
Termite Italian Text-to-SQL: A CALAMITA Challenge

Federico Ranaldi1,*,†, Elena Sofia Ruzzetti1, Dario Onorati3, Fabio Massimo Zanzotto1 and
Leonardo Ranaldi1,2

1Human-Centric ART, University of Rome Tor Vergata, Italy.
2School of Informatics, University of Edinburgh, UK.
3University of Rome La Sapienza, Italy.

Abstract
Relational databases play an important role in business, science, and beyond. However, the operability of relational databases
is restricted to users familiar with specific languages such as SQL, which limits the analytical power that they could deliver.
Although earlier techniques have been proposed to automatically generate SQL from natural language, such as Text-to-SQL
large-scale datasets, they are predominantly built-in English and are automatically constructed using surface web data. This
phenomenon limits evaluation and use in settings beyond English and also limits fair assessment, given the origin of the
datasets, as the data may have already been seen in pre-training corpora.

In this work, we introduce Termite, which is a definitely unseen resource for evaluating Text-to-SQL in Italian. Specifically,
we transfer evaluation pipelines beyond English, proposing novel, definitely unseen resources that avoid data-contamination
phenomena while assessing the ability of models to perform Text-to-SQL tasks when natural language queries are written in
Italian. We establish an evaluation grid based on execution accuracy. Our code and datasets are available at link.

Keywords
Text-to-SQL, Italian LLMs, CALAMITA, CLiC-it

1. Introduction
The Text-to-SQL is an important NLP task, which
maps input questions to meaningful and executable SQL
queries, enabling users to interact with databases in a
more intuitive and user-friendly way. Despite the sub-
stantial number of state-of-the-art systems [1, 2, 3] and
benchmarks [4, 5, 6] for Text-to-SQL, most of them are
in English and this limits the operability to non-English
users.

Dou et al. [5] proposed extensions beyond English
Spider [4]. This still highlights significant limitations
because the resources in specific languages were gen-
erated from automatic translations for a few languages.
On the other hand, publicly released resources could be
translated and adapted to the Text-to-SQL task, but these
could be the panacea of contamination as they are often
publicly available (e.g., Kaggle or Wikipedia as in the
case of [4, 7]). Indeed, portions of these resources are
included in the huge corpora employed to conduct the
pre-training phases of large language models (LLM), i.e.,
the data-contamination phenomenon [8, 9, 10, 11, 12].

To tackle these problems, in the context of CALAMTIA
[13] we propose Termite (Text-to-SQL Repository Made
Invisible to Engines), a novel Text-to-SQL resource cre-
ated and conceived for the Italian. We aim to reduce the
possibility of increased performance due to data contam-
ination while proposing a suitable resource for a specific

CLiC-it 2024: Tenth Italian Conference on Computational Linguistics,
Dec 04 — 06, 2024, Pisa, Italy
$ federico.ranaldi99@gmail.com (F. Ranaldi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

language. In fact, in contrast to native English bench-
mark translation methods, Termite is designed to be
used as an assessment pipeline, ensuring that it remains
a resource not exposed to search engines as it is locked
by an encryption key distributed with the dataset, reduc-
ing accidentally inclusion in a new commercial or search
LLMs training set.
Termite is structurally designed to resemble Spider.

However, it complements Spider’s extensions into other
languages by proposing a series of databases originally
hand-crafted in Italian. Specifically, part of the Termite
content comes from a thorough reworking of databases
initially designed by students from the University of
Rome Tor Vergata. This aspect, enriched by the invisibil-
ity to search engines, makes Termite a valuable resource
for evaluating models on a practical and theoretically
significant task.

Moreover, evaluating Text-to-SQL models in languages
beyond English is essential for broadening their practi-
cal use and understanding of their linguistic behavior.
Assessing how these models handle the same problem
presented in different languages is critical for gaining
insights into their adaptability and consistency across
multilingual contexts [9, 14, 15, 16].

