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Abstract
While current LLMs achieve excellent performance in information seeking tasks, their conversational abilities
when participants need to collaborate to jointly achieve a communicative goals (e.g., booking a restaurant, fixing
an appointment, etc.) are still far from those exhibited by humans. Among various collaborative strategies, in the
paper we focus on proactivity, i.e., when a participant offers useful information that was not explicitly requested.
We propose a new task, called last utterance proactivity prediction aimed at assessing the capacity of an LLM to
detect proactive utterances in a dialogue. In the task, a model is given a small portion of a dialogue (that is, a
dialogue snippet) and asked to determine whether the last utterance of the snippet is proactive or not. There are
several benefits in using dialogue snippets: (i) they are more manageable than full dialogues, allowing to reduce
complexity; (ii) several phenomena in dialogue, including proactivity, depend on a short context, which allows a
model to learn from snippets, rather than full dialogues; and (iii) dialogue snippets make it easier to experiment
on balanced datasets, overcoming the skew distribution of proactivity in whole dialogues. In the paper, we first
introduce a dataset for the last utterance proactivity prediction task. The dataset has then been used to instruct
an LLM to classify proactivity. We run a series of experiments showing that predicting proactive utterance in
a dialogue is feasible in a few-shot configuration, opening the road towards models that are able to generate
proactive utterances like humans do.
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1. Introduction

While current Large Language Models (LLMs) achieve excellent performance in information seeking
tasks, their conversational abilities when participants need to collaborate to jointly achieve a commu-
nicative goals (e.g., booking a restaurant, fixing an appointment, etc.) are still far from those exhibited
by humans. In the paper, we specifically focus on proactivity [2, 3, 4, 5], a collaborative behaviour
investigated in the context of dialogue pragmatics [6]. Proactivity refers to the act of taking initiative,
anticipating potential problems, and actively providing information and contributing to the conver-
sation with ideas, suggestions or solutions. Proactivity involves participants actively participating in
the dialogue, addressing concerns, and promoting a collaborative environment. The following is an
example of a dialogue in which proactive utterances are underlined.

a: Hai qualche preferenza riguardo al luogo di lavoro?
b: Dopo aver fatto la triennale a Roma, mi piacerebbe tornare verso casa, a Firenze.
a: Al momento non abbiamo nessun annuncio che faccia al caso tuo nella zona di Firenze

però ci sono delle opportunità di lavoro su Roma.1
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1Example taken from the JILDA Corpus [7]. It may be translated to English as follows:

a: Do you have any preference about where to work?
b: After completing my Bachelor’s degree in Rome,

I would like to move back towards home, to Florence.
a: We currently do not have any offers that fit your needs in the Florence area,

however, there are job opportunities in Rome.
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In order to model proactivity, we follow a similar approach as Shaikh et al., which focuses on
grounding acts, a class of collaborative behaviors investigated in dialogue pragmatics. The main idea
is that grounding acts can be: (i) identified and annotated by a Large Language Model; (ii) modeled
through appropriate fine tuning of the model itself. In addition, our work is related to recent approaches
that use large language models as annotators [9], [10], [11]. In the long-term, our research goal is to
instruct LLMs to be as proactive as humans are.

2. Last Utterance Proactivity Prediction

The goal of the paper is to show the feasibility of automatic detection of proactive utterances in task-
oriented dialogues. We propose a task, Last Utterance Proactivity Prediction, where a portion of a
dialogue (i.e., a dialogue snippet) is given to a model, which has to predict whether the last utterance
of the snippet is proactive or not proactive. Using dialogue snippets, instead of full dialogues, brings
several benefits: (i) dialogue snippets are much more manageable than full dialogues, allowing us to
reduce the complexity of understanding and annotation; (ii) several phenomena in dialogue, including
proactivity, depend on a short context, which allows a model to learn from snippets, rather than full
dialogues; and (iii) dialogue snippets make it easier to experiment on balanced datasets, overcoming
the skew distribution of proactivity in whole dialogues (it has been estimated that about 85% of the
utterance in a task-oriented dialogue is not proactive).

