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Abstract
Visual Question-Answering (VQA) is a complex multimodal task that requires integrating visual recognition and
natural language understanding to answer questions about images. While significant progress has been made in
English, resources and models for non-English languages, such as Italian, remain scarce. This paper addresses
this gap by evaluating MiniCPM-V 2.6, a state-of-the-art multimodal Large Language Model, on GQA-it, the
first large-scale Italian VQA dataset. The primary goal of this work is to investigate the performance of such
models when applied off-the-shelf to this task and, if unsatisfactory, to explore how much they can improve with
fine-tuning on Italian data. When applied off-the-shelf, MiniCPM-V 2.6 achieves an accuracy of 33.4%. However,
after fine-tuning it on the GQA-it dataset, the performance improves significantly, reaching a state-of-the-art
accuracy of 59.4%. These findings highlight the importance of language-specific adaptation in multilingual VQA
tasks, especially for under-resourced languages like Italian. The trained model is released to the community on a
dedicated Huggingface repository: https://huggingface.co/sag-uniroma2/MiniCPM-V-2_6-gqa-it-finetuned.
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1. Introduction

Visual Question-Answering (VQA) is a challenging and rapidly evolving task in the field of Artificial
Intelligence (AI). It requires a system to provide an accurate answer to a question posed in natural
language based on the visual content of an image. The question typically depends on various details
within the image, such as objects, relationships, actions, or other visual attributes, and demands that
the system integrates both visual recognition and language understanding to generate a correct and
contextually relevant response [2, 3]. This task presents significant challenges, as it necessitates the
integration of two complex domains—vision and language—while also requiring models to employ
reasoning and inference capabilities to arrive at accurate conclusions.

Figure 1 shows an example image, for which a wide range of questions can be asked, each with its
respective answer, between brackets, in both English and Italian:

• Q(A)𝑒𝑛: Is the remote to the right or to the left of the book? (right).
• Q(A)𝑖𝑡: Il telecomando è a destra o a sinistra del libro? (destra)

• Q(A)𝑒𝑛: How thick is the book to the left of the remote? (thick).
• Q(A)𝑖𝑡: Quanto è spesso il libro a sinistra del telecomando? (spesso)

• Q(A)𝑒𝑛: What device is to the left of the calculator made of plastic? (charger).
• Q(A)𝑖𝑡: Quale dispositivo si trova a sinistra della calcolatrice di plastica? (caricabatterie)

• Q(A)𝑒𝑛: What’s the charger made of? (plastic).
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Figure 1: Example of an image from the GQA-it dataset, taken from [4] (image id: n90294)

• Q(A)𝑖𝑡: Di cosa è fatto il caricabatterie? (plastica)

• Q(A)𝑒𝑛: Are there any phones? (no).
• Q(A)𝑖𝑡: Ci sono dei telefoni? (no).

The task is particularly complex because an image can be rich in information (in this case, a large
number of objects), express actions, colors, and sensations, and be the subject of many different questions,
as demonstrated by the small number of examples listed above. Some questions (such as those about
the color of an object or its position) can be answered by simply observing the image, while others
may require prior knowledge (such as understanding the typical materials of a charger). Additionally,
some questions could be difficult to answer because it is unclear what the observer’s focus is, some may
have no answer (for example, if the question concerns an object not present in the image), or certain
questions might require follow-up clarifying questions to provide an adequate response, necessitating a
dialogical interaction [5, 6].

As a benchmark for evaluating the effectiveness of AI systems, VQA has garnered increasing attention
due to its role in assessing how well these systems can perform tasks that involve deeper semantic
understanding and cross-modal reasoning between language and vision. In recent years, several models
and resources have been developed to address the challenges of VQA, particularly for the English
language. These advancements have contributed to significant breakthroughs in the field [7, 8], enabling
systems to perform such sophisticated reasoning. Comprehensive surveys, such as [9], provide valuable
insights into the diverse methodologies employed in this task, including the integration of vision and
language components, which has become an essential area of AI research.

