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Abstract
Answer Set Programming (ASP) and Large Language Models (LLMs) have emerged as powerful tools in Artificial

Intelligence, each offering unique capabilities in knowledge representation and natural language understanding,

respectively. In this paper, we combine the strengths of the two paradigms to couple the reasoning capabilities of

ASP with the attractive natural language processing capability of LLMs. We introduce a YAML-based format

for specifying prompts, allowing users to configure the behavior of the system and to encode domain-specific

background knowledge. Input prompts are processed by LLMs to generate relational facts, which are then

processed by ASP rules for knowledge reasoning, and finally the ASP output is mapped back to natural language

by LLMs, so to provide a captivating user experience.
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1. Introduction

Large Language Models (LLMs) and Answer Set Programming (ASP) represent two distinct but com-

plementary paradigms in Artificial Intelligence (AI). LLMs, such as GPT [1], PaLM [2], and LLaMa [3],

have transformed natural language processing (NLP) by achieving unprecedented levels of fluency and

understanding in textual data. In contrast, ASP [4, 5], a declarative programming paradigm rooted in

logic programming under answer set semantics [6], excels in knowledge representation and logical

reasoning, making it fundamental for AI systems that require robust inference capabilities. Individually,

LLMs and ASP offer unique advantages within their respective domains. LLMs excel at various NLP

tasks [7, 8], such as language generation, summarization, and sentiment analysis, utilizing deep learning

and extensive pre-trained language models. In contrast, ASP equips AI systems with robust reasoning

capabilities, enabling them to process complex knowledge bases, draw logical conclusions, and tackle

intricate combinatorial problems. This makes ASP particularly effective in decision-making scenarios,

including planning and scheduling [9, 10], as well as diagnosis and configuration [11, 12]. Recognizing

the complementary strengths of LLMs’ linguistic abilities and ASP’s reasoning capabilities, this paper

proposes an approach that leverages the synergies between these two paradigms, inspired by recent

works in the literature [13, 14]. Our objective is to develop a unified system that seamlessly integrates

natural language understanding with logical inference, allowing AI applications to adeptly handle the

complex interplay between textual data and logical structures.

In this paper, we propose a comprehensive framework that combines LLMs and ASP, exploiting the

strengths of both paradigms to mitigate their respective weaknesses. We outline a method for encoding

specific domain knowledge into input prompts using a YAML-based format, which allows LLMs to

produce relational facts that are utilized by ASP for reasoning. The reasoned outcomes of ASP are then

translated back into natural language by LLMs, creating an engaging user experience and improving the

clarity of the results. An overview of the main pipeline addressed by our system is shown in Figure 1.
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Figure 1: Graphical representation of the LLMASP pipeline. The system receives two YAML files—one describing
system behavior and the other related to the specific application being developed—together with a relational
database and a user query in natural language. In this setup, the behavior YAML file offers initial prompts for
the LLM, which are then filled in with details from the application YAML file and the user’s input. The LLM uses
these finalized prompts to extract information from the user input, converting it into factual representations.
These facts are integrated with an ASP program (knowledge base) and processed by an ASP solver to produce an
answer set. Finally, the initial prompts are once again utilized to translate the returned answer set back into
natural language, delivering a coherent (and easier to read) response to the user.

The system takes in input two YAML files, one defining the behavior of the system and one specific of

the application under development, a database (relational facts), and a request from the user expressed

in natural language. The behavior file contains partial prompts for the LLM, which are completed by

the data stored in the application file and the user input. The complete prompts ask to extract data

from the user input and represent them in the form of facts. Facts are then combined with a knowledge

base (an ASP program) an processed by an ASP solver to obtain an answer set. The answer set is then

combined with the prompts obtained by the two YAML files to produce an answer in natural language

for the user.

As a possible application of the technology we want to develop, imagine a bustling online marketplace

that introduces a new, innovative way for users to interact with its platform: a chatbot. Traditionally,

users navigate the website using a mouse and keyboard to add or remove items from their shopping

basket. However, this marketplace now offers an alternative that caters to the growing number of

mobile phone users who prefer a more intuitive interaction. Instead of manually clicking through



menus, users can simply converse with the chatbot using natural language to achieve the same results.

For instance, a user might say, “Add two red t-shirts to my cart” or “Remove the coffee maker from

my basket,” and the chatbot seamlessly executes these commands. This voice-to-text interaction is

particularly convenient for mobile users who find typing cumbersome or impractical on smaller screens.

By leveraging the chatbot, the marketplace not only enhances the shopping experience but also makes

it more accessible and user-friendly for everyone.

In summary, our prototype system facilitates a smooth interaction between an LLM and an ASP

solver. When an input text is received, the system interacts with the LLM using a set of predefined

prompts whose overall structure is enhanced with additional sentences, as described in the YAML

format. The LLM-generated responses are then processed to extract factual data, which is fed into

the ASP solver. The ASP solver performs logical reasoning on the combination of input data and the

specified knowledge base, producing an answer set that encapsulates reasoned conclusions and insights.

