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Abstract
We present a new formal framework for generalized planning (GP) based on the situation calculus extended
with LTL constraints. The GP problem is specified by a first-order basic action theory whose models are the
problem instances. This low-level theory is then abstracted into a high-level propositional nondeterministic basic
action theory with a single model. A refinement mapping relates the two theories. LTL formulas are used to
specify the temporally extended goals as well as assumed trace constraints. If all LTL trace constraints hold at the
low level and the high-level model can simulate all the low-level models with respect to the mapping, we say
that we have a temporally lifted abstraction. We prove that if we have such an abstraction and the agent has a
strategy to achieve a LTL goal under some trace constraints at the abstract level, then there exists a refinement of
the strategy to achieve the refinement of the goal at the concrete level. We use LTL synthesis to generate the
strategy at the abstract level. We illustrate our approach by synthesizing a program that solves a data structure
manipulation problem.
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1. Overview

In generalized planning (GP), one tries to generate a typically iterative policy that solves an infinite set
of similar planning problem instances [1, 2, 3]. For example, we may want to synthesize a program for
finding the minimum value in a list, for lists of any lengths. Many approaches to generalized planning
involve constructing an abstraction and finding a solution for this abstraction which handles all the
actual problem instances [4, 5]. We propose a new formal framework for generalized planning based
on the situation calculus [6, 7] that allows one to provide an abstract description of the domain and
associated LTL trace constraints [5, 8], and prove that a controller synthesized for the abstract theory
can be refined into one that achieves the goal at the concrete level.

Our framework is based on the nondeterministic situation calculus [9] (DL21) where each agent action
𝐴(�⃗�) is accompanied by an environment reaction 𝑒 outside the agent’s control that determines the
action’s outcome, e.g., a flipped coin may fall head or tail. A nondeterministic basic action theory
(NDBAT) can be seen as a special kind of action theory, where we have system actions𝐴(�⃗�, 𝑒), successor
state axioms 𝒟𝑠𝑠𝑎, describing how predicates and functions change after system actions are performed,
and action precondition axioms 𝒟𝑝𝑜𝑠𝑠, stating when each system action can occur. [10] (BDL23) have
proposed an account of abstraction for NDBATs. They relate a high-level NDBAT to a low-level NDBAT
through a refinement mapping that specifies how a high-level action is implemented at the low level by
a ConGolog program [11, 12]. They then define notions of sound and/or complete abstraction for such
NDBATs in terms of a notion of bisimulation between their models. [13, 14] have adapted and extended
this kind of approach to solve GP problems, focusing on QNP abstractions.
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Here, we assume that the modeler specifies a propositional high-level (HL) action theory/model with
a limited set of HL fluents and nondeterministic actions, which abstracts over a concrete low-level (LL)
action theory with multiple models, with a given refinement mapping 𝑚. At the LL, in each model we
have complete information about the state of the world, while at the HL, we have actions that may have
several outcomes, e.g., after advancing to the next item in a list, we may or may not reach the list’s end.
We extend the HL theory with LTL trace constraints to impose fairness assumptions on the possible
sequences of nondeterministic actions, e.g., ensuring that if we keep advancing we will eventually reach
the list’s end. To do this, we leverage the axiomatization of infinite paths introduced by [15]. A path
𝑝 is a sequence of situations, and we use 𝑂𝑛𝑃𝑎𝑡ℎ(𝑝, 𝑠), 𝑆𝑡𝑎𝑟𝑡𝑠(𝑝, 𝑠) and Suffix (𝑝′, 𝑝, 𝑠) with their
intuitive meaning. Given an LTL constraint 𝜓, we define 𝐻𝑜𝑙𝑑𝑠(𝜓, 𝑝) (meaning that 𝜓 holds on path
𝑝)1:

𝐻𝑜𝑙𝑑𝑠(𝜑, 𝑝)
.
= ∃𝑠.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝, 𝑠) ∧ 𝜑[𝑠]

𝐻𝑜𝑙𝑑𝑠(¬𝜓, 𝑝) .= ¬𝐻𝑜𝑙𝑑𝑠(𝜓, 𝑝)
𝐻𝑜𝑙𝑑𝑠(𝜓1 ∨ 𝜓2, 𝑝)