2. Background
In this section, we provide a formal problem definition of
Text-to-SQL (§2.1), addressing typical aspects that define
it beyond a natural language understanding or code gen-
eration problem. Then, we discuss the potential impact

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/nexus126/CALAMITA_Text-to-SQL/tree/main
mailto:federico.ranaldi99@gmail.com
https://creativecommons.org/licenses/by/4.0


of data contamination on this task and how our Termite
serves as a measure against it, outlining several consid-
erations that mitigate contamination risks (§2.2). Finally,
in §2.3 we introduce the challenges that leverage our
contribution through the Termite resource.

2.1. The Task
Text-to-SQL is a fundamental task within Natural Lan-
guage Processing (NLP) that involves not only under-
standing natural language queries and generating cor-
responding SQL code, but also establishing a mapping
between data expressed in natural language and data
represented within the database schema. This requires
the model to accurately link natural language terms with
database structures such as tables, columns, and values,
making it a more complex challenge than simple code
generation or natural language understanding.

This task is crucial in making relational database inter-
actions more accessible to users who may not be familiar
with SQL syntax. The foundational work was based on
rule-based and heuristic approaches [1], (et. alia). The
actual automatic processing of Text-to-SQL pipelines be-
came meaningful with the advent of neural network-
based approaches. The shift towards neural models was
facilitated by the introduction of resources such as Spider
[4] and the more recent [17], which delivered various and
complex natural language to SQL demonstrations.

The most recent advancements in Text-to-SQL involve
the use of Large Language Models (LLMs), which have
demonstrated remarkable capabilities in handling various
tasks without needing specific pretraining or fine-tuning
tailored to each task.

Gao et al. [18] and Pourreza and Rafiei [3] shown that
GPTs are effective Text-to-SQL coders on Spider, widely
acknowledged as an effective benchmark for assessing
performance in this specific task

On the same dataset, approaches that deconstruct the
problem in smaller ones via in-context learning are even
actually examined [3].

The emergence of LLMs as a key paradigm for the
Text-to-SQL task has also led to a more in-depth study of
various prompt engineering methods. These efforts aim
to understand what best enhances a model’s performance
in text-to-SQL translation. In [19], the performance of the
GPT family is evaluated across different prompt scenarios,
which vary based on how much information about the
database is provided to the model for the translation
process. Results show that providing a specific set of
additional information significantly improves the model’s
ability to generate accurate SQL queries [19].

This last aspect enlights how LLMs appear to be be-
haviourally influenced by both the in-context prompt
[20] and the text used during the pre-training [11]. Con-
sequently, if LLMs perform better on tasks with data

that were already seen during the pre-training phase, we
would face an issue of data contamination.

2.2. Data Contamination in Modern
Benchmarks

Data contamination is an increasingly recognized chal-
lenge in the field of machine learning, with a growing
number of studies dedicated to its investigation. Sev-
eral recent studies such as [21] and [22] have explored
the issue of data contamination, proposing a compre-
hensive taxonomy of methods to detect and address it.
Due to its nature, the text-to-SQL task is susceptible to
overestimation issues, particularly related to data con-
tamination. Therefore, a good practice when evaluating
a model on this task is to ensure that there is no overlap
between the test data and the pre-training data. On the
other hand, this becomes challenging when dealing with
closed-source models, where there is no clear knowledge
of the pre-training data, such as in the case of the GPT
family [23].

Hence, taking inspiration from Golchin and Surdeanu
[24] and Deng et al. [25] who treated the issue of Data
Contamination in closed-source models, Ranaldi et al.
[12] proposed a novel method for detecting Data Contam-
ination applied to text-to-SQL. This consists in carefully
comparing the model’s performance on a novel test set
(such as Termite) with that on a well-known test set
(such as Spider), whose content is suspected to have been
exposed to the model’s pre-training data. The results
showed that GPT models exhibit a drop in performance
on Termite compared to Spider. Furthermore, it was
observed that even perturbing Spider by removing infor-
mation from the dump provided with the prompt had no
significant impact on performance. The study of contam-
inating test sets continues to expand into other tasks, to
the extent that an index of contaminated datasets [26]
has been established.