Among the most successful approaches, Multimodal Large Language Models (MLLMs) have shown
significant promise [10]. Large Language Models (LLMs) are powerful models designed to generate text
based on a given input in an autoregressive manner. These models encode input text by transforming
individual symbols in the input sequence into embeddings, which are dense vector representations
capturing semantic information [11]. The model then generates output text by predicting the next token
in the sequence based on the context provided by the embeddings of the previous tokens. Such models
are capable of solving different linguistic tasks, as exemplified in [12]. In the case of MLLMs [10], the
input is typically extended to include information from multiple modalities, such as text and images.
These models incorporate embeddings not only from textual data but also from visual inputs, which are
encoded using specialized encoders such as Convolutional Neural Networks (CNNs) or the recently
introduced Vision Transformers (ViT, [13]). By integrating these additional embeddings, multimodal
LLMs are able to process and reason over both linguistic and visual information.

Some of the most promising Multimodal LLMs, such as LLaVA [14], CogVLM [15], InternVL2-8B



[16], MiniCPM-V [8], GPT-4 [17], and Gemini [18], extend traditional language models like LLaMA [19],
GPT-series [17] or Qwen2 [20] by incorporating visual encoders. These models are designed to handle
tasks that require both visual and linguistic input, enabling complex reasoning across modalities. They
utilize techniques such as cross-modal attention [21] and visual grounding to map visual information
into the LLM’s input space, allowing the models to generate more accurate and context-aware outputs
in multimodal scenarios [22].

In most cases, these models reuse and specialize existing LLMs that have been pre-trained on large-
scale document collections and then fine-tuned within the final multimodal architecture [14]. The
quality of the final model is therefore closely tied to the original LLM and may inherit its limitations,
such as an unbalanced ability to handle different languages. Models like LLaMA-2 [19] have been
pre-trained on datasets containing trillions of words, with more than 90% of the text in English, while
languages like Italian account for only 0.1% of the data. This imbalance poses a risk of limiting the
effectiveness of such methods in a multilingual context. Furthermore, the fine-tuning of these models
for visual reasoning is primarily conducted on English datasets, or in some cases, Chinese or English-
Chinese datasets, as seen in CogVLM [15, 23]. The reliance on a limited set of languages and the lack of
large-scale multimodal datasets in non-English languages, such as Italian, hinders the performance,
robustness, and generalizability of VQA models in multilingual contexts.

This paper aims to answer the following research questions:

• How do state-of-the-art models for VQA and other multimodal tasks involving both images and text
perform when faced with a VQA problem in a non-English language?

• Can these models be used off-the-shelf, or would they benefit from—or even require—further fine-
tuning on annotated Italian data?

To explore these questions, we utilize the GQA-it dataset proposed by [4], a large-scale resource specifi-
cally designed for Visual Question-Answering in Italian. This dataset provides a valuable benchmark
for developing and evaluating VQA systems in non-English contexts, addressing the gap caused by the
lack of high-quality multimodal resources in languages beyond English.

In this paper, we evaluate how MiniCPM-V [8], a state-of-the-art open-source multimodal model,
performs on the GQA-it dataset. MiniCPM-V was selected for its competitive performance, even in
comparison to larger models like GPT-4. A key feature of MiniCPM-V is its multilingual support,
including Italian, making it suitable for testing in non-English contexts. Despite its smaller size,
MiniCPM-V is optimized for multimodal tasks such as Optical Character Recognition (OCR) and image
comprehension, while remaining scalable for more complex datasets and tasks. By testing MiniCPM-V
off-the-shelf on the GQA-it dataset, we aim to assess its ability to generalize across languages without
additional training. We then compare its off-the-shelf performance to a fine-tuned version to determine
how well the model adapts to Italian and whether fine-tuning significantly improves its results on this
benchmark.