.
= 𝐻𝑜𝑙𝑑𝑠(𝜓1, 𝑝) ∨𝐻𝑜𝑙𝑑𝑠(𝜓2, 𝑝)

𝐻𝑜𝑙𝑑𝑠(○𝜓, 𝑝)
.
= ∃𝑠, 𝑎, 𝑠′, 𝑝′.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝, 𝑠) ∧

𝑠′ = 𝑑𝑜(𝑎, 𝑠) ∧ Suffix (𝑝′, 𝑝, 𝑠′) ∧𝐻𝑜𝑙𝑑𝑠(𝜓, 𝑝′)
𝐻𝑜𝑙𝑑𝑠(𝜓1 𝒰 𝜓2, 𝑝)

.
= ∃𝑠, 𝑠′, 𝑝′.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝, 𝑠) ∧

𝑠 ⪯ 𝑠′ ∧ Suffix (𝑝′, 𝑝, 𝑠′) ∧𝐻𝑜𝑙𝑑𝑠(𝜓2, 𝑝
′) ∧ ∀𝑠′′, 𝑝′′.

(𝑠 ⪯ 𝑠′′ ≺ 𝑠′ ∧ Suffix (𝑝′′, 𝑝, 𝑠′′)) ⊃ 𝐻𝑜𝑙𝑑𝑠(𝜓1, 𝑝
′′)

Finally, we define a notion of temporally lifted abstraction, where every LL trace that is a refinement
of a sequence of HL actions is 𝑚-similar to a trace involving this action sequence in the HL model, and
where the LTL trace constraints are satisfied by the LL theory. The NDBATs represent our GP problem,
where each LL model specifies the planning problem instances, and the HL model abstracts away the
LL details, retaining only the shared features. We then provide a method for solving all the planning
problem instances simultaneously. In particular, we show that given such an abstraction, if we can use
LTL synthesis on the HL model to obtain a HL strategy that achieves a LTL goal under the given trace
constraints, then we can automatically refine it to get a LL strategy that achieves the mapped LTL goal
in all concrete instances of the problem.

We illustrate how our approach works by using it to synthesize a program to find the minimum value
of a list. This application is inspired by [16] (B20), which proposed an approach for solving program
synthesis tasks [17, 18, 19, 20, 21] that involve the manipulation of data structures such as lists, trees,
and graphs by viewing them as instances of generalized planning. They provide several examples of
how their method can be applied, but they do not provide complete formal specifications of the data
structures used and formal proofs that the assumed temporal constraints and goal specifications hold
for them.

2. Methodology

Our methodology involves the following main steps:

1. Formalize the concrete planning problem instances in situation calculus - this consists of writing
the specification for the domain of interest; hence, it is straightforward

2. Specify a propositional temporally lifted abstraction as a HL NDBAT - this abstracts over some
details and includes nondeterministic actions; some LTL trace constraints will also be introduced
to capture restrictions on the possible future histories; obtaining the HL NDBAT is similar to the
previous step and, in many cases, we can reuse (part of) the specification of one GP task for other
similar tasks (i.e., involving the same data structure)

3. Write the LTL goals - this step is domain-dependent
4. Run a LTL synthesis engine on the HL abstraction - this automatically derives a HL strategy to

reach the goals; note that our HL propositional abstraction can always be interpreted as an LTL
specification

1𝜑 is a ground situation-suppressed formula defined over an NDBAT; 𝜑[𝑠] is the formula obtained by restoring the situation 𝑠.



5. Translate the HL strategy to a LL program - this step can be simply addressed by using the
refinement mapping

This methodology yields provably correct solutions; the following sections will be devoted to providing
strong formal guarantees. Note that there should be no need to generate the entire situation calculus
specifications from scratch. Instead, one could build a library of specifications and reuse them in a
modular way. This means that the modeler can just specify her problem in terms of HL trace and goal
constraints, exploiting this library, and then run the automatic synthesis engines.