2.3. Termite
Our contribution complements [12] in particular by in-
troducing Termite. We aim to provide an Italian text-to-
SQL dataset and a tool for analysing the contamination of
Spider data for LLMs. Indeed, the structural complexity
of Termite mirrors that of the Spider test set. Moreover,
to prevent data contamination from compromising its
usefulness, it is freely accessible, but its content is not
provided in a fully transparent form.

In the following sections, we describe the composition
of Termite in detail and provide a basic evaluation to
facilitate usability and reproducibility. In addition, to
encourage usability, we share the resources and code.



3. Dataset
Our main intent is to provide an evaluation resource
for Text-to-SQL on data that is definitely unknown and,
therefore, not present in well-known pre-training cor-
pora. However, since several robust evaluation pipelines
exist in state of the art, the first step is understanding their
structure and operation. Therefore, beyond the de-facto
standards resources (§3.1), we introduce our Termite
conceived as a novel unseen Italian resource (§3.2).

3.1. Spider: Characteristics and Content
Among the best-known Text-to-SQL resources is Spider
[4]. This resource is the de-facto standard for training
and testing systems on the Text-to-SQL task.

Spider appears as a collection of databases and asso-
ciated sets of pairs of natural language (NL) questions
and the corresponding SQL translations. Databases are
structurally represented inside the dataset in the form
of SQL dumps, which include the CREATE TABLE opera-
tions and a limited number of INSERT DATA operations
for each table.

NL questions are organized into four difficulty levels:
EASY, MEDIUM, HARD, and EXTRA-HARD. For the defini-
tion of the hardness level, we refer to the categoriza-
tion originally made in Spider [4]. The difficulty of an
NL question is assessed by considering the correspond-
ing SQL query. Hence, the difficulty is correlated with
the number and kind of operations that the gold query
contains: the presence of JOIN operations, aggregation,
and WHERE conditions contribute to the hardness of the
query. EASY queries do not involve more than one table.
MEDIUM and HARD queries span multiple tables: MEDIUM
queries contain only a JOIN or aggregation operation
whereas HARD queries are more complex both in terms of
number of JOIN and aggregations. Finally, EXTRA-HARD
queries may contain nested queries, and other operators
like UNION and INTERSECT 1.

3.2. Termite: a Text-to-SQL Repository
Made Invisible to Engines

The driving idea for proposing a novel resource for the
Text-to-SQL task is to reduce the possibility of boosting
performance due to data contamination. Indeed, publicly
available datasets are not suitable for this purpose. Even
though novel datasets are made available, they are built
from publicly open-access resources such as Kaggle or
Wikipedia (this is the case for recently developed datasets
like BIRD [7] or Spider itself). Hence, these do not guar-
antee that they are as new as required. The same issue
may also be faced for hidden test sets. Moreover, since

1More details are available on the official Spider repository

freely available datasets are easily accessed and tracked
by engines, they are at risk of being contaminated in the
near future if they are not already contaminated.

To address these challenges, we propose Termite2.
Termite aims to be a permanently fresh dataset. Termite
will be invisible to search engines since it is locked under
an encryption key delivered along the resource. This trick
will reduce the accidental inclusion in a novel training
set for commercial or research GPTs.

Hence, by following characteristics of Spider, Termite
contains hand-crafted databases in different domains.
Each database has a balanced set of NL-SQL query pairs:
we defined an average of 5 queries per hardness-level.
The entire dataset was designed to be comparable to
the Spider Validation Set, not only in terms of database
characteristics such as size and table count (Table 1) but
also in terms of query difficulty, which was measured
using the same definition provided by Spider. Moreover,
as in Spider, during the construction of Termite, we
took care to write unambiguous, direct NL questions that
can be solved by a model relying only on its linguistic
proficiency and an analysis of the schema, with no ex-
ternal knowledge needed. The style adopted in the NL
questions is plain and colloquial in line with the style
of Spider’s NL questions. Spider and Termite are also
comparable in terms of number of tables and columns
in each dataset. We curated the column names to make
them similar to the ones in Spider, using a similar per-
centage of abbreviations and compound names (see Table
1). This equivalence will be crucial to limit the influence
of the dataset itself on the following evaluations and will
be further explored in Section 4.2.