Our experimental results provide interesting insights into the research questions posed. MiniCPM-V,
when evaluated in its base form, i.e. zero-shot, achieves an accuracy of 33.4%, demonstrating that
while the model possesses general multimodal capabilities, it struggles to effectively handle VQA tasks
in Italian without any additional adaptation. This aligns with our first research question, indicating
that state-of-the-art models may not perform optimally in non-English contexts when used off the
shelf. However, after fine-tuning the model over the GQA-it dataset, its performance dramatically
improves, reaching a state-of-the-art accuracy of 59.4%. This significant improvement addresses our
second research question, highlighting that fine-tuning seems crucial for enhancing the model’s ability
to handle Italian, as it allows the model to better understand the linguistic and visual nuances of the
target language. The results emphasize that even advanced models require further adaptation to achieve
competitive performance in multilingual VQA tasks. These experimental findings underscore the
importance of language-specific adaptation in the development of multimodal models, particularly for
under-resourced languages like Italian. Even state-of-the-art open-source models, such as MiniCPM-V,
struggle to generalize effectively to non-English languages without targeted fine-tuning, as evidenced
by the marked performance disparity observed in our GQA-it evaluation. This reinforces the need for



dedicated resources and model adjustments to enable competitive performance in multilingual settings,
highlighting that fine-tuning is not just beneficial but often necessary to overcome the inherent bias
toward English in many pre-trained multimodal models.

The rest of the paper is organized as follows: Section 2 describes the GQA-it dataset, while Section 3
discusses the investigated Multimodal LLMs (MLLMs). The experimental evaluation is presented in
Section 4, and conclusions are drawn in Section 5.

2. GQA-it: Italian Visual Question-Answering Dataset

GQA-it [4] is the first large-scale dataset specifically designed for Visual Question-Answering (VQA)
in Italian. It is an adaptation of the GQA dataset [7], which was initially created to assess real-world
visual reasoning in English. The original GQA dataset contains over 22 million question-answer pairs
across images sourced from the Visual Genome dataset, where each image is annotated with detailed
scene graphs that capture objects, attributes, and relationships present in the scene.

GQA-it mirrors this structure, translating the questions and answers into Italian. The GQA dataset
itself provides a rich framework for visual question-answering by incorporating multi-step reasoning,
compositional questions, and balanced answer distributions to prevent models from exploiting dataset
biases [7]. The creation of GQA-it involved translating this extensive set of questions and answers while
preserving the complexity and richness of the visual reasoning tasks. In particular, the original English
questions and answers were translated into Italian through a semi-automatic process that combines
neural machine translation (NMT) and manual validation. This ensures a high-quality resource for
training and evaluating VQA models in Italian, addressing the gap of multimodal datasets in non-English
languages.

The GQA-it dataset consists of more than 1 million question-answer pairs and preserves the structure
and balance of the original GQA dataset. Each question is designed to assess various aspects of visual
understanding, including object recognition, spatial reasoning, and scene comprehension, making
GQA-it a comprehensive benchmark for evaluating VQA systems. In Figure 1, an example image is
displayed along with five question-answer pairs, showcasing the type of visual reasoning tasks that can
be posed based on the image content, both in Italian and English. This highlights the dataset’s ability to
test models across multiple linguistic and visual dimensions.

In the creation of GQA-it, Neural Machine Translation (NMT) was employed to automatically translate
the English questions and answers into Italian. Although NMT achieved high-quality translations,
manual validation was applied to a subset of 3,000 examples to ensure the reliability of the test data.
This validation process involved correcting errors related to gender inflection, lexical ambiguity, and
inconsistencies in the translation of answers, which were often sensitive to the context provided by the
corresponding question and image.

Dataset Split #Images #Question-Answer Pairs
train 72,140 943,000
validation 10,234 132,062
test-dev (silver) 398 12,578
test-dev (gold) 398 3,000

Table 1
Statistics of the GQA-it dataset. The gold test-dev is a subset of the silver one and has been manually validated.