We started with D-PRO2, a corpus of manually annotated task-oriented dialogues, which includes
151 dialogues from different sources, amounting to 2,855 turns and over 6,000 utterances, and carried
out the following steps:

• we transformed the whole-dialogue annotation task to a one-utterance annotation task: given
a short dialogue context, the model needs to establish whether the final utterance is either
’proactive’ or ’not_proactive’;

• in order to shorten the provided dialogue context, we collected 4 conversational turns’ worth
of excerpts (snippets) from each dialogue. We believe 4 turns to be a convenient context for
proactivity annotation since statistics in the D-PRO Corpus on turn-adjacency between proactive
utterances and the turn that triggers them revealed that an average of 77.7% proactive utterances
are a direct response to the previous turn’s utterances;

• to restore balance among labels we choose the same number of snippets that ended without
proactivity as the snippets that ended with proactivity.

A relevant consequence of the reduction of the provided dialogue context, is a significant reduction
of the input prompt length for a LLM, and therefore a reduction of computational need.

3. Experimental Setting

This section reports the main features of the setting we used to experiment the last utterance proactivity
task introduced in Section 2.

Dataset for the experiments. The dataset for the experiments has been derived from D-PRO,
a corpus equipped with manually curated proactivity-oriented annotations. D-PRO comprises 151
dialogues from 5 task-oriented dialogue sub-corpora, namely, Italian Whatsapp Corpus ([12]), the Italian
Nespole! Corpus ([13, 14]), Jilda ([7, 15]), the Italian Ubuntu Chat Corpus ([16]), and Multiwoz 2.2 ([17]).
Most of the dialogues are in Italian, with the only exception of the Multiwoz 2.2 dialogues and some
dialogues from the Italian Whatsapp Corpus due to code mixing and code switching employed by the
speakers. D-PRO proactivity annotations are performed at the utterance level.
The composition of our experimental dataset is as follows: from D-PRO we gathered as many 4-turn

2https://github.com/sofiabrenna/dpro



Figure 1: Prompt given to the LLM.

proactive dialogue snippets as there were proactive utterances, so that each snippet ended with a
different proactive utterance. Then, we extracted as many non-proactive snippets as there were non-
proactive utterances, so that each snippet ended with a different non-proactive utterance. Finally, we
selected an equal amount of non proactive dialogue snippets as proactive ones at random to restore
balance between the two types of snippets.

Data splitting. From each of the 5 corpora in D-PRO we randomly selected 30 dialogue snippets as a
train set (to be used as few-shot examples), 50 snippets as a validation set (to be used for parameter
optimization), and 100 snippets as a test set3.

Model. For the choice of the best model for proactivity prediction we carried out a number of
experiments, reported in Section 4.1. The model selected is Openai’s GPT-4o-2024-08-06, used with
temperature = 0.

Prompt optimisation. A prompt engineering phase took pace, so that various prompt proposals
were tested in the same setting (the same train snippets used as few-shot examples, same validation
snippets used to evaluate the model). Figure 1 shows the final prompt used in our experiments. The
prompt consists of two main parts: (i) the system prompt, which contains the general task instructions
given to the model; (ii) the messages prompt, that is further dividend into alternating user messages
and assistant messages: this is the part of the prompt where the model receives few-shot examples (user
messages) with answers (assistant message). The final user/assistant pair contains the target dialogue
which is being evaluated by the model at current time.

Baseline. A random chance baseline (accuracy = 0.5, see Table 8) is created by eliminating any system
and message prompt except for "Output exclusively either "proactive" or "not_proactive." and providing
the target dialogue snippet.

4. Parameter Setting

We first present several optimization trials performed on a single corpus (MultiWoz) in order to select
the best LLM (4.1), to assess the impact of the number (4.2) and of the order (4.3) of few-shot example

3The set sizes were established on the capacity of the least proactive sub-corpus, MultiWOZ, which featured 90 proactive
utterances, hence 90 proactive snippets and 90 non-proactive snippets.



