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Abstract
We present an approach for employing KR methods sequentially and evaluating them according to their predictive
power for human reasoning. The approach uses epistemic spaces and allows the injection of cognitive aspects
into the approach. We report two instantiations of the general approach in which the epistemic states are ranking
functions. The first is based on belief merging, and the second instantiation is based on belief revision. Both
instantiations also use cognitively inspired formal approaches to construct meaningful internal representations.
We also report the evaluation of these instantiations on an experimental dataset about human reasoning. The
results suggest that KR approaches may benefit from augmentation with cognitively inspired processes.

Keywords
cognitive logic, epistemic space, prediction, sequential, human reasoning, merging, revision

1. Introduction

Knowledge representation and reasoning (KR) has a long tradition as a subfield of artificial intelligence
that takes inspiration from human reasoning capabilities. In this context, KR approaches can be
understood as analogues, metaphors or models of specific human mental tasks. An example is belief
merging, the process where an agent combines multiple pieces of information with the same significance
consistently. Another example is belief revision, the process of incorporating new information into the
agent’s belief set such that the result is consistent, whenever that is possible. When KR approaches, like
merging or revision, are considered metaphors for cognitive processes, the question arises on how these
formal approaches compare to human reasoners. However, because of their origins, KR approaches are
often developed and evaluated from a formal or philosophical perspective. Experimental results that
evaluate the extent to which KR approaches comply with human reasoning are less common.

In this paper, we report two recent evaluations of sequential versions of belief merging and belief
revision that are enhanced by cognitive theories and show that they fit in a common framework. The
starting point of this paper is the assumption that humans process information sequentially. We present
a simplistic framework that models the comprehension of information as a process:

• First, given information is transformed to an internal representation 𝐴.
• Second, by using a KR method, the representation 𝐴 is subsequently integrated into the agent’s

existing knowledge representation.

Clearly, the analogy to a human reasoner can be drawn easily: First, humans perceive information via
sensors, which transform the information into a neural representation. Second, this representation is
then passed to the brain, where it is processed and incorporated for future use. Recently, the performance
of both sequentially used merging operators [1] and sequentially used belief revision operators [2]
in predicting human reasoning has been evaluated. In this paper, we see that both approaches fit
well to the framework we sketched above. Furthermore, we compare their results and discuss further
implications on the general approach. The purpose of this line of work is to gain an understanding of
how cognitive processes and evaluations can be employed to advance KR approaches.
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In summary, our main contributions are:

• A formal framework that works analogously to how humans may conceive and process informa-
tion, the sequential approach.

• We show that recent approaches fit into this framework.
• A discussion of recent empirical evaluations on the predictive power for human propositional

reasoning.

In the next section, we start with providing the background.

2. Background on Logic, Epistemic Spaces and Lists

In this section we present basic notions and concepts from logic, ranking theory and order theory that
are used in this article.

Classical Propositional Logic. Let Σ be a propositional signature, i. e., a non-empty finite set of
propositional variables. With ℒ we denote the propositional language over Σ, using the connectives
∧ (and), ∨ (or), ¬ (negation) and the connectives → (implication), ↔ (bi-implication). As semantics
of these connectives we have the standard Boolean truth-functionally semantics and use its model-
theoretic representation. The set of propositional interpretations, also called worlds, is denoted by
Ω. With |= we denote the model relation, i. e., 𝜔 |= 𝜙 indicates that 𝜔 is a model of 𝜙. We let
Mod(𝜙) be the set of models of 𝜙. We overload the symbol |= and write 𝑎 |= 𝑏 for 𝑎, 𝑏 ∈ ℒ, when
Mod(𝑎) ⊆ Mod(𝑏). These notions are extended to sets of formulas in the usual way, e. g., for 𝐿 ⊆ ℒ we
define Mod(𝐿) =

⋂︀
𝑎∈𝐹 Mod(𝑎), and 𝐿 |= 𝑏 holds exactly when Mod(𝐿) ⊆ Mod(𝑏). For 𝐿 ⊆ ℒ we

define 𝐶𝑛(𝐿) = {𝛽 | 𝐿 |= 𝛽} and 𝐿+𝛼 = Cn(𝐿∪{𝛼}). We say 𝐿 is deductively closed if 𝐿 = Cn(𝐿)
and ℒBel is the set of all deductively closed sets.

Lists. We deal with (finite) lists of elements in this article. For a set 𝑋 and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 we denote
with [𝑥1, . . . , 𝑥𝑛] the list containing 𝑥1, . . . , 𝑥𝑛 where 𝑥1 is the first element, 𝑥2 the second element,
etc. With L[𝑋] = { [𝑥1, . . . , 𝑥𝑛] | 𝑛 ∈ N, 𝑥1, ..., 𝑥𝑛 ∈ 𝑋} we denote the set of all finite lists over 𝑋 .