Example: Finding the minimum value in a linked list.
Step 1: Consider the task of finding the minimum value stored in a singly-linked list. We can construct

a NDBAT 𝒟𝑠𝑙𝑙
𝑙 with two actions and two functional fluents. The actions are 𝑛𝑒𝑥𝑡𝐿𝐿, which moves a

cursor that scans the nodes of the list, and 𝑢𝑝𝑑𝑎𝑡𝑒𝐿𝐿, which writes the value of the current pointed
node into a dedicated register. Additionally, we have a 𝑛𝑜_𝑜𝑝 action, with no precondition and no
effect. Note that, at the LL, we have only one possible environment reaction Success for each action. The
functional fluents will be 𝑝𝑜𝑠(𝑠), whose value represents the position of the current node within the
list, and 𝑐𝑚𝑝(𝑠), which represents whether the current node contains a lower value than the register.

Step 2: NDBAT 𝒟𝑠𝑙𝑙
ℎ models the HL action theory with two (propositional) fluents:

ℎ𝑎𝑠𝑁𝑒𝑥𝑡(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛), signaling whether the cursor points at the last node of the list, and
𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑎𝑛(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛), signaling whether the value of the node pointed by the cursor is lower than
the value stored in the register. The actions used for our task will be 𝑛𝑒𝑥𝑡𝐻𝐿, which moves the cursor
if possible and performs the comparison between the node and register values, and 𝑢𝑝𝑑𝑎𝑡𝑒𝐻𝐿, which
updates the register’s value to the node’s. The environment reaction of 𝑛𝑒𝑥𝑡𝐻𝐿 tells us if the successor
node’s value is lower than the register’s and if the end is reached. Here is a fragment of the refinement
mapping 𝑚𝑠𝑙𝑙:

𝑚𝑠(𝑛𝑒𝑥𝑡𝐻𝐿(𝑟ℎ)) =
𝑛𝑒𝑥𝑡𝐿𝐿(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝐿𝐿𝑁 );
if 𝑝𝑜𝑠 < 𝑙𝑒𝑛𝑔𝑡ℎ

if 𝑐𝑚𝑝 = LT
then 𝑟ℎ = LT_NE? else 𝑟ℎ = GEQ_NE? endIf

else
if 𝑐𝑚𝑝 = LT

then 𝑟ℎ = LT_E? else 𝑟ℎ = GEQ_E? endIf
endIf

Additionally, we introduce two LL actions 𝑠𝑡𝑎𝑟𝑡𝐻𝐿𝐴𝑐𝑡𝑖𝑜𝑛 and 𝑒𝑛𝑑𝐻𝐿𝐴𝑐𝑡𝑖𝑜𝑛 which make 𝐻𝑙𝑐(𝑠)
false and true respectively at the beginning and at the end of the program of each HL action. We also
use a HL fluent for each action, namely 𝑑𝑜𝑛𝑒𝑁𝑒𝑥𝑡 and 𝑑𝑜𝑛𝑒𝑈𝑝𝑑𝑎𝑡𝑒, to signal the last action executed.
Finally, we consider the HL trace constraint for specifying that moving repeatedly to the next node of
the list eventually leads to the last one:

(□♢𝑑𝑜𝑛𝑒𝑁𝑒𝑥𝑡) → ♢¬ℎ𝑎𝑠𝑁𝑒𝑥𝑡

Step 3: The HL LTL goals that must be satisfied are:

♢□¬ℎ𝑎𝑠𝑁𝑒𝑥𝑡
□(𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑎𝑛↔ ○𝑑𝑜𝑛𝑒𝑈𝑝𝑑𝑎𝑡𝑒)

The first says that the list must be scanned till the end, while the second says that the value of the
register must be updated iff the pointed node has a lower value than the register.

Step 4: A HL strategy that satisfies the goals is:

𝑓ℎ(𝑠) =

⎧⎪⎨⎪⎩
𝑢𝑝𝑑𝑎𝑡𝑒𝐻𝐿 if 𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑎𝑛(𝑠)
𝑛𝑒𝑥𝑡𝐻𝐿 if ¬𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑎𝑛(𝑠) ∧ ℎ𝑎𝑠𝑁𝑒𝑥𝑡(𝑠)
𝑠𝑡𝑜𝑝 otherwise



This strategy prescribes updating the value of the register whenever the node has a lower value and
moving the cursor when it is not at the end of the list. As stated before, since we have a propositional
HL specification, we can write it in LTL and rely on LTL synthesis engines to automatically derive this
strategy (this needs an intermediate translation from the HL specification to an LTL one). Figure 1
shows the controller obtained by using the engine Strix [22], as done by (B20). It is easy to see that 𝑓ℎ
is consistent with the controller.