To translate the logical output into comprehensible natural language, the system re-engages the LLM,

using predefined prompts and enriched specifications to convert the answer set into coherent sentences.

Lastly, the sentences are summarized by the LLM, offering users a concise and insightful overview of

the derived conclusions.

2. Background

2.1. Large Language Models

Large Language Models (LLMs) are sophisticated artificial intelligence systems designed to understand

and generate human-like text. These models are typically based on deep learning architectures, such as

Transformers, and are trained on vast amounts of text data to learn complex patterns and structures of

language. In this article, LLMs are used as black box operators on text (functions that take text in input

and produce text in output). At each interaction with a LLM, the generated text is influenced by all

previously processed text, and randomness is involved in the process. The text in input is called prompt,
and the text in output is called generated text or response.

Example 1. Let us consider the following prompt:

Encode as Datalog facts the following sentences: I would like some cooking ideas with

apples as dessert, and something with meat as a main plate.

A response produced by Meta Llama 3 is reported below.

want(dessert, apples). want(main_plate, meat).
dish_type(apples, dessert). dish_type(meat, main_plate).

It is a very good starting point, but the LLM must be instructed on a specific format to use in encoding

facts. We aim at gaining more control on the output produced by the LLM. ■

2.2. Answer Set Programming

All sets and sequences considered in this paper are finite. Let P, C, V be fixed nonempty sets of

predicate names, constants and variables. Predicates are associated with an arity, a non-negative integer.

A term is any element in C ∪V. An atom is of the form 𝑝(𝑡), where 𝑝 ∈ P, and 𝑡 is a possibly empty

sequence of terms. A literal is an atom possibly preceded by the default negation symbol not; they are

referred to as positive and negative literals. An aggregate is of the form

#sum{𝑡𝑎, 𝑡′ : 𝑝(𝑡)} ⊙ 𝑡𝑔 (1)

where ⊙ ∈ {<,≤,≥, >,=, ̸=} is a binary comparison operator, 𝑝 ∈ P, 𝑡 and 𝑡′ are possibly empty

sequences of terms, and 𝑡𝑎 and 𝑡𝑔 are terms. Let #count{𝑡′ : 𝑝(𝑡)} ⊙ 𝑡𝑔 be syntactic sugar for

#sum{1, 𝑡′ : 𝑝(𝑡)} ⊙ 𝑡𝑔 . A choice is of the form

𝑡1 ≤ {atoms} ≤ 𝑡2 (2)



where atoms is a possibly empty sequence of atoms, and 𝑡1, 𝑡2 are terms. Let ⊥ be syntactic sugar for

1 ≤ {} ≤ 1. A rule is of the form

head :– body . (3)

where head is an atom or a choice, and body is a possibly empty sequence of literals and aggregates.

(Symbol :– is omitted if body is empty. The head is usually omitted if it is ⊥, and the rule is called

constraint.) For a rule 𝑟, let 𝐻(𝑟) denote the atom or choice in the head of 𝑟; let 𝐵Σ(𝑟), 𝐵+(𝑟) and

𝐵−(𝑟) denote the sets of aggregates, positive and negative literals in the body of 𝑟; let 𝐵(𝑟) denote the

set 𝐵Σ(𝑟) ∪𝐵+(𝑟) ∪𝐵−(𝑟).

Example 2. Let us consider the following rules:

index(1). index(2). index(3). succ(1,2). succ(2,3). empty(2,2).
grid(X,Y) :- index(X), index(Y).
0 <= {assign(X,Y)} <= 1 :- grid(X,Y), not empty(X,Y).
:- #count{A,B : assign(A,B)} != 5.
:- assign(X,Y), succ(X,X'), assign(X',Y ).
:- assign(X,Y), succ(Y,Y'), assign(X ,Y').

The first line above comprises rules with atomic heads and empty bodies (also called facts). After

that there is a rule with atomic head and nonempty body (also called a definition), followed by a

choice rule, and three constraints. If 𝑟 is the choice rule, then 𝐻(𝑟) = {0 <= {assign(X, Y)} <= 1},

𝐵+(𝑟) = {grid(X, Y)}, 𝐵−(𝑟) = {not empty(X, Y)}, and 𝐵Σ(𝑟) = ∅. ■

A variable 𝑋 occurring in 𝐵+(𝑟) is a global variable. Other variables occurring among the terms 𝑡 of

some aggregate in 𝐵Σ(𝑟) of the form (1) are local variables. And any other variable occurring in 𝑟 is

an unsafe variable. A safe rule is a rule with no unsafe variables. A program Π is a set of safe rules. A

substitution 𝜎 is a partial function from variables to constants; the application of 𝜎 to an expression

𝐸 is denoted by 𝐸𝜎. Let instantiate(Π) be the program obtained from rules of Π by substituting

global variables with constants in C, in all possible ways; note that local variables are still present in

instantiate(Π). The Herbrand base of Π, denoted base(Π), is the set of ground atoms (i.e., atoms with

no variables) occurring in instantiate(Π).