As shown in Table 1, GQA-it is divided into training, validation, and test sets, with the test set further
split into silver (automatically translated) and gold (manually validated) subsets. The silver test set
comprises automatically translated questions and answers, while the gold test set contains manually
corrected samples, providing a high-quality evaluation benchmark for VQA models. GQA-it poses
significant challenges for models, as it requires a deep understanding of both the Italian language and
the visual content. Furthermore, the dataset supports a wide range of visual reasoning tasks, including



object detection, relationship identification, and attribute recognition. This makes GQA-it a valuable
resource for advancing research in multilingual multimodal AI.

3. Multimodal LLMs

Multimodal input signals enable virtual or physical agents to perceive and interact with their environ-
ments in more meaningful ways. One increasingly explored area in this domain is the conjunction
of text and images. A seminal contribution to this field is CLIP [24], an architecture that takes a text
and an image as input and originally produces a similarity score between the two. The architecture
is optimized using a Contrastive learning schema, which defines a specific contrastive loss: this is
minimized if the text accurately describes the image and maximized if the two inputs represent entirely
different topics. The strength of CLIP lies in its ability to bring similar images and texts closer in a
shared latent space while pushing dissimilar pairs far apart. This is achieved in a supervised manner,
meaning that the training dataset must be annotated. Building upon CLIP, BLIP [25] was introduced to
bootstrap the architecture from a pre-trained model in an unsupervised fashion, leveraging web image
data along with their captions. This approach eliminates the need for large amounts of annotated data.
Both CLIP and BLIP, however, depend on a global comparison of image-text similarities across a batch,
even if the pairs are not directly related. As a solution, Sigmoid loss for Language-Image Pre-training
(SigLIP) [26] was developed. Unlike the contrastive learning employed by CLIP, which uses Softmax
normalization and relies on global pairwise similarity comparisons, SigLIP introduces a sigmoid loss that
operates only on individual image-text pairs. This approach significantly enhances performance while
reducing the dependence on large batch sizes for normalization. A major limitation of contrastive loss
in CLIP is its assumption of a single correct image-text pairing for each example. However, in real-world
scenarios, images and captions often have multiple plausible associations. Sigmoid loss addresses this by
computing binary cross-entropy for each potential image-text pair, framing the problem as multi-label
classification. This allows the model to score multiple relevant image-text pairs, rather than forcing a
single correct match. As a result, Sigmoid loss enables smoother and more flexible alignment between
images and texts, effectively handling cases where an image may correspond to several valid captions,
or a caption may describe multiple images.

These models are specifically designed to learn the best representations of the two modalities: vision
and text. More recently, architectures such as LLaVA [14], CogVLM [15], and CogAgent [22] have
demonstrated effective methods for integrating CLIP and/or BLIP with a Large Language Model (often
based on variations of LLaMA [19]) to perform complex inference tasks. These tasks include describing
images using ad hoc prompts, explaining visual memes found online, and executing visual grounding
through bounding boxes that reference the entities present in the image.

LLaVA [14] is an end-to-end multimodal model that connects a vision encoder (CLIP) with a Large
Language Model (Vicuna [27]) for general-purpose visual and language understanding. At this point,
one challenge arises: how do we reconcile the encoding of images with the encoding of text? To address
this, a third component is needed—specifically, a single-layer MLP, known as the Projector, that maps
the output of the visual encoder into the input space of the LLM. In LLaVA, this allows the model to
seamlessly integrate visual information with textual information for coherent generation.

On the other hand, CogVLM [15] takes a different approach. It bridges the gap between a frozen
pre-trained language model and a frozen image encoder by inserting a trainable visual expert module
into the attention and feed-forward network (FFN) layers. This modification allows the model to
more deeply understand both the text and image inputs. However, a limitation of CogVLM is that it
processes images at a lower resolution, which makes it less capable of capturing smaller details in the
image. As a follow-up to CogVLM, CogAgent [22] is built on the same architecture but introduces a
visual cross-attention module. This module operates between the image-text input pair and a high-
resolution version of the input image. By incorporating this high-definition image, the model can boost
performance, enabling it to capture finer details and provide more accurate visual understanding. Both
CogVLM and CogAgent excel in understanding and describing images, following instructions, and



solving image-dependent tasks such as Visual Question-Answering (VQA). They also have the ability
to reference specific entities within an image using bounding boxes, a crucial feature that helps these
models focus on particular objects and allows intelligent agents to better understand their surroundings.