Table 1
Testing across various GPT Models though Openai APIs.

Metric gpt-4o-2024-05-13 gpt-4o-2024-08-06 gpt-4o-mini gpt-4o-mini-2024-07-18 St.Dev.

Total Accuracy 0.64 0.74 0.70 0.68 0.04
Total Precision 0.67 0.88 0.73 0.71 0.09
Total Recall 0.56 0.56 0.64 0.60 0.04
Total F1 Score 0.61 0.68 0.68 0.65 0.03

Table 2
Testing proactivity prediction with different numbers of few-shot dialogue snippets on the DEV set.

Few-shot examples 0 10 12 15 20 25 30 St.Dev.

Total Accuracy 0.66 0.72 0.76 0.74 0.72 0.72 0.70 0.02
Total Precision 0.63 0.79 0.81 0.88 0.82 0.82 0.78 0.04
Total Recall 0.76 0.60 0.68 0.56 0.56 0.56 0.56 0.06
Total F1 Score 0.69 0.68 0.74 0.68 0.67 0.67 0.65 0.03

Table 3
Testing proactivity prediction with different orders of few-shot dialogue snippets on DEV set. The variability of
the results is measured with standard deviation (St.Dev.).

Shuffles 0 1 2 3 4 5 St.Dev.

Total Accuracy 0.76 0.66 0.68 0.72 0.74 0.66 0.04
Total Precision 0.84 0.79 0.71 0.76 0.80 0.70 0.05
Total Recall 0.64 0.44 0.60 0.64 0.64 0.56 0.10
Total F1 Score 0.73 0.56 0.65 0.70 0.71 0.62 0.07
Cohen’s Kappa 0.55 0.36 0.39 0.47 0.51 0.35 0.09

snippets. Secondly, we run test on the DEV set of each of the five corpora in order to select the best
few-shot snippets order for each corpus (4.4).

4.1. Setting the Large Language Model

Once the best prompt had been established, we tested the APIs of various models to pick the best
cost/performance trade-off, reported in Table 1. GPT-4o-2024-08-06 was selected as the best performing
model (Accuracy: 0.74, F1: 0.68) with lower fares than GPT-4o-2024-05-13 and better scores than both
GPT-4o-mini and GPT-4o-mini-2024-07-18.

4.2. Setting the Number of Few-shot Dialogue Snippets

Table 2 reports the performance of the LLM on the DEV set augmenting (from 0 to 30) the amount of
few shot dialogue snippets. It can be noted that increasing the few shots examples till 15 increases the
precision of the model, while more examples results in worse precision. On the other side, the highest
recall is obtained with 0 examples (resulting in more false positive cases). The best accuracy (0.76) and
F1 Score (0.74) are obtained with 12 examples.

4.3. Assessing the Impact of Few-shot Dialogue Snippets Order

This experiment assesses the stability of the model while changing the order of the few-shot examples.
As literature points out [18, 19, 20], LLMs suffer of a position bias when handling a longer context: we
found that this is the case also in our experiments and that there is up to 10 points of a difference in
accuracy when testing with different orders of the same set of examples. Table 3 reports the results of
the experiments under six random changes of 12 examples.



Table 4
Optimising proactivity prediction with different few-shot dialogue snippets order on each dataset DEV
set. Configuration: 12 few-shot snippets and 50 validation snippets. s-n indicates re-shuffled sets of 12
few-shot snippets; highest scores across re-shuffles are marked in bold. Results that show a statistically
significant increase compared to the average (p < 0.05) are highlighted in green.

Dataset Metric s-0 s-1 s-2 s-3 s-4 Average St.Dev.