Example 3. Variables 𝐴, 𝐵 are local, and all other variables are global. Let Π be the program comprising

all rules in Example 2 (which are safe). If C = {1, 2, 3}, then instantiate(Π) comprises, among others,

the following rules:

grid(1,1) :- index(1), index(1).
0 <= {assign(1,1)} <= 1 :- grid(1,1), not empty(1,1).
:- #count{A,B : assign(A,B)} != 5.

Note that the local variables 𝐴, 𝐵 are still present in the last rule above. ■

An interpretation is a set of ground atoms. For an interpretation 𝐼 , relation 𝐼 |= · is defined as follows:

for a ground atom 𝑝(𝑐), 𝐼 |= 𝑝(𝑐) if 𝑝(𝑐) ∈ 𝐼 , and 𝐼 |= not 𝑝(𝑐) if 𝑝(𝑐) /∈ 𝐼 ; for an aggregate 𝛼 of

the form (1), the aggregate set of 𝛼 w.r.t. 𝐼 , denoted aggset(𝛼, 𝐼), is {⟨𝑡𝑎, 𝑡′⟩𝜎 | 𝑝(𝑡)𝜎 ∈ 𝐼, for some

substitution 𝜎}, and 𝐼 |= 𝛼 if (
∑︀

⟨𝑐𝑎,𝑐′⟩∈aggset(𝛼,𝐼) 𝑐𝑎)⊙ 𝑡𝑔 is a true expression over integers; for a choice

𝛼 of the form (2), 𝐼 |= 𝛼 if 𝑡1 ≤ |𝐼 ∩ atoms| ≤ 𝑡2 is a true expression over integers; for a rule 𝑟 with

no global variables, 𝐼 |= 𝐵(𝑟) if 𝐼 |= 𝛼 for all 𝛼 ∈ 𝐵(𝑟), and 𝐼 |= 𝑟 if 𝐼 |= 𝐻(𝑟) whenever 𝐼 |= 𝐵(𝑟);
for a program Π, 𝐼 |= Π if 𝐼 |= 𝑟 for all 𝑟 ∈ instantiate(Π).

For a rule 𝑟 of the form (3) and an interpretation 𝐼 , let expand(𝑟, 𝐼) be the set {𝑝(𝑐) :– body . |
𝑝(𝑐) ∈ 𝐼 occurs in 𝐻(𝑟)}. The reduct of Π w.r.t. 𝐼 is the program comprising the

expanded rules of instantiate(Π) whose body is true w.r.t. 𝐼 , that is, reduct(Π, 𝐼) :=⋃︀
𝑟∈instantiate(𝑃𝑖), 𝐼|=𝐵(𝑟) expand(𝑟, 𝐼). An answer set of Π is an interpretation 𝐼 such that 𝐼 |= Π

and no 𝐽 ⊂ 𝐼 satisfies 𝐽 |= reduct(Π, 𝐼).

Example 4 (Continuing Example 3). Program Π has two answer sets, which comprise the following

instances of predicate assign/2:



Figure 2: The solutions encoded by the two answer sets of program Π in Example 2.

1. assign(1,2), assign(2,1), assign(2,3), assign(3,2);

2. assign(1,1), assign(1,3), assign(3,1), assign(3,3).

Figure 2 shows the solutions encoded by the two answer sets. ■

The language of ASP supports several other constructs, among them binary built-in relations (i.e., <,

<=, >=, >, ==, !=) which are interpreted naturally.

2.3. YAML

YAML (YAML Ain’t Markup Language; https://yaml.org/spec/1.2.2/) is a human-readable data serializa-

tion format commonly used for configuration files, data exchange, and representation of structured data.

YAML is designed to be easily readable by humans and is commonly used in software development

for configuration files, data storage, and data interchange between different programming languages.

YAML uses indentation to denote nesting and relies on simple syntax rules, such as key-value pairs and

lists, to represent structured data. YAML is often preferred for its simplicity, readability, and flexibility

compared to other serialization formats like JSON and XML. In this article, we focus on the following

restricted fragment: A scalar is any number or string (possibly quoted). A block sequence is a sequence

of entries, each one starting by a dash followed by a space. A mapping is a sequence of key-value pairs,

each pair using a colon and space as separator, where keys and values are scalars. A scalar can be

written in block notation using the prefix | (if not a key). Lines starting with # are comments.

Example 5. Below is a YAML document:

name: LLMASP
papers:
- CILC 2024
- SYNERGY 2024
description: |
LLMASP combines ASP and LLMs...
LLMs are used to extract data...

It encodes a mapping with keys name, papers and description. Key name is associated with the scalar

LLMASP. Key papers is associated with the list [CILC 2024, SYNERGY 2024]. Key description is

associated with a scalar in block notation. ■

3. LLMASP Configuration

The interaction between LLMs and ASP is achieved by means of two YAML specification files defined

in this section. The first YAML file specifies global behavior settings for LLMASP, as tone, style and

general instructions for the LLM, while the second YAML file contains domain-specific guidelines, as a

description of the context and mappings between each ASP fact and its corresponding natural language

translation.

https://yaml.org/spec/1.2.2/


Behavior File. The behavior file comprises two keys, namely preprocessing and postprocessing.

