, 𝑑𝑎 ⇒ 𝑐𝑑

(∧ ⇒)
𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑐𝑎 ∧ 𝑑𝑎 ⇒ 𝑐𝑑

(⇒→)
𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑 ⇒ 𝑐𝑎 ∧ 𝑑𝑎 → 𝑐𝑑

(⇒ ∀)
𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑 ⇒ ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦)

(≡⇒ 𝐸)
𝑎𝜆𝑥𝜑 ⇒ ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦)

yield together by (⇒ ∧) and (⇒→) the left-right implication of 𝐿𝐴2. The other part is proved

as follows:

𝑏𝑎 ⇒ 𝑏𝑎

𝑏𝜆𝑥𝜑 ⇒ 𝑏𝑐, 𝑏𝜆𝑥𝜑 𝐷
(≡⇒)

𝑐 ≡ 𝜆𝑥𝜑, 𝑏𝑎, 𝑏𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑
(≡⇒ 𝐸)

𝑏𝑎, 𝑏𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑
(→⇒)

𝑏𝑎, 𝑏𝑎 → 𝑏𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑
(∀ ⇒)

𝑏𝑎, ∀𝑥(𝑥𝑎 → 𝑥𝜆𝑥𝜑), ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑
(∃ ⇒)

∃𝑥(𝑥𝑎), ∀𝑥(𝑥𝑎 → 𝑥𝜆𝑥𝜑), ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑

where 𝐷 is:

𝐷1

𝑑𝑎 ⇒ 𝑑𝑎
(𝑇 )

𝑏𝑎, 𝑑𝑏 ⇒ 𝑑𝑎

𝑎𝑐 ⇒ 𝑎𝑐, 𝑎𝜆𝑥𝜑 𝑎𝑐, 𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑
(≡⇒)

𝑎𝑐, 𝑐 ≡ 𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑
(𝐸)

bc, 𝑏𝜆𝑥𝜑, 𝑐 ≡ 𝜆𝑥𝜑, 𝑏𝑎, ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑

where 𝐷1 is:

𝑏𝑎 ⇒ 𝑏𝑎 𝑑𝑎 ⇒ 𝑑𝑎(⇒ ∧)
𝑏𝑎, 𝑑𝑎 ⇒ 𝑑𝑎 ∧ 𝑏𝑎 𝑑𝑏 ⇒ 𝑑𝑏

(→⇒)
𝑏𝑎, 𝑑𝑎, 𝑑𝑎 ∧ 𝑏𝑎 → 𝑑𝑏 ⇒ 𝑑𝑏

(∀ ⇒)
𝑏𝑎, ∀𝑥𝑦(𝑥𝑎 ∧ 𝑦𝑎 → 𝑥𝑦), 𝑑𝑎 ⇒ 𝑑𝑏

As we already noticed it is quite an interesting fact that all that is needed to prove this axiom

beyond rules from Fig. 1 (which were sufficient for proving 𝐿𝐴1) are the rules for ≡; even the

rules for 𝛽-conversion are not required.

The adequacy of GELO𝑚 (and GELO𝑠 too, as the only differences concern the character of 𝑡)

follows from the next two lemmata:

Lemma 6. The rules of Fig. 3 are derivable by means of the rules from Fig. 1 and LA3 used as an

additional axiomatic sequent.

Proof. For (𝜆 ⇒ 1):

72



𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑎𝑡 ⇒ 𝑎𝑡
(→⇒)

𝑎𝜆𝑥𝜑 → 𝑎𝑡, 𝑎𝜆𝑥𝜑 ⇒ 𝑎𝑡 𝑎𝜆𝑥𝜑, 𝑎𝑡, Γ ⇒ Δ
(𝐶𝑢𝑡)

𝑎𝜆𝑥𝜑 → 𝑎𝑡, 𝑎𝜆𝑥𝜑, Γ ⇒ Δ
(∀ ⇒)

∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), 𝑎𝜆𝑥𝜑, Γ ⇒ Δ
(∃ ⇒)

∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), ∃𝑥(𝑥𝜆𝑥𝜑), Γ ⇒ Δ

by two cuts with 𝜆𝑥𝜑𝑡 ⇒ ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), 𝜆𝑥𝜑𝑡 ⇒ ∃𝑥(𝑥𝜆𝑥𝜑) which are derivable from 𝐿𝐴3. For

(𝜆 ⇒ 2):

𝑆

Γ ⇒ Δ, 𝑏𝜆𝑥𝜑 Γ ⇒ Δ, 𝑐𝜆𝑥𝜑
(⇒ ∧)

Γ ⇒ Δ, 𝑏𝜆𝑥𝜑 ∧ 𝑐𝜆𝑥𝜑 𝑏𝑐, Γ ⇒ Δ
(→⇒)

𝑏𝜆𝑥𝜑 ∧ 𝑐𝜆𝑥𝜑 → 𝑏𝑐, Γ ⇒ Δ
(∀ ⇒)

∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦), Γ ⇒ Δ
(𝐶𝑢𝑡)

𝜆𝑥𝜑𝑡, Γ ⇒ Δ

where 𝑆 is 𝜆𝑥𝜑𝑡 ⇒ ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) which is derivable from 𝐿𝐴3. For (⇒ 𝜆) first we

prove:

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑏𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑
(⇒ ∧)

𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 ∧ 𝑏𝜆𝑥𝜑 𝑎𝑏, 𝑏𝑡 ⇒ 𝑎𝑡
(→⇒)

𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑, 𝑏𝑡, 𝑎𝜆𝑥𝜑 ∧ 𝑏𝜆𝑥𝜑 → 𝑎𝑏 ⇒ 𝑎𝑡
(∀ ⇒)

𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑, 𝑏𝑡, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝑎𝑡
(⇒→)

𝑏𝜆𝑥𝜑, 𝑏𝑡, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝑎𝜆𝑥𝜑 → 𝑎𝑡
(⇒ ∀)

𝑏𝜆𝑥𝜑, 𝑏𝑡, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡)

where the rightmost sequent is proved by lemma 1 (in case of 𝐿𝐴4 the application of (𝑇 ) is

enough).

Eventually by two cuts with the premisses of (⇒ 𝜆) we obtain ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦), Γ ⇒

Δ, ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡). Since from the leftmost and the rightmost premiss of (⇒ 𝜆) we can

derive Γ ⇒ Δ, ∃𝑥(𝑥𝜆𝑥𝜑) and Γ ⇒ Δ, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) respectively, by cuts with

∃𝑥(𝑥𝜆𝑥𝜑), ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡 (derivable from 𝐿𝐴3) we get

∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), Γ ⇒ Δ, 𝜆𝑥𝜑𝑡. Two final cuts yield the conclusion of (⇒ 𝜆).

Lemma 7. 𝜆𝑥𝜑𝑡 ↔ ∃𝑥(𝑥𝜆𝑥𝜑) ∧ ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡) ∧ ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) is provable in GELO𝑚

with 𝑡 complex, and in GELO𝑠 with 𝑡 arbitrary.

𝑎𝜆𝑥𝜑, 𝑎𝑡 ⇒ 𝑎𝜆𝑥𝜑
(⇒ ∃)

𝑎𝜆𝑥𝜑, 𝑎𝑡 ⇒ ∃𝑥(𝑥𝜆𝑥𝜑)
(𝜆 ⇒ 1)

𝜆𝑥𝜑𝑡 ⇒ ∃𝑥(𝑥𝜆𝑥𝜑)

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑏𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑 𝑎𝑏, 𝑏𝑡 ⇒ 𝑎𝑡
(𝜆 ⇒ 2)

𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑, 𝑏𝑡,xt ⇒ 𝑎𝑡
(𝜆 ⇒ 1)

𝑎𝜆𝑥𝜑,xt ⇒ 𝑎𝑡
(⇒→)

𝜆𝑥𝜑𝑡 ⇒ 𝑎𝜆𝑥𝜑 → 𝑎𝑡
(⇒ ∀)

𝜆𝑥𝜑𝑡 ⇒ ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡)

73



where the rightmost sequent is proved by lemma 1 (or by (𝑇 ) in case of 𝐿𝐴4).