Epistemic Spaces. In this work, we model agents by the means of logic. Deductively closed sets of
formulas, which we denote from now as belief sets, represent deductive capabilities; agents are assumed
to be perfect reasoners. The interpretations represent worlds that the agent is capable to imagine. The
following notion describes the space of epistemic possibilities of an agent’s mind in a general way.

Definition 2.1 ([3]; adapted). A tuple E = ⟨ℰ ,Bel⟩ is called an epistemic space if ℰ is a non-empty set
and Bel : ℰ → ℒBel.

We call the elements of ℰ epistemic states, and for each Ψ ∈ ℰ , we use Mod(Ψ) as shorthand for
Mod(Bel(Ψ)). Definition 2.1 differs from the definition given by Schwind et al. [3] insofar as we do not
exclude inconsistent belief sets and forbid emptiness of ℰ . The rationale is that it was recently shown
to be a necessary extension to fully capture AGM revision within epistemic spaces [4].

Ranking Functions. Pre-ranking functions are functions with type 𝜅 : Ω → N0. An ordinal conditional
function (OCF), or short ranking function, is a pre-ranking function 𝜅 : Ω → N0 such that 𝜅(𝜔) = 0 for
at least one 𝜔 ∈ Ω [5]. Intuitively, ranking functions describe degrees of implausibility, i. e., if 𝜔 has
a rank of 0, this means that 𝜔 is considered maximally plausible, whereas interpretations with larger
ranks are considered more implausible. With K we denote the set of all ranking functions (over Ω).
We let BelK : K → ℒBel, BelK(𝜅) = {𝜙 ∈ ℒ | 𝜅−1(0) ⊆ Mod(𝜙)} the function that assigns to each
ranking function 𝜅 the set of formulas complying with the most plausible interpretations with respect
to 𝜅. With EK = ⟨K,BelK⟩ we denote the epistemic space, where the epistemic states are ranking
functions from K. Since we are only considering this epistemic space, we will write Bel instead of BelK
in the following.



3. Background on Cognitive Science

Classical logic has several limitations for describing how humans reason. One of the main observations
is that human reasoning does not comply with the standard semantics of classical propositional logic [6].
We consider some basic observations and explanations from cognitive science.

Experiments show that almost all humans infer 𝛽 without hesitation when 𝛼 → 𝛽 and 𝛼 are
given [7, 8]. A robust finding is that some reasoners do not infer ¬𝛼 from 𝛼 → 𝛽 and ¬𝛽 [7, 9, 10].
Instead, many conclude that “nothing” follows [11]. Some subjects endorse that from 𝛼 → 𝛽 and 𝛽
follows 𝛼, respectively that from 𝛼→ 𝛽 and ¬𝛼 follows ¬𝛽 [8, 12, 13]. The following two principles
are considered as explanation for these observations.

Principle of the Biconditional Interpretation of Conditionals. It is hypothesized that conditionals
are sometimes interpreted as biconditionals. This complies with the fact that conditional statements are
often used to express biconditional relations in everyday life [14].

Principle of Preferred Interpretations. The idea is that a conditional 𝛼→ 𝛽 has three possible read-
ings. The first reading is 𝛼∧ 𝛽 (conjunctive interpretation), the second reading is ¬𝛼∧¬𝛽 (biconditional
interpretation) and the third reading is ¬𝛼 ∧ 𝛽 (conditional interpretation). Because not all readings
are equally obvious to human reasoners, it is hypothized that the more mental effort is invested, the
more readings of 𝛼→ 𝛽 are employed by the agent to draw conclusions [12]. Whereby the order of the
reading as given above is respected.

In general, reasoning tasks involving sentences with negations are considered to require more
effort [15]. For reasoning with disjunctions humans also show various patterns that diverge from
classical propositional logic [16–18]. The principle of truth from mental model theory provides an
explanation for these phenomena.

Principle of Truth. Mental model theory (MMT) assumes that humans build (multiple) mental models
about an imagined object or situation. The principle of truth [19] states that humans prefer to build
mental models that include only what is coherent and what is surely known (“true”), and omitting the
properties and features that do not hold. Therefore, humans may consider certain possibilities, but not
necessarily all possibilities, when reasoning and, thus, may arrive at results that deviate from classical
logic, such as those mentioned in this section.

4. General Sequential Approach

Our model of how agents process information is based on the following assumptions:

(A1) Subjects process new information sequentially,

(A2) Classical (propositional) logic1 ℒ is an adequate basic theory of reasoning,

(A3) ℒ is adequate to represent input of new information, and

(A4) Grasping of information might be imperfect or influenced by cognitive biases.

When an agent approaches a (mental) task, e. g., wants to make conclusions according to several
pieces of information, it processes them one by one. In the sequential approach, the premises in a
task are therefore modelled as a list [𝜙1, . . . , 𝜙𝑛]. We assume that the integration of each piece of new
information can be modelled by a two-step process. In the first step, conceiving a piece of information,
which is represented by a formula 𝜙𝑖, yields an internal representation 𝜙*

𝑖 . Formally, this is captured by
the following:

Definition 4.1. Let A be a set. An A-perception is a function * : ℒ → A that assigns to every propositional
formula 𝜙 ∈ ℒ an element 𝜙* ∈ A.
1For the cases we consider in this paper, propositional logic should be sufficient. Clearly, for other tasks one might need to
consider more expressive classical logics, like first-order predicate logic.