The preprocessing section contains the following properties:

• init, whose value is used to provide general instructions to the LLM;

• context, whose value must include the string §context§, to be combined with contextual

information regarding an application of interest;

• mapping, whose value must include the strings §input§, §instructions§ and §atom§, to be

combined with the instructions on how to extract specific atoms from the user input.

The postprocessing section is similar but the mapping must include the strings §facts§, §

instructions§ and §atom§, to be combined with the instructions on how to map specific atoms

(from the facts in the answer set) to natural language. Additionally, the postprocessing section specifies

how to summarize the §responses§ collected by the postprocessing mapping operation.

Example 6. Below is the behavior file encoding the hard-coded system presented at the 39th Italian
Conference on Computational Logic [15].

preprocessing:
init: |

You are a Natural Language to Datalog translator. To translate your
input to Datalog, you will be asked a sequence of questions. The
answers are inside the user input provided with
[USER_INPUT]input[/USER_INPUT] and the format is provided with
[ANSWER_FORMAT]predicate(terms).[/ANSWER_FORMAT]. Predicate is a
lowercase string (possibly including underscores). Terms is a
comma-separated list of either double quoted strings or integers.
Be sure to control the number of terms in each answer!
An answer MUST NOT be answered if it is not present in the user input.
Remember these instructions and don't say anything!

context: |
Here is some context that you MUST analyze and remember.
§context§
Remember this context and don't say anything!

mapping:
[USER_INPUT]§input§[/USER_INPUT]
§instructions§
[ANSWER_FORMAT]§atom§.[/ANSWER_FORMAT]

postprocessing:
init: |

You are now a Datalog to Natural Language translator.
You will be given relational facts and mapping instructions.
Relational facts are given in the form [FACTS]atoms[/FACTS].
Remember these instructions and don't say anything!

context: |
Here is some context that you MUST analyze and remember.
§context§
Remember this context and don't say anything!

mapping: |
[FACTS]§facts§[/FACTS]
Each fact matching §atom§ must be interpreted as follows:
§instructions§

summarize: |
Summarize the following responses:
§responses§

Application File. The second YAML file, the application file, contains three sections, namely

preprocessing, knowledge base, and postprocessing. The values associated with preprocessing



and postprocessing are mappings where keys are either atoms or the special value _ (used for providing

a context), and values are scalars. The value associated with knowledge base is an ASP program.

Example 7. Below is an example about an assistant for a marketplace aimed at helping customers with

fulfilling orders to match a given recipe.

preprocessing:
- _: The marketplace offers food products. Products and product preferences will

be talked about.
- product_request("product"): List all the products mentioned or requested. If a

product is named must be listed. Ignore plural, always write the product name
in singular.

- product_request("product", quantity): List all the products mentioned or
requested if and only if they have a quantity associated. Ignore plural,
always write the product name in singular.

knowledge base: |
#script(python)
def min(a, b): return a if a < b else b
#end.

% guess selection of products
{select(P,W,Q',T) : Q' = 1..@min(Q,R), T=Q'*PP+C} <= 1 :-

product_request(P,R), product_price(P,W,PP), warehouse(W),
warehouse_shipping_cost(W,C), product_in_warehouse(P,W,Q).

:- product_request(P,R), #sum{Q,W : select(P,W,Q,_)} != R.

% minimize total cost considering price and shipping
:∼ select(P, W, Q, T).[T@1]

% minimize shipping cost
:∼ warehouse_shipping_cost(W,C), warehouse_free_shipping(W,T),

select(_,W,Q,_), Q > 0,
#sum{Q' * Price,P : select(P,W,Q',_), product_price(P,W,Price)} < T.
[C@3, W]

%guess selection of products for a recipe
{select_for_recipe(R,P,W,Q',PP') : Q' = 1..@min(Q,A), PP'=PP*Q'} <= 1 :-

product_request(P), recipe(R), recipe_ingredient(R,P,A),
product_in_warehouse(P,W,Q), product_price(P, W, PP), warehouse(W).

:- product_request(P), #sum{Q,R,W : select_for_recipe(R,P,W,Q,_);
-A,R : recipe_ingredient(R, P, A) } != 0.

{matching_recipe(R,P)}=1 :- product_request(P), recipe_ingredient(R,P,_).

#show select/4.
#show select_for_recipe/5.
#show matching_recipe/2.

postprocessing:
- _: You are an assistant in an online marketplace, which is talking directly to a

customer. Your priority is to make sales, so the main goal of all responses
must be to make a sale. Your answers must be customer-oriented. Do not mention
any product that is not explicitly provided to you before. Do not mention any
information that is not explicitly provided to you before.