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑏𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑 𝑎𝑏 ⇒ 𝑎𝑏
(𝜆 ⇒ 2)

xt, 𝑎𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑 ⇒ 𝑎𝑏
(∧ ⇒)

𝜆𝑥𝜑𝑡, 𝑎𝜆𝑥𝜑 ∧ 𝑏𝜆𝑥𝜑 ⇒ 𝑎𝑏
(⇒→)

𝜆𝑥𝜑𝑡 ⇒ 𝑎𝜆𝑥𝜑 ∧ 𝑏𝜆𝑥𝜑 → 𝑎𝑏
(⇒ ∀)

𝜆𝑥𝜑𝑡 ⇒ ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦)

the above proofs yield the left-right part of 𝐿𝐴3 after application of (⇒ ∧) and (⇒→). For

the right-left implication we derive:

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑎𝑡, 𝑎𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡
(→⇒)

𝑎𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑 → 𝑎𝑡, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡
(∀ ⇒)

𝑎𝜆𝑥𝜑𝑡, ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡
(∃ ⇒)

∃𝑥(𝑥𝜆𝑥𝜑), ∀𝑥(𝑥𝜆𝑥𝜑 → 𝑥𝑡), ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡

where the rightmost sequent is proved as follows:

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑 𝑎𝑡 ⇒ 𝑎𝑡

𝑏𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑 𝑐𝜆𝑥𝜑 ⇒ 𝑐𝜆𝑥𝜑
(⇒ ∧)

𝑏𝜆𝑥𝜑, 𝑐𝜆𝑥𝜑 ⇒ 𝑏𝜆𝑥𝜑 ∧ 𝑐𝜆𝑥𝜑 𝑏𝑐 ⇒ 𝑏𝑐
(→⇒)

𝑏𝜆𝑥𝜑, 𝑐𝜆𝑥𝜑, 𝑏𝜆𝑥𝜑 ∧ 𝑐𝜆𝑥𝜑 → 𝑏𝑐 ⇒ 𝑏𝑐
(∀ ⇒)

𝑏𝜆𝑥𝜑, 𝑐𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝑏𝑐
(⇒ 𝜆)

𝑎𝑡, 𝑎𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ xt

Together, these two lemmata guarantee the adequacy of GELO𝑚. For GELO𝑠 the proof of the

counterpart of lemma 6 is the same, and in the proof of the counterpart of lemma 7 only the

last part (see the proof-tree above) requires more involved work:

𝐷

𝑎𝜆𝑥𝜑 ⇒ 𝑎𝑏, 𝑎𝜆𝑥𝜑

𝑐𝑏 ⇒ 𝑐𝑏
(𝑇 )

𝑎𝑏, 𝑎𝜆𝑥𝜑, 𝑐𝑎 ⇒ 𝑐𝑏
(≡⇒)

𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑐𝑎 ⇒ 𝑐𝑏 𝑏𝑡, 𝑏 ≡ 𝜆𝑥𝜑 ⇒ 𝜆𝑥𝜑𝑡
(𝐸)

𝑏 ≡ 𝜆𝑥𝜑, at, 𝑎𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡
(≡⇒ 𝐸)

𝑎𝑡, 𝑎𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦) ⇒ 𝜆𝑥𝜑𝑡

where the rightmost leaf is provable as an instance of 𝐿𝐿, and 𝐷 is:

𝑏 ≡ 𝜆𝑥𝜑, 𝑐𝑏 ⇒ 𝑐𝜆𝑥𝜑 𝑎𝜆𝑥𝜑 ⇒ 𝑎𝜆𝑥𝜑
(⇒ ∧)

𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑐𝑏 ⇒ 𝑐𝜆𝑥𝜑 ∧ 𝑎𝜆𝑥𝜑 𝑐𝑎 ⇒ 𝑐𝑎
(→⇒)

𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, 𝑐𝜆𝑥𝜑 ∧ 𝑎𝜆𝑥𝜑 → 𝑐𝑎, 𝑐𝑏 ⇒ 𝑐𝑎
(∀ ⇒)

𝑏 ≡ 𝜆𝑥𝜑, 𝑎𝜆𝑥𝜑, ∀𝑥𝑦(𝑥𝜆𝑥𝜑 ∧ 𝑦𝜆𝑥𝜑 → 𝑥𝑦), 𝑐𝑏 ⇒ 𝑐𝑎

where the leftmost leaf again is a provable instance of 𝐿L.