𝜅0 𝜅1 = 𝜅0 � 𝜙*
1 = 𝜅0 � [𝜙1]

𝜙*
1

𝜙1

...

... 𝜅𝑛−1 𝜅𝑛 = 𝜅𝑛−1 � 𝜙*
𝑛 = 𝜅0 � [𝜙1, . . . , 𝜙𝑛]

𝜙*
𝑛 𝜙𝑛

Figure 1: Illustration of the mechanics of a sequential approach when starting with a ranking function 𝜅0 = 𝜅
and processing information [𝜙1, . . . , 𝜙𝑛].

The name “perception” is chosen here to highlight that we employ the function from Definition 4.1 to
model the subjective processing of information, which might be influenced by cognitive biases (A4).

The second step consists of combining the current epistemic state Ψ and the representation 𝜙*
𝑖 to a

new epistemic state.

Definition 4.2. Let A be a set and let E = ⟨ℰ ,Bel⟩ be an epistemic space. An E-A combinator is a
function � : ℰ × A → ℰ that assigns to every epistemic state Ψ ∈ ℰ and every 𝐴 ∈ A an epistemic state
Ψ �𝐴 ∈ ℰ .

Consequently, a sequential operator is parametrized by an A-perception and an E-A combinator. In
summary, processing [𝜙1, . . . , 𝜙𝑛] is the sequential application of the procedure sketched above (see
also Figure 1).

Definition 4.3. Let A be a set and let E = ⟨ℰ ,Bel⟩ be an epistemic space. Let � be an E-A combinator,
and let * be an A-perception. The sequential operator � : ℰ × L[ℒ] → ℰ based on ⟨�, *⟩ is defined by:

Ψ � [𝜙1] = Ψ � 𝜙*
1

Ψ � [𝜙1, . . . , 𝜙𝑛] = (Ψ � 𝜙*
1) � [𝜙2, . . . , 𝜙𝑛]

We make the following additional assumption when working with the framework in this paper:

(A5) Individuals’ epistemic states can be represented by ranking functions from K.

The rationale for this is that ranking functions are a well-established representation formalism, which is
widely accepted in KR due to its properties. For instance, it has been shown that ranking functions are
expressive enough for (iterated) belief revision [3, 20]. Hence, in the remaining parts of this paper we
consider only the epistemic space EK. In the next two sections, we present instantiations for ⟨�, *⟩.

5. Sequential Merging and Cognitive Ranking Constructions

We will now consider the work by Ismail-Tsaous et al. [1] and show that their approach is an instance
of the sequential approach from Section 4. Ismail-Tsaous et al. [1] evaluate the accuracy of operators
that sequentially apply belief merging to ranking functions in predicting the answers given by human
reasoners. A specific feature is the usage of functions that construct ranking functions from propositions
based on cognitive theories. We start by considering the background of merging.

5.1. Merging Operators

Merging operators [21] aggregate multiple pieces of information from different sources such that every
source has the same priority [22]. Merging operators (for ranking functions) are functions that map a
list of ranking functions to a ranking function [23].

Definition 5.1 ([23]). A merging operator (for ranking functions) is a function Δ : L[K] → K.

Ismail-Tsaous et al. [1] consider six merging operators. For reasons of space, we only list these
operators here and refer the interested reader to their publication [1] or to the work by Meyer [23] for
further details. The (basic) minimum merging operator Δmin assigns the smallest rank over all sources to



an interpretation. The (basic) maximum merging operator Δmax assigns the highest rank over all sources
to an interpretation. The (basic) majority operator ΔΣ sums the ranks over all sources and normalizes the
result. For these basic operators there also exist corresponding refined operators; the refined minimum
operator ΔRmin, the generalized maximum operator ΔGmax and the refined majority operator ΔRΣ, which
follow a similar idea as the corresponding basic operators but take commensurability between sources
into account by respecting the individual scales of each source. For illustrative purposes, consider the
maximum merging operator Δmax, which is given by

Δmax(𝐸)(𝜔) = max{𝜅1(𝜔), . . . , 𝜅𝑛(𝜔)} −min{max{𝜅1(𝜔′), . . . , 𝜅𝑛(𝜔
′)} | 𝜔′ ∈ Ω}

whereby 𝐸 = [𝜅1, . . . , 𝜅𝑛] ∈ L[K] is a list of ranking functions and 𝜔 ∈ Ω an interpretation. The
maximum operator represents a cautious approach, which favours the weakest belief among all sources.

5.2. Ranking Construction Functions to Model Cognitive Bias

For each input formula, Ismail-Tsaous et al. [1] construct ranking functions that can be delegated to a
merging operator. Formally, they use an abstract notion that map formulas to ranking functions.