Finally, a smaller multimodal model called MiniCPM-V 2.6 [8] has been released, which aims to reduce
the number of parameters while maintaining strong OCR and multimodal capabilities. Unlike larger
models such as CogVLM and LLaVA, which require considerable computational resources, MiniCPM-V
2.6 is tailored for scenarios where computational efficiency and speed are crucial, such as mobile phones,
thanks to its carefully designed training methodology that enables scaling of both model size and data
horizons. The architecture of MiniCPM-V 2.6 consists of three main components. The visual encoder,
based on the SigLIP model, processes high-resolution images to extract visual tokens. These tokens are
then passed through a compression layer, which includes a perceiver resampler (as in Flamingo [28])
that uses cross-attention to reduce the dimensionality of the data while retaining key features. Finally,
the compressed visual tokens and text inputs are fed into the LLM, based on the recent Qwen2-7B
[20] architecture. Remarkably, it shows competitive performance even when compared to much larger
models. This makes it an appealing choice for real-time or resource-constrained environments, as it can
process complex multimodal inputs without sacrificing the depth of its understanding or generation
quality.

The availability of the above pre-trained models underscores their potential for tackling Visual
Question-Answering tasks in languages other than English. To assess their effectiveness in a non-
English context, particularly Italian, we leverage the GQA-it dataset. The upcoming section outlines
the experimental setup and results, focusing on how MiniCPM-V 2.6 performs in both zero-shot and
fine-tuned scenarios. This comparison aims to determine whether fine-tuning significantly enhances
the model’s ability to handle the linguistic and visual complexities of the Italian language, ultimately
addressing the research questions of this work.

4. Experimental Evaluation

In this section, we address the research questions posed: how well state-of-the-art multimodal models
perform on VQA tasks in non-English contexts, and whether they benefit from fine-tuning on Italian-
specific data. To verify this, we apply MiniCPM-V to the GQA-it dataset, comparing its off-the-shelf
performance to its results after fine-tuning. The aim is to evaluate the extent to which fine-tuning on
the target language enhances the model’s capabilities, and we conclude by analyzing the most common
error types observed in each setup.

4.1. Experimental Setup

The aim of the evaluation is to compare MiniCPM-V 2.6 in two configurations: off-the-shelf (zero-shot)
and fine-tuned. For this purpose, the model was assessed using the 3,000 examples from the manually
validated (gold) set of the GQA-it test data (Section 2). This choice ensures the highest quality evaluation,
as the manually validated set provides more reliable and accurate data than the automatically translated
silver set. Additionally, this setup allows us to directly compare the results with LXMERT [21], a
BERT-based model introduced in [4], which serves as a strong baseline in this context.

In GQA-it, each question is presented in natural language, and the expected answer is a short
expression, typically consisting of one to four tokens. The models are evaluated based on their accuracy,
which is the percentage of questions for which the system’s response exactly matches the expected
answer. This metric allows for a clear and direct measurement of the performance of the model in
providing correct answers.

To evaluate the performance of the MiniCPM-V 2.6 model, we conducted experiments in two distinct
scenarios, each designed to assess different aspects of the model’s capabilities.

First, the model was applied off-the-shelf in a zero-shot setting, meaning no additional training or



Model Accuracy
Baseline [4] 17.6%
LXMERT-it [4] 51.0%
MiniCPM-V 2.6 (Zero-shot) 33.4%
MiniCPM-V 2.6 (Fine-tuned) 59.4%

Table 2
Performance comparison of various models on GQA-it.

fine-tuning was performed on the target dataset. MiniCPM-V 2.6 was used from Huggingface1. While
the model was primarily trained on data that may have been predominantly in English, it is expected to
possess some understanding of other languages, including Italian. This setting provides insights into
the model’s ability to transfer its learning to a new language and domain without any task-specific
adjustments. The following prompt2 was used:

<IMAGE_HERE> Rispondi alla seguente domanda con una sola parola o poche parole ma solo
se necessario, non aggiungere ulteriori informazioni: <QUESTION_HERE>

This formulation was designed to be clear and direct, ensuring that the model understood it needed
to provide a concise, single-word (or few words) response without adding any extra information.