74



6. Cut Elimination Theorem

Before we focus on the proof of the cut elimination theorem let us note that for all variants of

GELO the following result holds:

Lemma 8 (Substitution). If ⊢𝑘 Γ ⇒ Δ, then ⊢𝑘 Γ[𝑎/𝑏] ⇒ Δ[𝑎/𝑏].

Proof. By induction on the height of a proof. The rules (𝐸), (⇒≡), (≡⇒ 𝐸), (𝜆 ⇒ 1), (⇒ 𝜆)

may require similar relettering like (∃ ⇒) and (⇒ ∀). Note that the proof provides the height-

preserving admissibility of substitution and that it is restricted to substitution of parameters for

parameters only.

Let us assume that all proofs are regular in the sense that every parameter 𝑎 which is fresh by

side condition on the respective rule must be fresh in the entire proof, not only on the branch

where the application of this rule takes place. There is no loss of generality since every proof

may be systematically transformed into a regular one by the substitution lemma.

In [10] the cut elimination theorem was proved for GO and for GOP which covers GOI as its

subsystem. Due to the construction of the rules from Fig. 2 and 3, this proof may be extended to

GELO𝑤 and GELO𝑚. It is enough to show that new rules are reductive in the sense of Ciabattoni

[5]. Roughly: a pair of introduction rules (⇒ ⋆), (⋆ ⇒) for a constant ⋆ is reductive if an

application of cut on cut formulae introduced by these rules may be replaced by the series of

cuts made on less complex formulae, in particular on their subformulae. This feature of rules

enables the reduction of the cut-degree in the proof of cut elimination. The latter notion, and

the notion of proof-degree, is defined as follows:

1. The cut-degree 𝑑𝜑 is the complexity of the cut-formula 𝜑, i.e. the number of connectives,

quantifiers and lambda operators occurring in 𝜑.

2. The proof-degree (𝑑𝐷) is the maximal cut-degree in 𝐷.

The reductivity of rules is sufficient for our aim on condition that no other rule in the system

introduces the principal formula of such rules as active. It was the main reason for restricting

(𝑅), (𝑆), (𝑇 ), (𝐸) to atoms with simple terms as both arguments and for introducing the new

rules for atoms with complex terms, as we explained in section 3. The separation of rules for

different cases is the key to avoid the problems with elimination of cuts. Note that:

1. if 𝑠𝑡 is strictly atomic, i.e. containing parameters only, it can be principal only in the

antecedent of the right premiss of cut, due to (𝑅), (𝑆), (𝑇 ), (𝐸);

2. if it is of the form 𝑏𝜆𝑥𝜑, it can be principal in both premisses of cut but only via (⇒ 𝛽)

and (𝛽 ⇒);

3. if it is of the form 𝜆𝑥𝜑𝑡, it can be principal in both premisses of cut but only via (⇒ 𝜆)

and (𝜆 ⇒ 1) or (𝜆 ⇒ 2);

4. identity is principal in both premisses of cut only via (⇒≡) and (≡⇒);

5. relational atom is principal only in the succedent of the left premiss via (⇒≡ 𝐸).

The first and the fourth case are dealt with in the proof of cut elimination in [10]. The fifth

case can be dealt with in a similar way as the first, by pushing cut up until it disappears either

because in the opposite premiss the atom was introduced by (𝑊 ⇒) or it is an axiom. For the

remaining cases it is sufficient to prove:

75



Lemma 9. 1. The rules (⇒ 𝛽) with (𝛽 ⇒) are reductive in general;

2. Both (⇒ 𝜆) with (𝜆 ⇒ 1), and (⇒ 𝜆) with (𝜆 ⇒ 2) are reductive in GELO𝑚.

Proof. The two rules of 𝛽-conversion are trivially reductive. It remains to show that the three

rules for 𝜆 are reductive in GELO𝑚.