- select_for_recipe("recipe", "product", "warehouse", "quantity", "total"): Say to
buy "quantity" of "product" for "total" including shipping costs from
"warehouse" if the customer desire to make "recipe". Do not forget the
quantity.



- select("product", "warehouse", "quantity", "total"): Suggest to select
"quantity" of the "product" for a cost of "total" from the "warehouse". This
price include the shipping costs.

- matching_recipe("recipe", "product"): Suggest that "recipe" can be done with
"product".

The preprocessing aims at extracting data or a query about products. The data is combined with the

knowledge base and a database containing all information regarding product costs, for example

product("apple").
warehouse_shipping_cost("Lattanzi Warehouse", 7).
warehouse_shipping_cost("Verza Warehouse", 5).
warehouse_shipping_fee("Lattanzi Warehouse", 5).
warehouse_shipping_fee("Verza Warehouse", 3).
product_in_warehouse("apple", "Lattanzi Warehouse", 20).
product_in_warehouse("apple", "Verza Warehouse", 3).
product_price("apple", "Lattanzi Warehouse", 2).
product_price("apple", "Verza Warehouse", 4).
recipe_ingredient("Apple Pie", "apple", 4).

The combined knowledge is used to identify bests buying offers and products matching a recipe. Finally,

the postprocessing prompts aim at producing a paragraph reporting the found results, possible products

for adding to a shopping cart with related costs. ■

Notation. For 𝑎, 𝑏, 𝑐 being strings, let 𝑎[𝑏 ↦→ 𝑐] denote the string obtained from 𝑎 by replacing

all occurrences of 𝑏 with 𝑐. Given a behavior file 𝐵, let pre𝐵(𝛼) be the value associated with 𝛼
in the preprocessing mapping of 𝐵, where 𝛼 is among init, context and mapping. Similarly, let

post𝐵(𝛼) be the value associated with 𝛼 in the postprocessing mapping of 𝐵, where 𝛼 is among

init, context and mapping For a YAML application file 𝐴, let pre𝐴(𝛼) be the value associated with 𝛼
in the preprocessing mapping, where 𝛼 is either an atom or _. Similarly, let post𝐴(𝛼) be the value

associated with 𝛼 in the postprocessing mapping, where 𝛼 is either an atom or _. Finally, let kb𝐴 be

the ASP program in background knowledge.

4. LLMASP Pipeline

The architecture of LLMASP is shown in Figure 1. In this section, we discuss its core components and

illustrate its potential through a practical example.

LLMASP takes in input the two YAML file introduced in Section 3, namely the behavior file 𝐵 and

the application file 𝐴, together with a database file 𝐷 (comprising facts) and a request text 𝑇 (expressed

by the user in natural language). The system undergoes a sequence of interactions with an LLM to

populate a set 𝐹 of facts and a set 𝑅 of responses, which are initially empty. Specifically, LLMASP

execute the following procedure:

P1. The LLM is invoked with the prompt pre𝐵(init)

P2. If pre𝐴(_) is defined, the LLM is invoked with the following prompt:

pre𝐵(context)[§context§ ↦→ pre𝐴(_)].

P3. For each atom 𝛼 such that pre𝐴(𝛼) is defined, the LLM is invoked with the prompt

pre𝐵(mapping)[§input§ ↦→ 𝑇 ][§atom§ ↦→ 𝛼][§instructions§ ↦→ pre𝐴(𝛼)]. Facts in the

response are collected in 𝐹 . Everything else is ignored.

P4. An answer set of kb𝐴 ∪ {𝛼. | 𝛼 ∈ 𝐷 ∪ 𝐹} is searched, say 𝐼 . If an answer set does not exist, the

process terminates with a failure.

P5. The LLM is reset and invoked with the prompt post𝐵(init).

P6. If post𝐴(_) is defined, the LLM is invoked with the following prompt:

post𝐵(context)[§context§ ↦→ post𝐴(_)].



P7. For each atom 𝑝(𝑡) such that post𝐴(𝑝(𝑡)) is defined, the LLM is invoked with the prompt

post𝐵(mapping)[§facts§ ↦→ 𝐼][§atom§ ↦→ 𝛼][§instructions§ ↦→ post𝐴(𝛼)]. Responses

are collected in 𝑅.

P8. The LLM is invoked with the prompt post𝐵(summarize)[§responses§ ↦→ 𝑅]. The response is

provided in output.

In our implementation, the LLM is the latest iteration of the Meta’s open-source project LLama
1
, which

at the time of writing this paper has reached the third version, and the ASP system used is clingo [16].

Example 8. Let 𝐴 be the application file given in Example 7, and 𝐵 be the behavior file reported in

Example 6. Let 𝑇 be the following text:

I would like some cooking ideas with apples for dessert and a main plate with meat.

The LLM is invoked with the initial fixed prompt of P1, and then with the prompt of P2:

Here is some context that you MUST analyze and remember.

The marketplace offers food products. Products and product preferences will be talked about.