Step 5: At the LL the strategy can be refined as follows:

𝑓𝑙(𝑠) =

⎧⎪⎨⎪⎩
𝑢𝑝𝑑𝑎𝑡𝑒𝐿𝐿 if 𝑐𝑚𝑝 = LT
𝑛𝑒𝑥𝑡𝐿𝐿 if 𝑐𝑚𝑝 = GEQ ∧ 𝑝𝑜𝑠 < 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑜_𝑜𝑝 otherwise

3. Temporally Lifted Abstractions

As mentioned previously, we want to specify a GP problem at the concrete level by a BAT 𝒟𝑙, with the
various basic planning problems being models of this BAT. We will then define an abstract version of
the theory by providing a propositional NDBAT 𝒟ℎ, for which we have a single model and incomplete
information, with the nondeterminism capturing the differences between the different concrete instances.
We will also specify some LTL trace constraints on the abstract model that characterize the traces that
can actually arise in the concrete theory instances. We refer to this framework as a temporally lifted
abstraction. With this structure in place, we can approach solving the GP problem by performing LTL
synthesis on the abstraction.

For this to work, we need to ensure that executions of refinements of HL actions in models of the LL
theory correspond to executions in the HL theory/model. So we will specify the relationship between
the HL NDBAT and the LL BAT by a refinement mapping𝑚. For this, we extend the notion of refinement
mapping for NDBAT abstractions from (BDL23) to handle LTL trace constraints. We will then ensure
that executions of HL actions in the models correspond through a form of simulation relative to the
refinement mapping 𝑚.

NDBAT Refinement Mapping with Trace Constraints. In (BDL23), an NDBAT refinement map-
ping 𝑚 is a triple ⟨𝑚𝑎,𝑚𝑠,𝑚𝑓 ⟩ where (i) 𝑚𝑎 associates each HL agent action 𝐴 to a ConGolog agent
program (i.e., 𝑚𝑎(𝐴(�⃗�)) = 𝛿𝑎𝑔𝐴 (�⃗�)), (ii) 𝑚𝑠 associates each system action 𝐴 to a ConGolog system
program (i.e., 𝑚𝑠(𝐴(�⃗�, 𝑒)) = 𝛿𝑠𝑦𝑠𝐴 (�⃗�, 𝑒)), (iii) 𝑚𝑓 maps each situation-suppressed HL fluent 𝐹 (�⃗�) to a
formula 𝜑𝐹 .

Our revisited definition of NDBAT mapping maintains the previous elements and includes a new
component 𝑚𝑡, which specifies how HL trace constraints are mapped to the LL:

Definition 1 (Refinement Mapping for Trace Constraints). Let 𝜓 be an LTL trace constraint and 𝐻𝑙𝑐
a distinguished symbol that signals that a HL action is completed. A NDBAT refinement mapping 𝑚 is
a tuple ⟨𝑚𝑎,𝑚𝑠,𝑚𝑓 ,𝑚𝑡⟩, where 𝑚𝑎, 𝑚𝑠 and 𝑚𝑓 are defined as usual and 𝑚𝑡 is a mapping for trace
constraints defined as follows:

Figure 1: Controller for finding the minimum in a list.



𝑚𝑡(𝜑)
.
= 𝑚𝑓 (𝜑)

𝑚𝑡(¬𝜓)
.
= ¬𝑚𝑡(𝜓)

𝑚𝑡(𝜓1 ∨ 𝜓2)
.
= 𝑚𝑡(𝜓1) ∨𝑚𝑡(𝜓2)

𝑚𝑡(○𝜓)
.
= ○(¬𝐻𝑙𝑐𝒰(𝐻𝑙𝑐 ∧𝑚𝑡(𝜓)))

𝑚𝑡(𝜓1 𝒰 𝜓2)
.
= (𝐻𝑙𝑐 ⊃ 𝑚𝑡(𝜓1))𝒰(𝐻𝑙𝑐 ∧𝑚𝑡(𝜓2))