However, there is a significant and fundamental dif-
ference between the two datasets, as the Termite is not
openly available on the web or easily retrievable nor built
on pre-existing openly available resources.

This aspect is crucial because the way it is made avail-
able certainly reduces the risk of falling into the LM
contamination index ([26]).

3.3. Comparing Hardness of Termite vs.
Spider

When introducing a new dataset for benchmarking a
particular task, it is important to ensure it aligns with
the established and commonly used datasets within the
community to maintain consistency and comparability.

Our Termite is designed to resemble Spider in terms
of measurable aspects, like the number of columns and
tables per database, as well as the lexicon used in the
schema definition. However, it remains difficult to quan-
tify via some simple statistics how hard it is to understand

2The repository is available here under GPL-3.0 license. To access,
use the password "youshallnotpass".

https://github.com/taoyds/spider/tree/master/evaluation_examples
https://github.com/nexus126/CALAMITA_Text-to-SQL/tree/main


Dataset

Spider Termite

#DB 20 10

avg #TABLES per DB 4.2 4.0

avg #COLUMNS per TABLE 5.46 5.56

#QUERY 1035 202

avg #QUERY per DB 51.75 20.2

avg #FK/#COLUMNS per DB 0.16 0.13

avg #Compound/#COLUMNS per

DB

0.63 0.51

avg #Abbr/#COLUMNS per DB 0.10 0.12

Table 1
Spider and fact sheet. Termite is designed to be comparable

to the validation set of Spider.

how to translate a natural language question into an SQL
statement.

To compare hardness of Termite and Spider, we
adopted a human-centered definition: if humans can
translate questions into an SQL queries on both Spider
and Termite with the same level of challenge, then it
means that their hardness, at least for a SQL-proficient
human annotator, is the same.

Therefore, ten annotators were asked to judge the
equivalence in terms of hardness of the SQL translations
that compose Spider and Termite by examining a ran-
dom sample of queries of both datasets.

To measure the hardness of the two datasets, we de-
signed a simple test. Given a Entity-Relationship schema
of a database and a question in natural language, each
annotator is asked to choose among three options the
correct translation in SQL of the question. Appendix ??
presents details on the construction of the test.

On both Spider and Termite, taking as join annotation
the answer chosen by the majority of annotators leads
to almost perfect classification (0.975 accuracy on Spi-
der and maximum accuracy on Termite). The average
accuracy per annotator is 0.91(±0.05) on Spider and
0.94(±0.07) on Termite. Moreover, Fleiss’s Kappa co-
efficients are rather high (0.79 and 0.85 respectively) for
both Spider and Termite. Hence, we can conclude that
humans do not find one dataset more difficult than the
other. The two datasets can then be considered equiva-
lent in terms of the hardness of translations.

4. Methods
Current evaluation pipelines exploit the behaviour of
models by defining robust prompting strategies since the
generations delivered by these are strongly correlated to
the in-context structures [19].

Thus, in §4.1, we introduce the technique for the Text-
to-SQL task as the suggested evaluation metric for an
initial exploration of Termite. Furthermore, in §4.2, we

define Execution Accuracy as the evaluation metric of
choice for evaluating the model, as it offers a practical
method for determining the correctness of SQL query
generation within this framework.

4.1. Prompting LLMs in Italian for
Text-to-SQL Translation

Given instructions in natural language, LLMs can trans-
late the request into code (i.e., SQL queries) to answer
the given request. Specifically, models for generating
text have undergone training to process both natural lan-
guage and code. As a result of the inputs they receive,
these models produce text-based outputs. For this reason,
it is possible to frame the Text-to-SQL as a translation
task: given a dump for a database and a query in natu-
ral language, the model is asked to translate the latter
in the corresponding SQL query, referring to tables and
columns into the considered database. The desiderata is
an executable query, semantically equivalent to a gold
human-generated query. In the next paragraphs, we first
describe how GPT-3.5 (gpt-3.5-turbo) is prompted in
order to obtain the translations .