Remember this context and don’t say anything!

After that, the LLM is invoked two times with the prompt of P3 to populate set 𝐹 . For example,

[USER_INPUT]I would like some cooking ideas with apples for dessert and a main plate with meat.

[/USER_INPUT]

List all the products mentioned or requested. If a product is named MUST be listed. Ignore plural,

always write the product name in singular.

[ANSWER_FORMAT]product_request("product").[/ANSWER_FORMAT]

The LLM may provide the response

[ANSWER_FORMAT]product_request("apple").[/ANSWER_FORMAT]

[ANSWER_FORMAT]product_request("meat").[/ANSWER_FORMAT]

from which the following facts are extracted and added to 𝐹 :

product_request("apple"). product_request("meat").

Once all facts are collected, the knowledge base is used to search an answer set (P4), say one containing

the following atoms:

matching_recipe("Apple Pie","apple").'
matching_recipe("Meat and Onion","meat").
select("apple","Verza Warehouse",1,9).
select("meat","Rellman Warehouse",1,11).
select_for_recipe("Apple Pie","apple","Lattanzi Warehouse",4,8).
select_for_recipe("Meat and Onion","meat","Rellman Warehouse",5,35).

The LLM is now invoked with the prompts of P5–P7. In particular, the prompt of P7 is the following:

[FACTS]select_for_recipe("Apple Pie","apple","Lattanzi Warehouse",4,8).

select_for_recipe("Meat and Onion","meat","Rellman Warehouse",5,35). [/FACTS]

Each fact matching select_for_recipe("recipe", "warehouse", "quantity", "total") must be

interpreted as follows: Say to buy "quantity" of "product" for "total" including shipping

costs from "warehouse" if the customer desire to make "recipe". Do not forget the quantity.

The response, say

Consider buying 4 apples for 8 from Lattanzi Warehouse if you desire to make Apple Pie.

Consider buying 5 meat for 35 from Rellman Warehouse if you desire to make Meat and

Onion.

1

https://llama.meta.com/llama3/

https://llama.meta.com/llama3/


is added to 𝑅. Finally, the LLM is invoked with the prompt of P8:

Summarize the following responses: You might enjoy making an Apple Pie with our apples.

Consider preparing a Meat and Onion dish using our meat. Suggest to select 1 of the apple

for a cost of 9 from the Verza Warehouse. This price includes the shipping costs. Suggest

to select 1 of the meat for a cost of 11 from the Rellman Warehouse. This price includes the

shipping costs. Consider buying 4 apples for 8 from Lattanzi Warehouse if you desire to

make Apple Pie. Consider buying 5 meat for 35 from Rellman Warehouse if you desire to

make Meat and Onion.

The response, say

Why not try making an Apple Pie with our delicious apples, or a savory Meat and Onion

dish using our fresh meat? You can get 1 apple from Verza Warehouse for $9 or 4 from

Lattanzi Warehouse for $8, and pair it with 1 meat from Rellman Warehouse for $11 or 5

for $35!

is provided in output. ■

The main benefit of the new LLMASP version compared to the initial proposal introduced at CILC

2024 [15] is the ease of testing various behavior files. This feature allows for experimentation with

different prompts to manage the interaction and behavior of the LLM.

Example 9. Let us consider again the application file reported in Example 7, and the following behavior

file (different from the one reported in Example 6):

preprocessing:
init: |

As an ASP translator, your primary task is to convert natural language
descriptions, provided in the format [INPUT]input[/INPUT], into precise ASP
code, outputting in the format [OUTPUT]predicate(terms).[/OUTPUT]. Focus on
identifying key entities and relationships to create facts (e.g., [INPUT]Alice
is happy[/INPUT] becomes [OUTPUT]happy(alice).[/OUTPUT]), [INPUT]Bob owns a
car[/INPUT] becomes [OUTPUT]owns(bob, car)[/OUTPUT], [INPUT]The sky is
blue[/INPUT] becomes [OUTPUT]color(sky, blue)[/OUTPUT], and [INPUT]Cats are
mammals[/INPUT] becomes [OUTPUT]mammal(cat)[/OUTPUT]. Ensure that the natural
language intent is accurately and logically reflected in the ASP code.
Maintain semantic accuracy by ensuring logical consistency and correctly
reflecting the natural language intent in your ASP code. Remember these
instructions and don't say anything!

context: |
Here is some context that you MUST analyze and remember.
§context§
Remember this context and don't say anything!

mapping:
[INPUT]§input§[/INPUT]
§instructions§
[OUTPUT]§atom§.[/OUTPUT]

postprocessing:
init: |

As an ASP to natural language translator, you will convert ASP facts provided
in the format [FACTS]atoms[/FACTS] into clear natural language statements
using predefined mapping instructions. For example,
[FACTS]happy(alice)[/FACTS] should be translated to "Alice is happy,"
[FACTS]friend(alice, bob)[/FACTS] to "Alice is friends with Bob," and
[FACTS]owns(bob, car)[/FACTS] to "Bob owns a car." Ensure each fact is
accurately and clearly represented in natural language, maintaining the
integrity of the original information.