As in [10] and [23], respectively, we require the following two constraints to hold:

Constraint 2 (Proper Refinement Mapping). For every HL system action sequence �⃗� and every HL action
𝐴, we have:

𝒟𝑙 ∪ 𝒞 |= ∀𝑠.(𝐷𝑜(𝑚𝑠(�⃗�), 𝑆0, 𝑠) ⊃ ∀�⃗�, 𝑠′.
(𝐷𝑜𝑎𝑔(𝑚𝑎(𝐴(�⃗�)), 𝑠, 𝑠

′) ≡ ∃𝑒.𝐷𝑜(𝑚𝑠(𝐴(�⃗�, 𝑒)), 𝑠, 𝑠
′))

Constraint 3. 𝒟𝑙 ∪ 𝐶 |= 𝐻𝑙𝑐(𝑠) if and only if there exists a HL system action sequence �⃗� such that
𝒟𝑙 ∪ 𝐶 |= 𝐷𝑜(𝑚(�⃗�), 𝑆0, 𝑠).

Temporally lifted abstractions. Finally, we can present the concept of temporally lifted abstractions.
To relate the HL and LL models, we first need to present the notion of 𝑚-isomorphic situations.

Definition 4 (m-isomorphic situations). We say that situation 𝑠ℎ in 𝑀ℎ is m-isomorphic to situation 𝑠𝑙
in 𝑀𝑙, written 𝑠ℎ ≃𝑀ℎ,𝑀𝑙

𝑚 𝑠𝑙, if and only if

𝑀ℎ, 𝑣[𝑠/𝑠ℎ] |= 𝐹 (�⃗�, 𝑠) iff 𝑀𝑙, 𝑣[𝑠/𝑠𝑙] |= 𝑚(𝐹 (�⃗�))[𝑠]

for every high-level primitive fluent 𝐹 (�⃗�) in 𝐹ℎ and every variable assignment 𝑣.

(BDL23) define a variant of bisimulation [24, 25] to establish a relation based on the refinement
mapping. Here, we stick to a unidirectional version:

Definition 5 (𝑚-simulation). A relation 𝑅 ⊆ Δ𝑀ℎ
𝑆 ×Δ𝑀𝑙

𝑆 is an m-simulation relation between 𝑀ℎ and
𝑀𝑙 if ⟨𝑠ℎ, 𝑠𝑙⟩ ∈ 𝑅 implies

1. 𝑠ℎ is m-isomorphic to 𝑠𝑙
2. for every HL system action A, if there exists 𝑠′𝑙 such that 𝑀𝑙, 𝑣[𝑠/𝑠𝑙, 𝑠

′/𝑠′𝑙] |= 𝐷𝑜(𝑚(𝐴(�⃗�)), 𝑠, 𝑠′),
then there exists 𝑠′ℎ such that 𝑀ℎ, 𝑣[𝑠/𝑠ℎ, 𝑠

′/𝑠′ℎ] |= 𝑃𝑜𝑠𝑠(𝐴(�⃗�), 𝑠) ∧ 𝑠′ = 𝑑𝑜(𝐴(�⃗�), 𝑠) and
⟨𝑠′ℎ, 𝑠′𝑙⟩ ∈ 𝑅

We say that𝑀ℎ is m-similar to𝑀𝑙 wrt the mapping𝑚 (written𝑀ℎ ∼←𝑚 𝑀𝑙) iff there exists an m-simulation
relation 𝑅 between 𝑀ℎ and 𝑀𝑙 such that ⟨𝑆𝑀ℎ

0 , 𝑆𝑀𝑙
0 ⟩ ∈ 𝑅.

At last, exploiting 𝑚-simulation together with the use of LTL trace constraints, we can talk about the
notion of temporally lifted abstractions. Intuitively, we have a temporally lifted abstraction if there
is an 𝑚-simulation between an HL model/theory and all the models of a LL theory, and every trace
constraint is satisfied both on some path at the HL and on all paths at the LL.