Definition 5.2. A ranking construction function is a function 𝜅∙ : ℒ → K that assigns to every formula
𝜙 a ranking function 𝜅𝜙 such that 𝜙 ∈ Bel(𝜅𝜙) holds.

The specific ranking construction functions take inspiration from the psychological observations
and theories given in Section 3. We describe the different functions in the following.

Fully Explicit Models. The fully explicit model ranking function assigns models of 𝜙 the rank 0, and
all other interpretations the rank2 |Ω| − 1:

𝜅𝜙FEM(𝜔) =

{︃
0 if 𝜔 |= 𝜙 or if 𝜙 is inconsistent

|Ω|-1 otherwise

This models the situation where no cognitive bias is applied and reasoning is close to classical logic.

Biconditional Interpretation. The second approach is based on the principle that states that people
sometimes interpret conditionals as biconditionals [14]. If no conditional is given, then the ranking
function is constructed as in the fully explicit models case.

𝜅𝜙BI-FEM =

{︃
𝜅𝛼↔𝛽

FEM if 𝜙 = 𝛼→ 𝛽

𝜅𝜙FEM otherwise

Principle of Preferred Interpretations. The third construction approach is motivated by the principle
of preferred interpretations for conditionals [12]. Recall that this principle hypothesizes that humans
apply to conditionals specific readings, which was modelled as follows:

𝜅𝜙PI-FEM =

{︃
𝜅𝜙PI if 𝜙 = 𝛼→ 𝛽

𝜅𝜙FEM otherwise
with𝜅𝜙PI(𝜔) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Ω|-1 if 𝜔 ̸|= 𝜙 and 𝜙 is consistent

2 if 𝜔 |= 𝜙 and 𝜔 |= ¬𝛼 ∧ 𝛽 (conditional)

1 if 𝜔 |= 𝜙 and 𝜔 |= ¬𝛼 ∧ ¬𝛽 (biconditional)

0 otherwise (conjunctive)

Principle of Truth. The fourth function is inspired by the principle of truth from mental model theory.
Recall that the principle of truth predicts that reasoners give preference to explicitly given information.
Here, propositional interpretations are used as representations for mental models [1]. The principle
of truth is implemented in such a way that certain models of an input formula 𝜙 are considered more
plausible than other models of 𝜙. For instance, for a disjunction 𝜙 = 𝛼 ∨ 𝛽 the models of 𝛼 ∧ 𝛽 are

2|Ω| denotes the cardinality of Ω.



considered less plausible than the models of 𝛼 ∧ ¬𝛽 or ¬𝛼 ∧ 𝛽. This results in the following ranking
construction function:

𝜅𝜙MM(𝜔) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|Ω|-1 if 𝜔 ̸|= 𝜙 and 𝜙 is consistent

2 if 𝜔 |= 𝜙, 𝜔 ̸|= 𝛼 ∧ 𝛽 and (𝜙=𝛼→ 𝛽 or 𝜙=𝛼↔ 𝛽) ((bi)conditionals)

1 if 𝜔 |= 𝜙, 𝜔 ̸|= 𝛼 ∧ 𝛽 and 𝜙 = 𝛼 ∨ 𝛽 (disjunctions)

1 if 𝜔 |= 𝜙, 𝜔 ̸|= ¬𝛼 ∧ ¬𝛽 and 𝜙 = ¬(𝛼 ∧ 𝛽) (negations)

0 otherwise (plausible mental models)

For the details we refer to Ismail-Tsaous et al. [1]. Because 𝜅𝜙MM works for all formulas, one blends 𝜅𝜙MM

with constructions for the biconditional interpretation and the principle of preferred interpretation;
leading to the following two variations:

𝜅𝜙BI-MM =

{︃
𝜅𝛼↔𝛽

MM if 𝜙 = 𝛼→ 𝛽

𝜅𝜙MM otherwise
𝜅𝜙PI-MM =

{︃
𝜅𝜙PI if 𝜙 = 𝛼→ 𝛽

𝜅𝜙MM otherwise

5.3. Instantiation as Sequential Operator

Ismail-Tsaous et al. [1] combine a merging operator Δ and a ranking construction operator 𝜅∙ to a
binary operator Δ𝜅 : K× ℒ → K defined by 𝜅′ Δ𝜅 𝜙 = Δ([𝜅′, 𝜅𝜙]). Analogous to Definition 4.3, this
can be extended to lists of ranking functions. Moreover, it fits easily into the framework presented in
Section 4. When A = K is set as the set of all ranking functions, we can define 𝜅� 𝜅′ = Δ([𝜅, 𝜅′]) as
the merge of the two ranking functions, which is hence a K-K combinator in the sense of Definition 4.2.
Ranking construction functions are K-perceptions in the sense of Definition 4.1.