Remember these instructions and don't say anything!
context: |

Here is some context that you MUST analyze and remember.
§context§
Remember this context and don't say anything!

mapping: |
[FACTS]§facts§[/FACTS]
Each fact matching §atom§ must be interpreted as follows:
§instructions§

summarize: |
Summarize the following responses:
§responses§

In this case the prompt used in pre𝐵(init) was enriched using in-context learning (ICL),a specific

method of prompt engineering where demonstrations of the task are provided to the model as part of

the prompt (in natural language) [17]. Considering the same input text as Example 8, after invoking the

LLM with the prompt of P3, the provided response is

[OUTPUT]product_request("apple").[/OUTPUT]

[OUTPUT]product_request("apple", 0).[/OUTPUT]

[OUTPUT]product_request("meat").[/OUTPUT]

[OUTPUT]product_request("meat", 0).[/OUTPUT]

In this case no quantities were specify by the user input, however the model still generate a 0 quantity

request for each product. ■

Continuing with the behavior file discussed in Example 9, let’s now consider a different application:

an intelligent assistant. Still within the context of a marketplace, this assistant will aid in managing

inventory efficiently and effectively.

Example 10. Below is an assistant for monitoring inventory levels and to provide notifications when

it is necessary to replenish products in the warehouse.

preprocessing:
- _: You are an assistant for logistics management. Products, warehouses and

products stocks will be talked about.
- product_request("product", quantity).: List all the products mentioned or

requested with a quantity associated. If no quantity is mentioned, assume 1.
Ignore plural, always write the product name in singular.

knowledge_base: |
#script(python)
def min(a, b): return a if a < b else b
#end.

% guess selection of products
{select(P,W,Q',S) : Q' = 1..@min(Q,R), S = Q-Q'} <= 1 :-

product_request(P,R),
product_price(P,W,PP),
warehouse(W),
warehouse_shipping_cost(W,C),
product_in_warehouse(P,W,Q).

% select the correct amount of products
:- product_request(P,R), #sum{Q,W : select(P,W,Q,_)} != R.

% minimize shipping cost
:∼ warehouse_shipping_cost(W,C),

warehouse_free_shipping(W,T),



select(_,W,Q,_), Q > 0,
#sum{Q' * Price,P : select(P,W,Q',_), product_price(P,W,Price)} < T.
[C@3, W]

#show select/4.

postprocessing:
- _: |

You are an assistant for logistics management in an online marketplace, which
is talking to a manager. Your priority is to keep track of product stocks and
inventory. Do not mention any product that is not explicitly provided to you
before. Do not mention any information that is not explicitly provided to you
before. If there is a 0 quantity associated with a product say that is out of
stock. Your answers should be suggestions for the manager to keep the
warehouses full of products. It must guide the manager to place the products
in the warehouses. Always limit your responses to a maximum of 100 characters.

- select("product", "warehouse", "quantity", "stock").: |
Suggest that if "product" with "quantity" is selected from "warehouse", the
remaining "stock" quantity in the warehouse should be tracked.
Suggest to consider placing more products.

Given the following configuration, 𝐴 be application file from Example 10 and 𝐵 the behavior file

from Example 9. Let 𝑇 be the following input text:

What happens if we get and order of 22 apples?

Following the procedure from P1-P8 the final output of the system will be

Restock apples in Verza Warehouse (out of stock) and consider restocking in Lattanzi

Warehouse (only 1 left).

Using YAML configuration files allows for easy and human-readable editing of the system settings,

enabling quick modifications without altering the underlying code. This flexibility facilitates testing

different scenarios and generating varied outputs by simply updating the configuration files.

5. Related Work

In general, LLMs, including ChatGPT [1], PaLM [2], and LLaMa [3], demonstrate an impressive ability

to utilize semantic relationships among tokens within natural language sequences of various lengths.

They excel particularly in sequence-to-sequence (seq2seq) tasks, where a text input triggers a text

output generated by the model. The applications of seq2seq models are diverse, covering areas such as

machine translation [18], answering factual questions [19], executing basic arithmetic operations [20],

text summarization [21], and chatbot functionalities [22]. It is reasonable to expect that these models

could also excel in information extraction tasks.

The extraction of relational facts from text has been a continuous effort in Natural Language Process-

ing. The capability to identify semantic relationships between entities in text allows one to convert

unstructured raw text into structured data, which can then be utilized in various downstream tasks

and applications, including the development of Knowledge Bases. In [23], the researchers introduce a

sequence-to-sequence model built on BART [24] capable of executing end-to-end extraction for over

200 distinct relation categories. Their approach aligns with a growing trend where seq2seq Transformer

models, such as BART or T5 [25], are employed in NLU tasks, including Entity Linking [26] and Semantic

Role Labeling [27], by redefining them as seq2seq problems. Nowadays, although the most advanced

Transformer-based models, such as GPT-3 and 4, have increased in size and demonstrate outstand-

ing performance in numerous natural language processing tasks, these systems still exhibit limited

reasoning capabilities despite the use of various prompting methods [28]. An alternative perspective,

highlighted by [29], suggests that LLMs are suitable for what Kahneman refers to as System-1 thinking.