Definition 6 (Temporally Lifted Abstraction). Consider an HL NDBAT 𝒟ℎ equipped with a set of HL state
constraint Ψ, a model 𝑀ℎ of 𝒟ℎ, a LL NDBAT 𝒟𝑙 and a refinement mapping 𝑚. We say that (𝒟ℎ,𝑀ℎ,Ψ)
is a temporally lifted abstraction wrt 𝑚 if and only if

• 𝑀ℎ 𝑚-simulates every model 𝑀𝑙 of 𝐷𝑙

• for every high-level LTL trace constraint 𝜓 ∈ Ψ,
𝑀ℎ |= ∃𝑝ℎ.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝ℎ, 𝑆0ℎ) ∧𝐻𝑜𝑙𝑑𝑠(𝜓, 𝑝ℎ) and
𝐷𝑙 |= ∀𝑝𝑙.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝𝑙, 𝑆0𝑙) ⊃ 𝐻𝑜𝑙𝑑𝑠(𝑚𝑡(𝜓), 𝑝𝑙)

It is possible to verify that one has a temporally lifted abstraction by using the following theorem.



Theorem 7. Suppose that we have a HL NDBAT 𝒟ℎ, a model 𝑀ℎ of 𝒟ℎ, a set of HL LTL state constraints
Ψ, a LL NDBAT 𝒟𝑙, and a refinement mapping 𝑚. If

(a) 𝒟ℎ
𝑆0

is a complete theory, i.e. the initial state is completely specified,

(b) 𝒟𝑙
𝑆0

∪ 𝒟𝑙
𝑐𝑎 ∪ 𝒟𝑙

𝑐𝑜𝑎 |= 𝑚(𝜑), for all 𝜑 ∈ 𝐷ℎ
𝑆0

,

(c) for all high-level action sequences �⃗�,

𝒟𝑙 ∪ 𝒞 |= ∀𝑠.𝐷𝑜(𝑚𝑠(�⃗�), 𝑆0, 𝑠) ⊃⋀︀
𝐴𝑖∈𝒜ℎ ∀�⃗�.(∃𝑠′𝐷𝑜(𝑚𝑠(𝐴𝑖(�⃗�)), 𝑠, 𝑠

′)) ⊃
𝑚𝑓 (𝜑

𝑃𝑜𝑠𝑠
𝐴𝑖

(�⃗�))[𝑠]

where 𝜑𝑃𝑜𝑠𝑠
𝐴𝑖

(�⃗�) is the right-hand side (RHS) of the precondition axiom for action 𝐴𝑖(�⃗�),

(d) for all high-level action sequences �⃗�,

𝒟𝑙 ∪ 𝒞 |= ∀𝑠.𝐷𝑜(𝑚𝑠(�⃗�), 𝑆0, 𝑠) ⊃⋀︀
𝐴𝑖∈𝒜ℎ ∀�⃗�, 𝑠′.(𝐷𝑜(𝑚𝑠(𝐴𝑖(�⃗�)), 𝑠, 𝑠

′) ⊃⋀︀
𝐹𝑖∈ℱℎ ∀�⃗�.(𝑚𝑓 (𝜑

𝑠𝑠𝑎
𝐹𝑖,𝐴𝑖

(�⃗�, �⃗�))[𝑠] ≡ 𝑚𝑓 (𝐹𝑖(�⃗�))[𝑠
′]))

where 𝜑𝑠𝑠𝑎𝐹𝑖,𝐴𝑖
(�⃗�, �⃗�) is the RHS of the successor state axiom for 𝐹𝑖 instantiated with action 𝐴𝑖(�⃗�)

where action terms have been eliminated using 𝒟ℎ
𝑐𝑎, and

(e) for every high-level LTL trace constraint 𝜓 ∈ Ψ,
𝑀ℎ |= ∃𝑝ℎ.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝ℎ, 𝑆0ℎ) ∧𝐻𝑜𝑙𝑑𝑠(𝜓, 𝑝ℎ) and
𝐷𝑙 |= ∀𝑝𝑙.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝𝑙, 𝑆0𝑙) ⊃ 𝐻𝑜𝑙𝑑𝑠(𝑚𝑡(𝜓), 𝑝𝑙),

then (𝒟ℎ,𝑀ℎ,Ψ) is a temporally lifted abstraction of 𝒟𝑙 wrt 𝑚.