Since there are many merging operators and ranking construction operators, we yield multiple
operators Δ𝜅 ; each is a combination of one of the merging operators Δmin, ΔmaxΔΣ, ΔRmin, ΔGmax or
ΔRΣ and one of the ranking construction operators 𝜅∙FEM, 𝜅∙BI-FEM, 𝜅∙PI-FEM, 𝜅∙MM, 𝜅∙BI-MM or 𝜅∙PI-MM. Hence, we
have 36 sequential operators based on such a combination.

6. Sequential Revision and Cognitive Formula Alterations

We will now consider the work by Thorwart [2] and show that the approach by Thorwart is an instance
of the sequential approach from Section 4. Thorwart [2] evaluates the accuracy in predicting the
answers given by human reasoners. In her approach belief revision operators are applied sequentially
on formulas constructed from formulas according to the principles described in Section 3.

6.1. AGM Revision

Revision operators incorporate new beliefs into an agent’s belief set, consistently, whenever this is
possible. We use an adaptation of the postulates for revision by Alchourrón, Gärdenfors and Makinson
[24] (AGM) for epistemic states [25], which is inspired by the approach of Katsuno and Mendelzon [26].

Definition 6.1. Let E = ⟨ℰ ,Bel⟩ be an epistemic space. An (AGM) belief revision operator E is a function
∘ : ℰ × ℒ → ℰ such that the following postulates are satisfied [25]:

(R1) 𝛼 ∈ Bel(Ψ ∘ 𝛼)

(R2) Bel(Ψ ∘ 𝛼) = Bel(Ψ) + 𝛼 if Bel(Ψ) + 𝛼 is consistent

(R3) If 𝛼 is consistent, then Bel(Ψ ∘ 𝛼) is consistent

(R4) If 𝛼 ≡ 𝛽, then Bel(Ψ ∘ 𝛼) = Bel(Ψ ∘ 𝛽)

(R5) Bel(Ψ ∘ (𝛼 ∧ 𝛽)) ⊆ Bel(Ψ ∘ 𝛼) + 𝛽

(R6) If Bel(Ψ ∘ 𝛼) + 𝛽 is consistent, then Bel(Ψ ∘ 𝛼) + 𝛽 ⊆ Bel(Ψ ∘ (𝛼 ∧ 𝛽))



The postulates (R1)–(R6) are known for establishing minimal change on the prior beliefs when
revising an epistemic state. In the remaining parts of this paper we sometimes write revision operator
instead of AGM revision operator.

Thorwart considers multiple approaches to revision, especially to revision on epistemic states. The
central idea of revising epistemic states is that not only Bel(Ψ) is considered, but also additional
information is taken into account and how this extra information evolves. Usually, it is assumed that
such additional information contains at least a plausibility order ≤Ψ over the interpretations, where
lower positions mean higher plausibility. This coincides with how ranking functions are interpreted. Of
course, after performing a revision of Ψ by 𝜙, the follow-up epistemic state Ψ ∘𝜙 also has a plausibility
ordering ≤Ψ∘𝜙. There are different revision operators, which make different claims about how ≤Ψ

and ≤Ψ∘𝜙 relate with respect to 𝜙. The operators considered by Thorwart [2] are natural revision ∘nat

[27], lexicographic revision ∘lex [28], restrained revision ∘res [29], Darwiche-Pearl revision ∘DP [25] and
reinforcement revision ∘ref [30]. Again, for reasons of space, we refer to the literature and in particular
to Fermé and Hansson [31] for an introduction and overview.

6.2. Instantiation as Sequential Operator

In Thorwart’s work [2], for each input formula another formula is constructed and then delegated to a
revision operator. Clearly, such a processing of formulas can be understood as a ℒ-perception in the
sense of Definition 4.1. In the following, we present the ℒ-perception functions Thorwart [2] considers.

Fully Explicit Models. First, we consider the situation where no cognitive bias is applied and
reasoning works closely to classical logic. This is modelled by the identity function *[FEM] : ℒ → ℒ
with 𝜙*[FEM] = 𝜙.

Biconditional Interpretation. This is the principle that states that people sometimes interpret
conditionals as biconditionals [14]. It is modelled by a function *[BI] : ℒ → ℒ with

𝜙*[BI] =

{︃
𝛼↔ 𝛽 if 𝜙 = 𝛼→ 𝛽

𝜙 otherwise
.

Principle of Preferred Interpretations. The third construction approach is motivated by the principle
of preferred interpretations for conditionals [12]. Recall that this principle hypothesizes that humans
apply to conditionals specific readings. Note that the most preferred reading of a conditional 𝑎→ 𝑏 is
the conjunctive reading 𝑎 ∧ 𝑏. Thorwart [2] models this by a function *[PI] : ℒ → ℒ with

𝜙*[PI] =

{︃
𝛼 ∧ 𝛽 if 𝜙 = 𝛼→ 𝛽

𝜙 otherwise
.