In the second scenario, we employed a fine-tuned setting, where the MiniCPM-V 2.6 model was
further trained on the GQA-it training set before being evaluated. This fine-tuning process involved
adapting the model to the specific linguistic characteristics of Italian and the visual question-answering
requirements of the dataset. The training was executed using the DeepSpeed framework3 on a cluster
of four A100 GPUs, each equipped with 80 GB of memory. The hyperparameters for the fine-tuning
were set as follows: the standard fine-tuning parameters were used4, with a learning rate of 1e-6, and
the model was trained for 1 epoch due to the high number of examples. Both the vision and large
language model (LLM) components were fine-tuned. The batch size per device during training was set
to 4 to reduce memory usage. During the fine-tuning process, the model was trained using a simplified
prompt, where only the original question and the image itself were presented:

<IMAGE_HERE> <QUESTION_HERE>

It is important to note that the prompt was kept extremely simple during fine-tuning, as additional
instructions were unnecessary, given that the same prompt structure would be repeated for all observed
questions during both training and model application. This streamlined approach aimed to help the
model focus purely on the content of the question without additional instructions. By fine-tuning with
this minimal prompt, the model was adapted to the task of responding directly to questions in Italian.

4.2. Experimental Results

Results are presented in Table 2. The first row reports the baseline model, which, due to the significant
imbalance in the dataset, simply predicts the most frequent response (“yes” or “sì”). This naive approach
achieves an accuracy of 17.6%, offering a minimal benchmark for comparison.

The LXMERT-it model, introduced in [4], is specifically trained on the GQA-it dataset and achieves
an accuracy of 51.0%, representing the current state-of-the-art on this benchmark. In contrast, when
MiniCPM-V 2.6 is applied off-the-shelf in a zero-shot setting, it reaches an accuracy of 33.4%, which,
while higher than the baseline, still lags behind the state-of-the-art. A notable portion of errors in this
zero-shot configuration arises from the model’s tendency to generate responses in languages other
than Italian, as well as its struggle with yes/no questions. Our hypothesis is that since these models are

1https://huggingface.co/openbmb/MiniCPM-V-2_6
2In English: Answer the following question with one word or a few words but only if necessary, do not add more information:
3https://github.com/microsoft/DeepSpeed
4https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/finetune_ds.sh

https://huggingface.co/openbmb/MiniCPM-V-2_6
https://github.com/microsoft/DeepSpeed
https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/finetune_ds.sh


Error Type Example(s) Our [4]
Object tavola (‘table’) vs sedia (‘chair’) 39% 30%
Syn or hyp persona (‘person’) vs donna (‘woman’) 16% 17%
Attributes blu (‘blue’) vs nero (‘black’); chiuso (‘closed ’) vs aperto (‘open’) 17% 14%
Morph. feat. bella (‘beautiful’) vs bello (‘beautiful’); persona

(‘person’) vs persone (‘people’)
5% 3%

Actions sta dormendo (‘sleeping’) vs sta sdraiato (‘is lying down’) 3% 3%
Spatial feat. destra (‘right’) vs sinistra (‘left’) 2% 2%
Binary si (‘yes’) vs no (‘no’) 18% 31%

Table 3
Distribution of errors of MiniCPM-V 2.6 (Our fine-tuned) and LXMERT-it on GQA-it gold test set into the
predefined classes from [4].

predominantly trained and evaluated on English and Chinese data, they do not yet generalize effectively
to Italian.