Text-to-SQL as a Translation Task OpenAI API’s
enable to interrogate a model in a multi-turn conversa-
tion format: chat models receive a series of messages as
input and generate a message as output. We test the abil-
ity of GPT-3.5 on the Text-to-SQL task by framing each
translation from natural language to SQL as a separate
conversation.

The proposed approach, aimed at analysing the
model’s in-context learning abilities in zero-shot scenar-
ios, is very similar to "Code Representation" [19] and has
been specifically tested in Italian [9].

In particular, the first message of a target database
gives the model the dump of the database. In each dump,
information about the database’s tables is provided by
the CREATE TABLE statements. In the CREATE instruc-
tions, the constraints of the primary and foreign keys are
also encoded. In addition, some realistic data to fill the
tables are provided by INSERT instructions. Given the
dump, the model answers by producing an interpretation
of the dump. Typically, this model response contains an
explanation of the dump’s contents. For example, consid-
ering the database bowling in Termite dataset, the first
messages in the conversation are the following:

user: Considera il seguente database:
CREATE TABLE "pista" [...]; CREATE TABLE
"giocatori" [...];
GPT-3.5: Questo database rappresenta una
struttura per la gestione di un centro di
bowling...



Then, given the dump and the model’s interpretation
of it, a message containing the natural language question
to be translated is sent. In particular, the selected prompt
ensures that the model translates natural language ques-
tions into SQL queries with a limited amount of text that
is not SQL. These steps are repeated for each question
separately to obtain translations independently. How-
ever, to ensure that the model’s understanding of each
database is comparable across all questions, the database
dump and the same interpretation initially produced by
the model are sent as context, in the form of preceding
messages, before each translation is requested. Hence,
building from the previous example, a conversation to
translate a question on the bowling database would be
completed by the following messages:

user: Traduci in SQL la seguente query.
Rispondi usando esclusivamente linguaggio
SQL. Conta il numero di giocatori per
partita.
GPT-3.5: SELECT ora_inizio,tenuta_il,id_pista,
COUNT(*) FROM ’partita’ GROUP BY
ora_inizio,tenuta_il,id_pista;

4.2. Measuring Hardness of queries in
Spider and Termite

We need to ensure that Spider and Termite are hard-
ness comparable. Termite is designed with a similar
annotation protocol; however, a similarity in terms of the
hardness of the natural language questions used is hard
to quantify. For this reason, we asked 10 SQL-proficient
annotators to perform a simple yet effective test to mea-
sure how difficult it is for them to translate questions
both from Spider and from Termite. The main idea is
that if they can translate both Spider and Termite ques-
tions with the same accuracy level, then the challenge
level is similar on both datasets.

In particular, given an E-R database schema and a nat-
ural language utterance, each test question asks the an-
notator to choose from three SQL query options that
satisfy the request. All three options are syntactically
correct SQL queries, but the incorrect answers are se-
mantically different from the correct ones. The authors
designed the first incorrect option, perturbing the correct
answer by removing or replacing some operations or re-
trieved columns and changing the field and table names
with non-matching ones. The second incorrect answer
is another query extracted from the same dataset as the
correct one. The selected query is the most similar under
the Bag of Words assumption concerning the correct one.
To retrieve this third option, the similarity of two queries
is measured via the cosine similarity of their BOW vector
representations.

The complete test is composed of 20 randomly selected
queries from each dataset, Hence, the resulting 40 ques-
tions are shared to 10 SQL-proficient annotators: 60% of
them are Computer Science Master students, the remain-
ing are already graduated. Five annotators work in a field
that requires daily use of the SQL query language. Finally,
we divided the test into two trials of 20 queries each. We
administered it to the annotators at two different times
to limit errors due to gradual loss of concentration.