Principle of Truth. To incorporate mental model theory, Thorwart [2] considers multiple cases3. As
an example, we select the interpretation of disjunctions by exclusive disjunctions. It has been observed
that humans sometimes treat disjunctions as exclusive disjunction, which can also be explained by the
principle of truth (cf. Section 3). Thorwart [2] models this by a function *[ED] : ℒ → ℒ with

𝜙*[ED] =

{︃
(𝛼 ∧ ¬𝛽) ∨ (¬𝛼 ∧ 𝛽) if 𝜙 = 𝛼 ∨ 𝛽
𝜙 otherwise

.

6.3. Instantiation as Sequential Operator

In the approach by Thorwart [2] a revision operator ∘ and a ℒ-perception4 * are combined to a binary
operator ⊛ : K×ℒ → K defined by 𝜅⊛ 𝜓 = 𝜅 ∘ 𝜓*. Clearly, this fits into the framework presented in
3These cases go beyond the framework considered here. We leave it open for another paper to consider the implementation of
the other ideas suggested in that work.

4The notion used by Thorwart [2] translates to this notion here.



Minor premise Major premise Response options

𝑎
𝑎 → 𝑏
𝑎 ↔ 𝑏

(𝑎 ∨ 𝑏) ∨ (𝑎 ∧ 𝑏)

(𝑎 ∨ 𝑏); ¬(𝑎 ∧ 𝑏)

¬𝑎, 𝑏, ¬𝑏, none

𝑏 𝑎, ¬𝑎, ¬𝑏, none

¬𝑎 𝑎, 𝑏, ¬𝑏, none

¬𝑏 𝑎, ¬𝑎, 𝑏, none

Figure 2: Premises and response choice combinations in the data set. The 𝑎 and 𝑏 in the figure stand for
propositional atoms. Each task is a combination of a minor and a major premise and four response options. The
presented response options are always the ones that do not contain the minor premise. The different arrows
indicate which response options are associated with a specific minor premise. Each minor premise is combined
once with one of four possible major premises, including either a statement with a conditional, a biconditional, an
inclusive disjunction or an exclusive disjunction, yielding 16 tasks in total. In tasks with an exclusive disjunction
the major premise consists of two statements, here separated by a semicolon [1].

Section 4. When A = ℒ is set as the set of all ranking functions, we can define 𝜅� 𝜙 = 𝜅⊛ 𝜙 as the
revision of 𝜅 by 𝜙, which is hence an EK-ℒ combinator in the sense of Definition 4.2.

The different revisions operators and ℒ-perceptions can be combined to multiple operators ⊛. The
resulting operators are each a combination of one of the revision operators ∘nat, ∘lex, ∘red, ∘DP or ∘ref,
and one of the ℒ-perceptions *[FEM], *[BI], *[PI] or *[ED]. Hence, there are 20 different operators based
on such a combination.

7. Experimental Dataset and Modelling

The works by Ismail-Tsaous et al. [1] and by Thorwart [2] both use data from an experiment on human
reasoning by Ragni et al. (see [1] for details) to evaluate their sequential approaches. In the following,
we outline the experimental design, the obtained data, and how they are connected with the sequential
approach presented in this paper.

7.1. The Experiment

The experiment was designed as a survey with single-choice tasks. Subjects were presented multiple
abstract propositional statements (i. e., premises) and response options in natural language and were
asked afterwards to select exactly one answer from the response options that follows from all the given
premises. Premises were always one minor premise, a singular literal, and a major premise, which was
either one implication of the form 𝑎→ 𝑏, one bi-implication of the form 𝑎↔ 𝑏, an inclusive disjunction
in the form (𝑎 ∨ 𝑏) ∨ (𝑎 ∧ 𝑏), or an exclusive disjunction represented by two statements, where the
first was of the form 𝑎 ∨ 𝑏 and the second of the form ¬(𝑎 ∧ 𝑏). In the next section, we refer also
to task groups, where a group is defined by their major premise, so that there are conditional tasks,
biconditional tasks, inclusive disjunction tasks and exclusive disjunction tasks. There were always four
response options, three of the offered responses were statements and the fourth one the option “none”,
denoting that none of the three statements follows from the premises. The tasks were designed in
such a way that at most one of the possible answers was also an implication of the given premises
in classical propositional logic. For instance, in a task with the two premises “There is a square.” and
“If there is a circle, there is a square.”, the subjects were asked to choose from the following possible
answers: “There is a circle.”, “There is no circle.”, “There is no square.” or “None of these answers follow
from the premises.”. Figure 2 shows all task types. The experiment was conducted online via Amazon
Mechanical Turk with participants who were not trained in logic. The cleaned data set DEx consists of
1097 records from 35 subjects and 16 unique tasks, each presented twice with different content5.