Let the right premiss of cut with the principal formula 𝜆𝑥𝜑𝜆𝑦𝜓 be derived by (⇒ 𝜆). In

case the right premiss is derived by (𝜆 ⇒ 1) we apply lemma 8 to its premiss to substitute the

occurrences of fresh 𝑎 with 𝑐, then we continue:

Γ ⇒ Δ, 𝑐𝜆𝑦𝜓

Γ ⇒ Δ, 𝑐𝜆𝑥𝜑 𝑐𝜆𝑥𝜑, 𝑐𝜆𝑦𝜓 , Π ⇒ Σ
(𝐶𝑢𝑡)

𝑐𝜆𝑦𝜓 , Γ, Π ⇒ Δ, Σ
(𝐶𝑢𝑡)

Γ, Γ, Π ⇒ Δ, Δ, Σ
(𝐶 ⇒), (⇒ 𝐶)

Γ, Π ⇒ Δ, Σ

Both cuts are of lower degree, hence both rules are reductive.

If the right premiss is derived by (𝜆 ⇒ 2) we apply lemma 8 to the rightmost premiss of the

application of (⇒ 𝜆) instead, to substitute the occurrences of fresh 𝑎, 𝑏 with 𝑐, 𝑑 respectively,

then we continue:

Π ⇒ Σ, 𝑑𝜆𝑥𝜑

Π ⇒ Σ, 𝑐𝜆𝑥𝜑 𝑐𝜆𝑥𝜑, 𝑑𝜆𝑥𝜑, Γ ⇒ Δ, 𝑐𝑑
(𝐶𝑢𝑡)

𝑑𝜆𝑥𝜑, Γ, Π ⇒ Δ, Σ, 𝑐𝑑
(𝐶𝑢𝑡)

Γ, Π, Π ⇒ Δ, Σ, Σ, 𝑐𝑑 𝑐𝑑, Π ⇒ Σ
(𝐶𝑢𝑡)

Γ, Π, Π, Π ⇒ Δ, Σ, Σ, Σ
(𝐶 ⇒), (⇒ 𝐶)

Γ, Π ⇒ Δ, Σ

Since all cuts are of lower degree, we are done.

Combining lemma 9 with the results proved in [10] we obtain the cut elimination theorem

for two of the considered systems:

Theorem 1. Every proof in GELO𝑤 and GELO𝑚 can be transformed into a cut-free proof.

What with GELO𝑠? Note that in GELO𝑠 cut may be performed also on the formulae of the

form 𝜆𝑥𝜑𝑏 by means of (⇒ 𝜆) and (𝜆 ⇒ 1), or (⇒ 𝜆) and (𝜆 ⇒ 2). In such cases we are not

guaranteed that the transformed proofs contain cuts on formulae of lower degree. However,

note that the transformations displayed above in each case replace cuts on formulae of the form

𝜆𝑥𝜑𝑏 with cuts performed only on formulae of the form 𝑏𝜆𝑥𝜑. It follows:

Lemma 10. Every proof in GELO𝑠 can be transformed into a proof with no cuts on formulae of

the form 𝜆𝑥𝜑𝑏.

Since such proofs may be dealt with as proofs in GELO𝑤 or GELO𝑚, we obtain:

Theorem 2. Every proof in GELO𝑠 can be transformed into a cut-free proof.

And as the consequence of these theorems we obtain:

Corollary 1. If ⊢ Γ ⇒ Δ in GELO𝑤, GELO𝑚 or GELO𝑠, then it is provable in a proof which is

closed under subformulae of Γ ∪ Δ and atomic formulae with possibly new parameters.