Whatsapp Accuracy 0.66 0.72 0.62 0.72 0.68 0.68 0.05
Precision 0.70 0.87 0.69 0.82 0.76 0.77 0.09
Recall 0.56 0.52 0.44 0.56 0.52 0.52 0.06
F1 Score 0.62 0.65 0.54 0.67 0.62 0.62 0.06
Cohen’s Kappa 0.31 0.43 0.23 0.43 0.35 0.35 0.10

Nespole Accuracy 0.84 0.86 0.80 0.80 0.82 0.82 0.03
Precision 0.84 0.80 0.78 0.76 0.81 0.80 0.03
Recall 0.84 0.96 0.84 0.88 0.84 0.87 0.06
F1 Score 0.84 0.87 0.81 0.81 0.82 0.83 0.03
Cohen’s Kappa 0.67 0.72 0.59 0.59 0.63 0.64 0.06

Ubuntu Accuracy 0.68 0.64 0.68 0.64 0.68 0.66 0.02
Precision 0.68 0.65 0.67 0.65 0.71 0.67 0.02
Recall 0.68 0.60 0.72 0.60 0.60 0.64 0.06
F1 Score 0.68 0.62 0.69 0.62 0.65 0.65 0.04
Cohen’s Kappa 0.35 0.27 0.35 0.27 0.35 0.32 0.05

Jilda Accuracy 0.70 0.74 0.74 0.70 0.68 0.71 0.02
Precision 0.69 0.75 0.73 0.78 0.74 0.74 0.04
Recall 0.72 0.72 0.76 0.56 0.56 0.66 0.09
F1 Score 0.71 0.73 0.75 0.65 0.64 0.70 0.04
Cohen’s Kappa 0.39 0.47 0.47 0.39 0.35 0.41 0.05

Multiwoz Accuracy 0.82 0.76 0.76 0.76 0.66 0.75 0.03
Precision 0.94 0.88 0.81 0.81 0.79 0.85 0.06
Recall 0.68 0.60 0.68 0.68 0.44 0.62 0.04
F1 Score 0.79 0.71 0.74 0.74 0.56 0.71 0.03
Cohen’s Kappa 0.63 0.51 0.51 0.51 0.30 0.49 0.06

4.4. Setting Few-Shot Snippets Order

In this experiment we select the best order of the few-shot snippets for each of the five dialogue datasets
(i.e., Whatsapp, Nespole, Ubuntu, Jilda and MultiWoz) for the last utterance proactivity prediction task.
We tested 5 different orders of the dialogue snippets randomly shuffling the same set of snippets selected
in section 4.2. We used the following configuration for the experiments: 12 random few-shot snippets;
50 validation (DEV) snippets; 5 random shuffles of the few-shot snippets; average of the performances
of the 5 shuffles for each corpus. The selection of the optimal order is given by the highest average
accuracy and F1.

5. Results and Discussion

In this section we present the results of the last utterance proactivity prediction task in two different
configurations: using few-shots from individual corpora (5.1), and mixing few-shots from all corpora
(5.3), introducing transfer learning as well. Lastly, we describe an experiment in Section 5.4 that attempts
to evaluate the model’s stability in corrupted context scenarios.

5.1. Few-Shots from Individual Corpus and Testing on Individual Corpus

We tested the model by using the prompt and few-shot configuration that gave the best results on the
development set for each corpus individually. As Table 5 shows, while IAA with the ground truth labels
is still not optimal, and scores pretty low on both Whatsapp and Ubuntu (fair agreement4), we reach a

4According to Landis and Koch’s scale [21].



Table 5
Individual corpus testing. For comparison, DEV Average column reports averaged results over the five
corpora on the developement set.

Metric Whatsapp Nespole Ubuntu Jilda Multiwoz Average DEV Average

Accuracy 0.64 0.86 0.64 0.75 0.77 0.73 0.73
Precision 0.69 0.85 0.68 0.74 0.81 0.75 0.76
Recall 0.50 0.88 0.52 0.78 0.69 0.67 0.66
F1 Score 0.58 0.86 0.59 0.76 0.75 0.71 0.70
Cohen’s Kappa 0.27 0.72 0.27 0.50 0.54 0.46 0.44

Table 6
Testing the model with few-shot examples taken from all five corpora. Results are given for the best
inter-corpus order over five runs.