Our approach is completely zero-shot to minimize
the effect that the prompt itself–rather than data
contamination–can have on performance. Once the trans-
lation process is completed, the SQL code produced by
the model is retrieved to evaluate whether or not the
generated query satisfies the natural language query.

Execution Accuracy: the Evaluation Metric The
evaluation metric adopted is execution accuracy intro-
duced by Yu et al. [4], which assesses the correctness
of the generated SQL query by executing it against the
database and comparing the result with the expected
output.

The Execution Accuracy (EA) can be formally defined
as follows:

Let 𝑞 represent the gold query and 𝑔 represent the
generated query. The execution accuracy compares the
execution results of 𝑔 and 𝑞 on a database 𝐷.

𝐸𝐴(𝑔, 𝑞,𝐷) =

{︃
1 if 𝑔(𝐷) = 𝑞(𝐷)

0 if 𝑔(𝐷) ̸= 𝑞(𝐷)

where 𝑔(𝐷) and 𝑞(𝐷) represent the outputs of the
queries on 𝐷. Execution accuracy is 1 if the results are
the same and 0 otherwise.

In case of syntactic errors in the generated SQL query,
it is considered definitively incorrect, as adherence to
SQL grammar is part of the model’s evaluation.

The execution accuracy metric is prone to false posi-
tives, as two different queries can return the same output
under specific database record configurations. For this
reason, in [12], the Test Suite Accuracy metric is adopted.
Test Suite Accuracy, introduced in Zhong et al. [27], es-
sentially involves performing execution accuracy on the
same query across many randomly generated database
record configurations called Test Suite.

In this paper, we propose EA as an evaluation metric
because the way queries and database records are de-
signed in Termite aims to minimize the occurrence of
false positives. Additionally, to encourage experimenta-
tion with Termite, we recommend initially employing
simple and computationally inexpensive evaluation met-
rics, in contrast to Test Suite Accuracy. Moreover, we
suggest disregarding the query difficulty evaluation met-
ric proposed by [4].



Hence, in link is available, an automated script eval-
uates generated SQL queries using Execution Accuracy
as the metric. It can be run locally as it is a lightweight
program that executes queries on an SQL server and
processes the output as our metric requires.

5. Experiments
Our Termite aims to extend the Text-to-SQL evaluation
pipeline to Italian while preserving data integrity and
thus preventing possible contamination. To prove its
operability, we propose a baseline assessment in §5.1 and
discuss the obtained results in §5.2.

5.1. Experimental Setup
We systematically evaluated GPT-3.5 (gpt-3.5-turbo-16k)
performance on the Termite dataset for the Text-to-SQL
task. We employed the API to generate SQL translations
for each query in the dataset. To ensure consistency in the
results, we set the temperature parameter to 1, allowing
for greater flexibility and diversity in the model’s output.
For each natural language query, a translation request
was sent to the model. The generated SQL query was
then saved and subsequently processed according to the
aforementioned metric (§4.2).

Database Name EA_SCORE (%) Queries

bowling 50.79 24

centri 56.25 19

coronavirus 40.00 20

farma 62.50 20

farmacia 50.00 20

galleria 69.15 23

hackathon 46.25 19

pratica 50.11 22

recensioni 20.00 18

voli 56.25 17

Table 2
Execution Accuracy (EA_SCORE (%)) achieved by GPT-3.5

and Number of Queries for each Database

5.2. Baseline Results
The results achieved in the baseline assessment reveal
the intrinsic challenges of the text-to-SQL task perfor-
mance. In fact, Table 2 reports the Execution Accuracy
percentages (EA_SCORE (%)) achieved by GPT-3.5 on
each of the 10 datasets that compose our Termite. It can
be observed that an acceptable accuracy, significantly

exceeding 50%, is only seen for the "farma" and "galleria"
databases, where 69% and 62% accuracy were achieved,
respectively.

6. Limitations & Future Works
The idea of Termite is to propose a new resource con-
ceived and realized for the Italian language. During the
discussion of the contribution, we introduced the un-
derlying motivations that support our choices regarding
encryption and baseline evaluations.