5The encoded dataset is available here: https://e.feu.de/ecsqaru2023data

https://e.feu.de/ecsqaru2023data


Number of Correct Predictions and Accuracy for Task Groups
Operator Group All Tasks Conditional Biconditional Incl. Disjunct. Excl. Disjunct.

n = 1097 n = 275 n = 275 n = 274 n = 273

CP Accuracy CP Accuracy CP Accuracy CP Accuracy CP Accuracy

Classical Logic 844 76.9 % 160 58.2 % 252 91.6 % 187 68.2 % 245 89.7 %

Merging PI 879 80.1 % 195 70.9 % 252 91.6 % 187 68.2 % 245 89.7 %

Merging MM 859 78.3 % 175 63.6 % 252 91.6 % 187 68.2 % 245 89.7 %

Merging FEM 844 76.9 % 160 58.2 % 252 91.6 % 187 68.2 % 245 89.7 %

Merging BMmin 771 70.3 % 195 70.9 % 252 91.6 % 187 68.2 % 137 50.2 %

Merging PFmin 737 67.2 % 160 58.2 % 145 52.7 % 187 68.2 % 245 89.7 %

Merging MMmin 629 57.4 % 160 58.2 % 145 52.7 % 187 68.2 % 137 50.2 %

Revision BI 879 80.1 % 195 70.9 % 252 91.6 % 187 68.2 % 245 89.7 %

Revision FEM 844 76.9 % 160 58.2 % 252 91.6 % 187 68.2 % 245 89.7 %

Revision PI 794 72.4 % 110 40.0 % 252 91.6 % 187 68.2 % 245 89.7 %

Revision ED 755 68.8 % 160 58.2 % 252 91.6 % 98 35.8 % 245 89.7 %

Figure 3: General predictive performance. The number 𝑛 in each column denotes the number of task records
and “CP” stands for Correct Predictions.

7.2. Formalization and Predictions by Operators

The following definition captures the schematics of each task record formally.

Definition 7.1 (Task record). A task record is a tuple 𝑅 = ⟨𝐿, {𝜙1, 𝜙2, 𝜙3}, 𝑟⟩ where

• 𝐿 ⊆ L(ℒ) is the list of given premises,
• 𝜙1, 𝜙2, 𝜙3 ∈ ℒ are the offered answers6, where 𝜙1, 𝜙2, 𝜙3 are pairwise non-equivalent, and
• 𝑟 ∈ {𝜙1, 𝜙2, 𝜙3, none} is the participant’s response.

We model the processing of a task record 𝑅 = ⟨𝐿, {𝜙1, 𝜙2, 𝜙3}, 𝑟⟩ as sequential process, whereby
𝐿 = [𝜓1, . . . , 𝜓𝑛]. In each step 𝑖, the participant constructs an internal representation 𝜓*

𝑖 for the
presented premise 𝜓𝑖. The prior state represented by the ranking function 𝜅𝑖−1 and the newly perceived
information 𝜓*

𝑖 is combined to the new state 𝜅𝑖 = 𝜅𝑖−1 � 𝜓𝑖. The given premises in 𝐿 are processed
sequentially. The final ranking function is 𝜅𝑛 = 𝜅0 � 𝐿.

We say that our pipeline predicts the participant’s choice, if 𝑟 is believed in 𝜅n, i. e., 𝑟 ∈ Bel(𝜅n). To
express our assumption that participants have no bias or prior information, we choose the uniform
ranking function, i. e., 𝜅uni(𝜔) = 0 for all 𝜔 ∈ Ω, as the participants’ initial epistemic state. The
following definition captures the notion of a (correct) prediction formally.

Definition 7.2 (Predicts). We say a sequential operator � predicts a task record 𝑅=⟨𝐿,{𝜙1, 𝜙2, 𝜙3},𝑟⟩
when the following holds:

• If 𝑟 ∈ {𝜙1, 𝜙2, 𝜙3}, then 𝑟 ∈ Bel(𝜅0 � 𝐿) holds.
• If 𝑟 = none, then 𝜙1, 𝜙2, 𝜙3 /∈ Bel(𝜅0 � 𝐿) holds.

Next, we observe that, on DEx, many considered operators make the same predictions.

7.3. Equivalences of Sequential Operators

When considering a concrete data set D, certain operators can exhibit the same prediction behaviour on
this dataset. This is captured formally, by saying that such operators are equivalent with respect to D.

Definition 7.3 (Equivalent with respect to D, ≃D). Let � and �′ be sequential operators and let D be
a finite set of task records. We say � is equivalent to �′ with respect to D, written � ≃D �′, if for all
𝑅 ∈ D holds that � predicts 𝑅 if and only if �′ predicts 𝑅.
6Because none is always offered, we do not mention this option explicitly.



In what remains of this section, we consider equivalence of sequential operators from Section 5 and
Section 6 with respect to the dataset DEx.

Sequential Merging Approach. For the sequential approach based on belief merging presented in
Section 5, Ismail et al. [1] observe that the predictions of the operators are mainly influenced by the
underlying ranking construction functions. We consider more formally, which DEx are present. Recall
that in Section 5 sequential operators where based on ⟨Δ, 𝜅∙⟩, where Δ is a merging operator and 𝜅∙ is
a ranking construction operator.