Metric Whatsapp Nespole Ubuntu Jilda Multiwoz Average

Accuracy 0.63 0.87 0.66 0.69 0.77 0.72
Precision 0.74 0.88 0.74 0.69 0.78 0.77
Recall 0.4 0.86 0.5 0.6 0.68 0.62
F1 Score 0.52 0.87 0.6 0.69 0.76 0.68
Cohen’s Kappa 0.27 0.74 0.32 0.37 0.54 0.44

moderate agreement in Jilda and Multiwoz, and a substantial agreement in Nespole (0.72) that is just
below the IAA score between human annotators (0.77). Results are consistent with the outcomes that
we obtained on the development set in Table 4. On average, Nespole achieved the best accuracy (0.86),
followed by MultiWoz (0.77), Jilda (0.75), Whatsapp and Ubuntu (both 0.64). For all dateset the results
are largely above the baseline (i.e., 0.50 accuracy, equivalent to chance: see also Table 8, Baselines -
Full Context column.), showing that the model has correctly learned our definition of proactivity. The
fact that Nespole has obtained the best results is somehow surprising, given that this corpus is quite
complex: utterances are longer than in the other corpora, and so are dependencies between a proactive
utterance and its own trigger utterance. Longer utterances, on the other hand, mean that the model is
given a slightly richer context on which to base its judgments, which may help with the annotation
process. As far as lowest scores are concerned, the poor results for Whatsapp and especially Ubuntu
were expected, since these are less structured (both syntactically and grammatically), more chaotic, and
multi-party dialogue corpora, where proactivity is much more difficult to be unanimously detected also
by humans and where the human-human IAA scores the lowest (0.63 and 0.41 respectively).

5.2. Few-Shots from All Corpora and Testing on Individual Corpus

Secondly, we run some in-context learning [22] experiments to check whether few-shot examples from
different corpora could improve the performance on one individual target corpus. The idea is drawn
from works on multi-task learning [23], where more than one task is learned simultaneously by the
model, and transfer learning, where improvement is obtained in a new task through the transfer of
knowledge from a related task that has already been learned [24, 25]. Our intuition is that example
variety on very similar tasks may be the key to improvement on single target task. Following this line,
we combine dialogue snippets from all the five corpora as few-shot examples, so that we have 5 sets
of 12 snippets each. Given the position bias hold by the model, we decided to keep the intra-corpus
examples order the same as the one used in 5.1, and to randomly shuffle the inter-corpus order 5 times
to select the optimal few-shot prompt (same methodology in 4.4 and 5.1).

The outcomes of the tests with the optimal prompt are reported Table 6, that is directly comparable
to Table 5. We found out that the only corpus in our experiment that suffered the mixed few-shot



Table 7
Best and average results over five runs with different inter-corpus order.

Few-shot examples 60-best 15-best 60-average 15-average

Accuracy 0.71 0.69 0.69 0.68
Precision 0.75 0.72 0.74 0.73
Recall 0.63 0.60 0.59 0.56
F1 Score 0.69 0.66 0.66 0.63
Cohen’s Kappa 0.42 0.38 0.38 0.36

prompting is Jilda, with a significant drop in performance, while every other corpus has very similar
or slightly higher scores. Ablation tests on the Jilda corpus led to an accuracy of 0.71 while removing
the most chaotic corpora (Ubuntu and Whatsapp), proving still that the individual corpus few-shot
approach works best for this one corpus.

5.3. Few-Shot from All Corpora, Testing on All Corpora

We finally tested on the cumulative test set of all corpora, with mixed few-shot examples. We experi-
mented with two configurations of few-shot snippets: i. 60 snippets in optimal order as in Table 6; ii.
15 snippets in total, with 3 random snippets per corpus. Outcomes in Table 7 show best and average
results over 5 runs for both the 60 and the 15 few-shot examples setting.