76



7. Conclusion

ELO, similarly to LO, is not characterised semantically here. In fact, there are known controver-

sies concerning the proper interpretation of quantifiers for LO (cf. [16, 22]), and for the time

being we prefer to avoid these issues, since our aim is to provide a proof-theoretic analysis.

However, note that referring to model-theoretic semantics is not the only option. Girard [6]

emphasized that a cut-free system with the subformula property is complete in an internal sense.

The idea of proof-theoretic semantics (see e.g. [23]) also shows that we can locate meaning in

the well-defined rules. It seems that GELO satisfies these requirements sufficiently well. To

strengthen this view it would be welcome to prove also the interpolation theorem for GELO,

following the lines of proof of this result for GO and GOP in [12]. It is an open problem.

It was noticed in [10] that we can relatively easy obtain the intuitionistic version of GO

(called GIO there) by restricting the sequents to single-succedent and changing slightly some

of the rules. One may easily modify in this way also GOP from [10] and all variants of GELO

introduced in this paper. The crucial point is to replace the present rule (≡⇒) with two variants

(with Δ empty):

(≡⇒ 1)
Γ⇒ Δ, 𝑏𝑡 𝑏𝑡, 𝑏𝑠, Γ⇒ Δ

𝑡 ≡ 𝑠, Γ⇒ Δ
(≡⇒ 2)

Γ⇒ Δ, 𝑏𝑠 𝑏𝑡, 𝑏𝑠, Γ⇒ Δ

𝑡 ≡ 𝑠, Γ⇒ Δ

It may be easily checked that all proofs we needed to establish adequacy and cut elimination,

hold also in the intuitionistic versions, since, even in the places where (≡⇒) is applied, there

is only one active formula in the succedent. This way we obtain for free also intuitionistic

companions of considered calculi. Again, it must be emphasized that, similarly as in the case of

‘classical’ variants, the background logic is only apparently intuitionistic, since the terms are

not restricted to individual ones, and the quantifiers have no existential import.

Because of the lack of space we were not concerned with the problem of expressivity of ELO.

To simplify things we considered the calculus as built on the combination of the language of LO

with simple language of pure FOL. However, it is possible to modify LO by admitting richer or

different languages as the additional component. For example, even if we keep the first-order

language, we may admit arbitrary terms as arguments of relational atoms. Or we may use a

totally different language, like the languages of description logics, of QUARC, or of relational

syllogistics. Of course, in case of mixing LO with other kinds of languages, it may be necessary

to extend also the set of rules to cover specific logics different than FOL. Alternatively, we can

consider a different approach to extending LO keeping the language of LO as the outer language

and restricting the application of the other as the inner language admitted only inside complex

terms. Again, because of the additional complications connected with more complex grammar

we did not consider such an approach in this short paper. However, it is another promising field

for further exploration.

Together with [10] this paper is meant as a theoretical foundation necessary for developing

the novel tools in the field of automated deduction. Close resemblance of the structure of ELO

to the structure of natural languages may help in the preparation of provers and proof assistants

allowing for more direct and efficient processing of the reasoning tasks in natural languages. It

is going to be one of the next steps in future research.

77



7.0.1. Acknowledgements.

I would like to thank the anonymous reviewers and Nils Kürbis for valuable comments. Funded

by the European Union (ERC, ExtenDD, project number: 101054714). Views and opinions

expressed are however those of the author(s) only and do not necessarily reflect those of the

European Union or the European Research Council. Neither the European Union nor the

granting authority can be held responsible for them.

References

[1] Artale, A., Mazzullo, A., Ozaki, A., Wolter, F.: On Free Description Logics with Definite

Descriptions. In: Bienvenu, M., Lakemeyer, G., Erdem, E. (eds.): Proceedings of the 18th

International Conference on Principles of Knowledge Representation and Reasoning, pp.

63–73. IJCAI Organization (2021).

[2] Ben-Yami, H.: Logic and Natural Language: On Plural Reference and Its Semantic and

Logical Significance. Routledge, New York (2004).