However, after fine-tuning on the GQA-it dataset, MiniCPM-V 2.6 achieves a substantial improvement,
reaching an accuracy of 59.4%, which surpasses both the baseline, the LXMERT-it model, and its own
zero-shot performance. This result highlights the critical importance of fine-tuning it on target language
datasets to fully leverage a model’s potential. Fine-tuning plays a pivotal role in improving a model’s
performance, especially when dealing with language-specific data, as it allows the model to adapt to the
linguistic nuances and complexities of the target language. Moreover, it helps address the specific visual
reasoning challenges posed by the dataset, ensuring more accurate and contextually relevant responses.

It is important to recognize that LXMERT-it has at least an order of magnitude fewer parameters
compared to MiniCPM-V 2.6. Despite this, MiniCPM-V’s architecture, specifically its LLM component
based on Qwen2 [20], benefits from being trained on significantly larger and more diverse datasets.
This contributes to its superior performance post-fine-tuning, as the extensive training data enables the
model to better handle complex multimodal reasoning tasks and cross-lingual understanding.

Additionally, it is worth noting that the fine-tuning process involved adapting both the language
model and the vision model. Further experimentation, where fine-tuning is applied selectively or
where techniques such as LoRA (Low-Rank Adaptation) [29] are employed, remains an open area of
exploration for future research.

4.3. Error Analysis

The error analysis aimed to identify the most frequent types of misclassifications made by the system.
The resulting percentages, summarized in Table 3, also include a comparison with the analysis from [4],
where errors were analyzed on a random 10% sample of the validated test set. In contrast, our current
analysis was manually performed by the authors on the entire test set, offering a more comprehensive
overview of the system’s performance. An important note is that, while the results are not directly
comparable—due to the different samples of misclassified examples analyzed—the error types and their
distribution provide a useful indication of how the LXMERT-it model and the fine-tuned version of
MiniCPM-V differ in their behavior. These insights offer guidance on how future iterations of the
models might be improved.

We will focus on discussing the differences between the two analyses at the end of the section.
The most evident difference appears in binary-type questions, such as those involving yes/no answers.

These findings underscore the difficulty in managing seemingly straightforward yet context-dependent
queries, where subtle differences in the phrasing of the question can result in incorrect binary decisions,
exposing the limitations of the model in reasoning. For instance, in example 2, when asked: “C’è del vino
in questa foto?”5, the model incorrectly responds with “si” (“yes”), when in fact, the image shows wine
glasses, but no actual wine. Nonetheless, MiniCPM-V only produces errors in this category in 18% of the
examples, compared to 31% for LXMERT-it. This could be attributed to the vision and language model

5In English: Is there any wine in this picture?



Figure 2: Example from the GQA-it gold test set (image id n28572) where the fine-tuned MiniCPM-V 2.6
model predicts “si” instead of “no” for the question “C’è del vino in questa foto?”.

components of MiniCPM-V working more effectively together, particularly in this category where more
advanced reasoning may be required to respond correctly.

In general, the distribution of the remaining error types follows a similar pattern between MiniCPM-V
and LXMERT-it. However, one notable exception is the category of object-related errors. In MiniCPM-V,
object-related answers account for 39% of the errors, whereas in LXMERT-it, this percentage is slightly
lower at 30%. Despite the lower overall number of errors in MiniCPM-V, this high percentage indicates
that the model struggles significantly when distinguishing between similar objects, such as “tavola”
(“table”) and “sedia” (“chair”). In Figure 3, an example is shown where the model incorrectly answers
the question “Quale tipo di mobile è nero?”6 by predicting “tavola” (table) instead of “sedia” (“chair”).
This type of confusion likely arises from the inherent visual or semantic similarities between objects,
suggesting that the model’s object recognition or feature differentiation requires further refinement.

Errors related to attributes were also prevalent, contributing 17% to the overall misclassifications.
Examples like confusing “blue” with “black” demonstrate that the model struggles with precise attribute
identification, potentially due to issues with color or texture recognition. This suggests that the model
may require improvements in fine-grained feature extraction. Errors stemming from synonyms (syn)
or hypernyms (hyp) followed closely, at 16%. These included confusion between terms like “donna”
and “ragazza” (“woman” vs. “girl”) or “uomo” and “persona” (“man” vs. “person”), pointing to challenges
in linguistic nuances and semantic hierarchical relations. This kind of confusion may indicate that
the language understanding capability of the model is limited in distinguishing between related (e.g.
hyperonyms or hyponyms) but distinct concepts.