4. Strategic Reasoning over Abstractions

Now we want to address the problem of synthesis in the context of temporally lifted abstractions, that is,
generating strategies that achieve given goals at the abstract and at the concrete level. These strategies
are the solutions for the GP problem defined by the abstraction.

For NDBATs, a strong plan is a strategy for the agent that guarantees the achievement of a goal no
matter how the environment reacts. (DL21) formalize this notion for state goals and finite traces. They
define a strategy as a function from situations to agent actions, i.e. f (𝑠) = 𝐴(�⃗�) (note that the value
may depend on the entire history). The special agent action 𝑠𝑡𝑜𝑝 (with no effects and preconditions)
may be returned when the strategy wants to stop (for a finite strategy).

Here, we extend their definition to handle LTL goals and LTL trace constraints over infinite paths.
We define AgtCanForceByIf (𝐺𝑜𝑎𝑙, 𝐶𝑠𝑡𝑟, 𝑓, 𝑠), meaning that the agent can force a LTL 𝐺𝑜𝑎𝑙 to hold
no matter how the environment responds to her actions by following strategy 𝑓 in situation 𝑠 if we
assume that the LTL trace/path constraint 𝐶𝑠𝑡𝑟 holds, as follows:

AgtCanForceByIf (𝐺𝑜𝑎𝑙, 𝐶𝑠𝑡𝑟, 𝑓, 𝑠)
.
=

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑓, 𝑠) ∧ ∀𝑝.𝑂𝑢𝑡(𝑝, 𝑓, 𝑠) ∧
𝐻𝑜𝑙𝑑𝑠(𝐶𝑠𝑡𝑟, 𝑝) ⊃ 𝐻𝑜𝑙𝑑𝑠(𝐺𝑜𝑎𝑙, 𝑝)

where

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑓, 𝑠)
.
= ∃𝑃.[∀𝑠.𝑃 (𝑠) ⊃

[𝑃𝑜𝑠𝑠𝑎𝑔(𝑓(𝑠), 𝑠)] ∧ [∀𝑠′.𝐷𝑜𝑎𝑔(𝑓(𝑠), 𝑠, 𝑠′) ⊃ 𝑃 (𝑠′)]] ∧ 𝑃 (𝑠)

𝑂𝑢𝑡(𝑝, 𝑓, 𝑠)
.
= ∀𝑎.∀𝑠.𝑂𝑛𝑃𝑎𝑡ℎ(𝑝, 𝑠) ∧𝑂𝑛𝑃𝑎𝑡ℎ(𝑝, 𝑑𝑜(𝑎, 𝑠)) ⊃

𝐷𝑜𝑎𝑔(𝑓(𝑠), 𝑠, 𝑑𝑜(𝑎, 𝑠))



𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑓, 𝑠) captures the requirement that the strategy never prescribes an action that
is not executable; 𝑂𝑢𝑡(𝑝, 𝑓, 𝑠) means that path 𝑝 is a possible outcome of the agent executing strategy
𝑓 in 𝑠. We also define AgtCanForceIf (𝐺𝑜𝑎𝑙, 𝐶𝑠𝑡𝑟, 𝑠)

.
= ∃𝑓.AgtCanForceByIf (𝐺𝑜𝑎𝑙, 𝐶𝑠𝑡𝑟, 𝑓, 𝑠).

We also need to consider whether the agent is able to execute a program to completion, i.e., the
implementation of a HL action, no matter how the environment reacts. For this, (DL21) introduce
𝐴𝑔𝑡𝐶𝑎𝑛𝐹𝑜𝑟𝑐𝑒𝐵𝑦(𝛿, 𝑠, f ), meaning that the agent can ensure that it executes program 𝛿 to completion
by following strategy 𝑓 :