[3] Borgida, A., Toman, D., Weddell, G.: On Referring Expressions in Query Answering over

First Order Knowledge Bases. In: Proceedings of the 15th International Conference on

Principles of Knowledge Representation and Reasoning, pp. 319–328. IJCAI Organization

(2016).

[4] Braüner, T.: Hybrid Logic and its Proof-Theory. Springer, Cham (2011).

[5] Ciabattoni, A.: Automated Generation of Analytic Calculi for Logics with Linearity. In:

Marcinkowski, J., Tarlecki, A. (eds.): CSL 2004, LNCS vol. 3210, pp. 503–517. Springer,

Heidelberg (2004).

[6] Girard, J-Y.: From Foundations to Ludics. The Bulletin of Symbolic Logic. 9(2), 131–168

(2003).

[7] Indrzejczak, A.: Free Logics are Cut-free. Studia Logica 109(4) 859–886 (2021).

[8] Indrzejczak, A.: A Novel Approach to Equality. Synthese 199 4749–4774 (2021).

[9] Indrzejczak, A.: Sequents and Trees. An Introduction to the Theory and Applications of

Propositional Sequent Calculi. Birkhäuser (2021).

[10] Indrzejczak, A.: Leśniewski’s Ontology – Proof-Theoretic Characterization. In: Blanchette,

J., Kovacs, L., Pattinson, D. (eds.) Automated Reasoning, IJCAR 2022, LNAI vol. 13385, pp.

541–558. Springer, Heidelberg (2022).

[11] Indrzejczak, A.: Russellian definite description theory—a proof-theoretic approach. The

Review of Symbolic Logic. 16(2), 624–649 (2023).

[12] Indrzejczak, A.: Leśniewski’s Ontology satisfies interpolation. Proceedings of AWPL,

Sapporo (2024).

[13] Indrzejczak, A., Kürbis, N.: A Cut-Free, Sound and Complete Russellian Theory of Definite

Descriptions. In: Ramanayake, R., Urban, J. (eds) Automated Reasoning with Analytic

Tableaux and Related Methods. TABLEAUX 2023. Lecture Notes in Computer Science, vol.

14278, pp. 131–149. Springer, Cham (2023).

[14] Indrzejczak, A., Zawidzki, M.: When Iota meets Lambda. Synthese 201/72 (2023), DOI:

10.1007/s11229-023-04048-y.

[15] Iwanuś, B.: On Leśniewski’s Elementary Ontology. Studia Logica 31(1), 73–119 (1973).

78



[16] Küng, G., Canty, J.T.: Substitutional quantification and Leśniewskian quantifiers. Theoria

36, 165–182 (1970).

[17] Leśniewski, S.: Collected Works. Vol. II. Surma, S., Srzednicki, J., Barnett, D.I. Kluwer/PWN

(1992).

[18] Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge

(2001).

[19] Oliver, A., Smiley, T.: Plural Logic. Oxford University Press, Oxford (2016).

[20] Paśniczek, J.: The Logic of Intentional Objects. A Meinongian Version of Classical Logic.

Kluwer, Dordrecht (1998).

[21] Pratt-Hatmann, I., Moss, L.,S.: Logics for the Relational Syllogistic. The Review of Symbolic

Logic. 2(4), 647–683 (2023).

[22] Rickey, F.: Interpretations of Leśniewski’s Ontology. Dialectica 39(3), 181–192 (1985).

[23] Schroeder-Heister, P.: Proof-theoretic Semantics. in: Stanford Encyclopedia of Philosophy

2012, https://plato.stanford.edu/entries/proof-theoretic-semantics/.

[24] Słupecki, J.: S. Leśniewski’s Calculus of Names. Studia Logica 3(1), 7–72 (1955).

[25] Sommers, F.: The Logic of Natural Language. Clarendon Press, Oxford (1982).

[26] Urbaniak, R.: Leśniewski’s Systems of Logic and Foundations of Mathematics. Springer,

Cham (2014).

[27] Waragai, T.: Ontology as a Natural Extension of Predicate Calculus with Identity Equipped

with Description. Annals of the Japan Association for Philosophy of Science, 7(5), 233–250

(1990).

79