Other errors stem from genuine ambiguity. In Figure 4, for instance, the answer for the question
“Cosa c’è davanti alla felpa?”7 was annotated as “tappeto” (“carpet”) by the human annotator, while
the model answered “scrivania” (“desk”). This discrepancy (both answers could be deemed correct)
underscores the challenge of interpreting spatial relationships without additional context. If the model
were able to ask clarifying questions, it might inquire, “Could you clarify what you mean by ‘in front’ in
this context?”. The human annotator may have considered the observer’s perspective, interpreting ‘in

6In English: What type of furniture is black?”
7In English: What is in front of the sweatshirt?



Figure 3: Examples from the GQA-it gold test set (image id n283587) where fine-tuned MiniCPM-V 2.6
model predict “tavola” instead of “sedia” when answering the question “Quale tipo di mobile è nero?”

front’ as the space between himself and the chair, whereas the model might have interpreted ‘in front’
as the position of the sweatshirt on the chair. The ability to seek such clarification could help resolve
these ambiguities and enhance the accuracy of spatial understanding in similar scenarios.

Figure 4: Examples of ambiguity from the GQA-it gold test set (image id n398257) where fine-tuned
MiniCPM-V 2.6 model answered “scrivania” instead of “tappeto” to the question “Cosa c’è davanti alla felpa?”

Another type of ambiguity can arise from differences in attention between the system and the
annotator. For instance, in Figure 5, when asked “Su cosa è sdraiato il gatto?”8, the annotator provided
the annotation “tappetino” (“mouse pad”), while the model answered “scrivania” (“desk”). Once again,
the discrepancy highlights a potential divergence in focus: the annotator might be concentrating on a
more specific object, such as the mat directly beneath the cat, whereas the model may be considering a
larger, more general object, like the desk that the mat is placed on. Such differences in attentional focus

8In English: “What is the cat lying on?”



can contribute to ambiguities in interpreting spatial relationships and objects in images.

Figure 5: Examples of attention ambiguity from the GQA-it gold test set (image id n433692) where
fine-tuned MiniCPM-V 2.6 model responded “tappetino” instead of “scrivania” to the question “Su cosa è sdraiato

il gatto?”

5. Conclusion

This study underscores the role that fine-tuning plays in enhancing the performance of multimodal
models, particularly for under-resourced languages. Our analysis of MiniCPM-V 2.6, a state-of-the-art
MLLM, demonstrates significant improvements when fine-tuned on Italian-specific datasets like GQA-it.
While the zero-shot performance of the model yields a 33.4% accuracy, fine-tuning nearly doubles its
accuracy to a state-of-the-art 59.4%. This emphasizes the importance of adapting models to the linguistic
characteristics of the target language to fully unlock their potential. For languages like Italian, where
available training data is scarce, the impact of language-specific fine-tuning becomes even more critical.

The challenges posed by multilingual Visual Question-Answering (VQA) tasks further support the
necessity of language adaptation. Our findings show that models pre-trained predominantly on English
data often exhibit limited generalization capabilities in other languages, reinforcing the presence of an
English-centric bias in many multimodal pre-trained models. Addressing this bias through targeted
fine-tuning on non-English datasets is crucial for developing AI systems that can operate effectively
across multiple linguistic contexts.

Lastly, the comparative analysis highlights that MiniCPM-V 2.6, once fine-tuned, surpasses the
previously best-performing Italian VQA model, LXMERT-it, which reached 51.0% accuracy. With a new
benchmark of 59.4%, MiniCPM-V 2.6 demonstrates the potential for advanced multimodal LLMs to set
state-of-the-art standards for VQA tasks in non-English languages. This success further underscores
the value of fine-tuning with relevant language-specific data to achieve competitive performance in
diverse linguistic settings.
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