Proposition 7.4 ([1]). Each sequential operator based on ⟨Δ, 𝜅∙⟩, where Δ ∈
{Δmin,Δmax,ΔΣ,ΔRmin,ΔGmax,ΔRΣ} and 𝜅∙ ∈ {𝜅∙FEM, 𝜅

∙
BI-FEM, 𝜅

∙
PI-FEM, 𝜅

∙
MM, 𝜅

∙
BI-MM, 𝜅

∙
PI-MM} fall

into the equivalence classes of ≃DEx
as follows:

• [Merging FEM] Operators that are based on 𝜅∙FEM are in the same class.
• [Merging PI] Operators that are based on 𝜅∙PI-FEM,𝜅∙PI-MM,𝜅∙BI-FEM, or 𝜅∙BI-MM, except for ⟨Δ𝑚𝑖𝑛, 𝜅

∙
PI-FEM⟩,

⟨Δ𝑚𝑖𝑛, 𝜅
∙
PI-MM⟩ and ⟨Δ𝑚𝑖𝑛, 𝜅

∙
BI-MM⟩, are in the same class.

• [Merging MM] All operators that are based on the ranking construction operator 𝜅∙MM are in the same
class, except for the operator ⟨Δ𝑚𝑖𝑛, 𝜅

∙
MM⟩.

• [Merging PFmin] ⟨Δ𝑚𝑖𝑛, 𝜅
∙
PI-FEM⟩ is a singleton class.

• [Merging MMmin] ⟨Δ𝑚𝑖𝑛, 𝜅
∙
MM⟩ and ⟨Δ𝑚𝑖𝑛, 𝜅

∙
PI-MM⟩ form a class.

• [Merging BMmin] ⟨Δ𝑚𝑖𝑛, 𝜅
∙
BI-MM⟩ is a singleton class.

Sequential Revision Approach. For the sequential approach by revision presented in Section 6,
Thorwart [2] observed that only the used perception function influences the prediction in DEx. We
state this more formally. Recall that in Section 5 sequential operators where based on ⟨∘, *⟩, where ∘ is
a revision operator and * is a ℒ-perception.

Proposition 7.5 ([2]). Each sequential operator based on ⟨∘, *⟩, where ∘ ∈ {∘nat∘lex, ∘red, ∘DP, ∘ref} and
* ∈ {*[FEM], *[BI], *[PI], *[ED]} fall into the equivalence classes of ≃DEx

as follows:

• [Revision FEM] All operators based on *[FEM] fall into the same class.
• [Revision BI] All operators based on *[BI] fall into the same class.
• [Revision PI] All operators based on *[PI] fall into the same class.
• [Revision ED] All operators based on *[ED] fall into the same class.

In the next section, we analyse and compare the accuracy of the predictions made by merging
operators and revision operators.

8. Experimental Results

Ismail-Tsaous et al. [1] and Thorwart [2] evaluate the respective sequential approaches on the dataset
DEx introduced in Section 7. Recall that, as discussed in Section 7, multiple operators exhibit the same
prediction behaviour on the considered dataset DEx. Because of that, we refer only to the groups of
operators given in Proposition 7.4 and Proposition 7.5 instead of individual operators.

We consider the results of the two approaches on the aggregate level, i.e., the predictive performance
in the mean over all participants. Figure 3 summarizes the results given by Ismail-Tsaous et al. [1] and
by Thorwart [2]. First, observe that in both approaches the choice of used underlying belief revision
operator, respectively belief merging operator, have only little influence on the predictive performance.
Thus, operator(group)s that use fully explicit models (FEM) have the same performance as classical logic.
Operator(group)s that apply cognitive biases to conditionals, i.e., treat conditionals as biconditionals
or take inspiration from the principle of preferred interpration, perform best overall and in each task
group. One exception is the group [Revision PI], where this is not the case. While the combination of
mental model approaches with belief merging leads to results better than classical logic, all remaining
operator groups perform worse than just using classical logic for the predictions.



9. Conclusions and Future Work

In this paper, we introduced a sequential approach to study the predictive power and cognitive adequacy
of KR approaches for human propositional reasoning. We first briefly considered the background
of principles from cognitive sciences. Then, we presented the general sequential approach and two
instantiations of this approach by Ismail-Tsaous et al. [1] and by Thorwart [2]. We reported how both
approaches employ cognitive principles to model the human perception and understanding of presented
information. We summarized and compared the experimental results of both approaches and identified
common observations. Our work demonstrates how understanding cognitive processes and empirical
evaluations can be used as a tool for the improvement and evaluation of KR approaches, leading to
cognitive logics [32].

For future work on the sequential approach, we will investigate refinements to improve the predictive
power of the operators. One very striking point is that the experimental results exhibit that the KR
methods used in both approaches, belief merging and belief revision, seem to have little influence on
the resulting predictions. However, as Thorwart [2] explains, the considered data set is not rich enough
so that any considered operators could make a difference, i.e., there were not “enough” steps in the
process so that considered operators could show any effect. Hence, further experiments and evaluations
will be necessary before coming to a final conclusion in this matter. However, we are convinced that
KR-approaches can benefit from taking inspiration from theories and experimental results of cognitive
psychology.
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