𝐴𝑔𝑡𝐶𝑎𝑛𝐹𝑜𝑟𝑐𝑒𝐵𝑦(𝛿, f , 𝑠)
.
= ∀𝑃.[. . . ⊃ 𝑃 (𝛿, 𝑠)]

where . . . stands for
[(f (𝑠) = 𝑠𝑡𝑜𝑝 ∧ 𝐹𝑖𝑛𝑎𝑙(𝛿, 𝑠)) ⊃ 𝑃 (𝛿, 𝑠)] ∧
[∃𝐴.∃�⃗�.(f (𝑠) = 𝐴(�⃗�) ̸= 𝑠𝑡𝑜𝑝 ∧
∃𝑒.∃𝛿′.𝑇 𝑟𝑎𝑛𝑠(𝛿, 𝑠, 𝛿′, 𝑑𝑜(𝐴(�⃗�, 𝑒), 𝑠)) ∧
∀𝑒.(∃𝛿′.𝑇 𝑟𝑎𝑛𝑠(𝛿, 𝑠, 𝛿′, 𝑑𝑜(𝐴(�⃗�, 𝑒), 𝑠))) ⊃
∃𝛿′.𝑇 𝑟𝑎𝑛𝑠(𝛿, 𝑠, 𝛿′, 𝑑𝑜(𝐴(�⃗�, 𝑒), 𝑠)) ∧ 𝑃 (𝛿′, 𝑑𝑜(𝐴(�⃗�, 𝑒), 𝑠))
⊃ 𝑃 (𝛿, 𝑠)]

Now we can talk about planning with abstractions and how a plan at the abstract level is related to
one at the concrete level. As in (BDL23), we impose an additional constraint on action implementation
which requires that for any HL agent action that is executable at the LL, the agent has a strategy to
execute it no matter how the environment reacts:

Constraint 8 (Agent Can Always Execute HL actions). For every HL action 𝐴, there exists a LL strategy
𝑓𝐴 such that for every HL system action sequence �⃗�:

𝒟𝑙 |= ∀𝑠.𝐷𝑜(𝑚(�⃗�, 𝑆0, 𝑠) ⊃
(∀�⃗�.∃𝑠′.𝐷𝑜𝑎𝑔(𝑚𝑎(𝐴(�⃗�)), 𝑠, 𝑠

′) ⊃
𝐴𝑔𝑡𝐶𝑎𝑛𝐹𝑜𝑟𝑐𝑒𝐵𝑦(𝑚𝑎(𝐴(�⃗�)), 𝑓𝐴, 𝑠))

Then, we can prove our main result, that is, given a temporally lifted abstraction, if the agent has
a strategy to achieve a LTL goal assuming some LTL constraints at the high level, then there exists a
refinement of the HL strategy that ensures it achieves the refinement of the goal at the low level:

Theorem 9. Let (𝒟ℎ,𝑀ℎ, 𝐶𝑠𝑡𝑟) be a temporally lifted abstraction of 𝒟𝑙 wrt refinement mapping 𝑚
s.t. Constraints 3 and 8 hold, and 𝐺𝑜𝑎𝑙 be an LTL goal. Then we have that:

if 𝑀ℎ |= AgtCanForceIf (𝐺𝑜𝑎𝑙, 𝐶𝑠𝑡𝑟, 𝑆0),
then there exists a LL strategy 𝑓𝑙 such that
𝒟𝑙 |= AgtCanForceByIf (𝑚(𝐺𝑜𝑎𝑙), True, 𝑓𝑙, 𝑆0)

Let 𝐺𝑜𝑎𝑙𝐿𝐿 be an additional LL LTL goal. We say that a strategy 𝑓𝑙 is a solution with respect to
𝐺𝑜𝑎𝑙𝐿𝐿 if 𝒟𝑙 |= AgtCanForceByIf (𝐺𝑜𝑎𝑙𝐿𝐿, 𝑇 𝑟𝑢𝑒, 𝑓𝑙, 𝑆0). It is easy to see that the LL strategy 𝑓𝑙
obtained by Theorem 9 is a solution for a GP problem if

𝒟𝑙 |= ∀𝑝𝑙.𝑆𝑡𝑎𝑟𝑡𝑠(𝑝𝑙, 𝑆0) ⊃
[𝐻𝑜𝑙𝑑𝑠(𝑚(𝐺𝑜𝑎𝑙𝐻𝐿), 𝑝𝑙) ⊃ 𝐻𝑜𝑙𝑑𝑠(𝐺𝑜𝑎𝑙𝐿𝐿, 𝑝𝑙)]
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