This is because they are designed to predict the next word in a sequence without deep comprehension

of crucial reasoning concepts like causality, logic, and probability. Merging LLMs with logical reasoning

into a neurosymbolic framework is an active research field. For example, considering ASP, a recent

study [30] uses a dual phase architecture, incorporated in the NL2ASP tool, to produce ASP programs

from natural language descriptions. NL2ASP utilizes neural machine translation to convert natural

language into Controlled Natural Language (CNL) statements, which are then translated into ASP code

via the CNL2ASP tool. Despite being a well-established approach to bridge the difference between

the flexibility of natural language (NL) and the strictness of formal languages, the application of CNL

[31] still faces limitations regarding its expressiveness [32]. In our approach, we bypass the use of

intermediate languages like CNL. Instead, we implement a method where the users articulate their

intents in NL, and arrange the information more systematically to align with LLM input preferences in

order to minimize irrelevant responses. It is important to highlight that our task is less complex than

the one tackled by [30]. Unlike [30], which aims to convert textual information into a formal knowledge

base, our focus is directed toward a more straightforward task that involves the input and output of the

ASP solver, without diving into deep semantic-demanding translation of the application domain. In

addition, combining both methods could lessen the effort required from the end user.

Attempting a similar objective as [30], but using a prompt engineering strategy, [33] suggests carefully

crafting prompts for an LLM to transform natural language descriptions into ASP incrementally. They

demonstrate that, with just a handful of in-context learning instances, LLMs are capable of producing

fairly complex answer set programs. The proposed pipeline initially identifies the relevant objects and

their categories. Subsequently, it forms a predicate that delineates the relationships between objects

from various categories. Using these derived data, the pipeline proceeds to build an ASP program

following the Generate-Define-Test paradigm.

The main idea of [33] involves using LLM as an interface for answer set programming, thereby

leveraging their language processing capabilities to convert NL descriptions into the declarative syntax

of answer set programs. In contrast to approaches that rely on algorithms or machine learning methods,

the authors observe that LLMs, when provided with an effective prompt, can produce fairly accurate

answer set programs. Although we share with [33] the insight that effective prompt engineering is

adequate for initial entity and relation extraction, we depart from their findings by asserting that the

complexity of real-world applications necessitates a more structured approach to ASP than the pipeline

proposed in their work. Additionally, because the authors appear not to make any specific assumptions

about the problem description required to generate the final program with LLM, we aim to explore in

future research the induction of logic programs from unstructured text using LLMs.

The closest related work to our goal that we found in the literature is [34]. In this work, the authors

focus primarily on the Question Answering (QA) task, using an LLM to transform a problem description

(comprising context S and query q) into atomic facts. Subsequently, the ASP solver processes these facts

along with background knowledge represented as ASP rules to derive an answer a. This method does not

rely on training datasets
2
. Instead, only a small number of examples were used as few-shot contextual

data for the LLM input. Supplying this meta-information about the problem context consequently

facilitates the translation of natural language sentences into atomic facts, thereby enhancing the LLMs’

semantic parsing abilities. We set our work apart by proposing a more organized method for the prompt

engineering task that does not rely on few-shot examples. However, integrating contextual few-shot

prompting into our framework is feasible at a low cost; users simply need to create a small number of

examples based on the complexity of the problem to guide the LLM. We will explore this possibility in

future work.

Finally, despite their individual successes, the integration of LLMs and ASP remains relatively

unexplored. This synergy presents a unique opportunity to leverage the strengths of both paradigms:

LLMs for their linguistic and contextual capabilities, and ASP for its precise, logic-based reasoning.

By combining these technologies, we can create powerful AI systems capable of both understanding

complex natural language inputs and performing sophisticated logical inference [35, 36].

2

Although, the authors still have access to labeled QA datasets in which tuple ⟨𝑆, 𝑞, 𝑎⟩ is given.



6. Conclusion

In this paper, we have introduced an approach for combining Large Language Models (LLMs) and Answer

Set Programming (ASP) to harness their complementary strengths in natural language understanding

and logical reasoning. Our prototype system (https://github.com/lewashby/llmasp) is written in Python,

and it is powered by the LLM llama3:70b from ollama
3

and the clingo Python API [37]. By providing

predefined prompts and enriching specifications with domain-specific knowledge, our approach enables

users to tailor the system to diverse problem domains and applications, enhancing its adaptability and

versatility. With respect to the previous version of the system [15], the predefined prompts can be easily

modified as they are stored in a separate YAML file. Such a separation is a first step toward our future

research directions, which encompass the evaluation of the quality of the answers provided by our

integrated LLMASP system, and the exploration with different prompts to improve the overall quality

of the system.
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