5.4. Testing with Corrupted Context: Masking the Trigger Utterance

We investigated the performance of the LLM in a corrupted context situation. According to definition,
the two key characteristics of proactivity are not being solicited and being beneficial to the dialogue
goals, hence proactivity can only be defined in terms of the previous context. When we corrupt
the context before the snippet’s final utterance, we may be compromising the data required for the
proactivity annotation task. We implemented two corrupted context situations: triggering utterance
removed, where the text of the utterance that triggers the final utterance in the dialogue snippet is
removed from the snippet, and triggering utterance masked, where the text of the trigger utterance is
masked by a placeholder. In both circumstances, the presence of a corrupted utterance is indicated
by the utterance number, whereas only the content is erased or masked. Since we need to test the
effect of the context corruption, the model still learns the original full context task from the few-shot
examples. We anticipate that the LLM’s performance will suffer since a critical component of the
dialogue (the triggering utterance) has been compromised. Also, we expect the number of false positives
to increase significantly. This is due to the possibility that by eliminating the trigger utterance, we will
also eliminate the element that renders the final utterance either proactive or non-proactive. Specifically,
we are deleting the element of the context that allows us to determine whether the content of the last
utterance is novel (i.e., proactive) or unrequested by the trigger. Since the request is missing from the
corrupted setting, the triggered response seems to be proactive rather than solicited, resulting in an
increase in "proactive" labels.

Results, presented in Table 8, confirm our intuition, showing that the model accuracy moves from 0.80
of the full context to 0.66 and 0.64 when the triggering utterance is removed and masked, respectively.
The majority of the performance drop is attributable to an increase in false positives, from 2 in the full
context to 8 in the corrupted context, as well as a drop in true negatives, which supports our hypothesis.
On the other hand, our experiments show that even with insufficiently task-specific few-shot examples,
the model can perform significantly better than the random chance baselines (see also 3) through a
solid instruction prompt.



Table 8
Proactivity prediction with corrupted dialogue snippets on MultiWoz. Highlighted TN and FP are statistically
different from the test with full context (p-value = 0.04123); results with Trigger Utterance both Empty and
Masked are statistically lower (p < 0.01) than in Full Context setting.

TESTS BASELINES

Trigger Utterance Full Context Empty Masked Full Context Empty Masked

True Positives 17 16 15 20 22 23
True Negatives 23 17 17 5 5 5
False Positives 2 8 8 20 20 20
False Negatives 8 9 10 5 3 2

Accuracy 0.80 0.66 0.64 0.50 0.54 0.56
Precision 0.89 0.67 0.65 0.50 0.52 0.53
Recall 0.68 0.64 0.60 0.80 0.88 0.92
F1 Score 0.77 0.65 0.62 0.62 0.66 0.68
Cohen’s Kappa 0.59 0.31 0.26 -0.01 0.07 0.11

6. Conclusions and Future Work

We introduced a new task, namely, last utterance proactivity prediction, aiming at assessing the capacity
of Large Language Models to detect and annotate proactive behaviours in task-oriented dialogues.
The task allows us to shorten the context from a whole dialogue to a dialogue snippet, simplify the
annotation process, and balance the dataset for positive and negative labels. We showed that a few-shot
approach with GPT-4o achieves encouraging performance on a test set composed of dialogue snippets
collected from five different corpora, and that in particular for the Nespole corpus the agreement
between the model labels and the human-annotated gold labels is nearly equivalent to the agreement
between humans.

As for future work, there are several ongoing activities. First, we are still investigating techniques to
further improve the performance on the task, especially in testing on the combined dialogues from all
corpora. Then, we plan to use the GPT-4o model to automatically annotate a large amount (i.e., about
100K) of dialogue snippets, in order to create a training corpus, which, in turn, will be used to instruct
an open source model (e.g., Llama 3 8B) to detect proactivity.
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