However, we plan to extend our contribution to lan-
guages beyond Italian in future developments. We also
aim to propose efficient alignment techniques to enable
smaller models to cope with more demanding tasks such
as text-to-SQL by adopting teacher-student alignment
techniques [28, 29].

7. Conclusions
We have introduced Termite, a resource that, to the best
of our knowledge, is unique in that the databases and
queries were natively conceived in Italian. Its structural
alignment with well-known datasets like Spider makes
it a solid benchmarking tool for analysing Text-to-SQL
results when the test set languages differ.

Additionally, its uniqueness lies in the fact that it is
not publicly accessible by search engines, making it less
exposed to the increasingly prominent issue of data con-
tamination, particularly when dealing with closed-source
large language models.

Extending Termite to include queries where the com-
plexity is not only driven by the SQL query itself but also
by tasks such as commonsense and arithmetic reasoning
would further enrich the dataset. This is in line with
approaches like those seen in Archer [30], which address
these additional challenges.

Acknowledgments
We would like to express our gratitude to the Human-
Centric Art team for their valuable collaboration in the
creation of the Termite dataset. Special thanks go to
the annotators whose work was essential in affirming
the comparability between Termite and Spider. Finally
we extend our appreciation to the Computer Science’s
students of the University of Rome Tor Vergata for pro-
viding the original hand-crafted databases, which were
subsequently the subject of extensive reworking and re-
finement.

https://github.com/nexus126/CALAMITA_Text-to-SQL/tree/main


References
[1] A. Giordani, A. Moschitti, Translating questions

to SQL queries with generative parsers discrimina-
tively reranked, in: M. Kay, C. Boitet (Eds.), Proceed-
ings of COLING 2012: Posters, The COLING 2012
Organizing Committee, Mumbai, India, 2012, pp.
401–410. URL: https://aclanthology.org/C12-2040.

[2] T. Scholak, N. Schucher, D. Bahdanau, PI-
CARD: Parsing incrementally for constrained
auto-regressive decoding from language mod-
els, in: M.-F. Moens, X. Huang, L. Specia,
S. W.-t. Yih (Eds.), Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational
Linguistics, Online and Punta Cana, Domini-
can Republic, 2021, pp. 9895–9901. URL: https:
//aclanthology.org/2021.emnlp-main.779. doi:10.
18653/v1/2021.emnlp-main.779.

[3] M. Pourreza, D. Rafiei, DIN-SQL: Decomposed in-
context learning of text-to-SQL with self-correction,
in: Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. URL: https://
openreview.net/forum?id=p53QDxSIc5.

[4] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang,
Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z. Zhang,
D. Radev, Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic
parsing and text-to-SQL task, in: E. Riloff, D. Chi-
ang, J. Hockenmaier, J. Tsujii (Eds.), Proceed-
ings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Association
for Computational Linguistics, Brussels, Belgium,
2018, pp. 3911–3921. URL: https://aclanthology.org/
D18-1425. doi:10.18653/v1/D18-1425.

[5] L. Dou, Y. Gao, M. Pan, D. Wang, W. Che,
D. Zhan, J.-G. Lou, Multispider: Towards bench-
marking multilingual text-to-sql semantic pars-
ing, 2022. URL: https://arxiv.org/abs/2212.13492.
arXiv:2212.13492.

[6] J. Li, B. Hui, G. QU, J. Yang, B. Li, B. Li, B. Wang,
B. Qin, R. Geng, N. Huo, X. Zhou, C. Ma, G. Li,
K. Chang, F. Huang, R. Cheng, Y. Li, Can LLM al-
ready serve as a database interface? a BIg bench
for large-scale database grounded text-to-SQLs,
in: Thirty-seventh Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track, 2023. URL: https://openreview.net/forum?
id=dI4wzAE6uV.

[7] J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang,
B. Qin, R. Cao, R. Geng, N. Huo, X. Zhou, C. Ma,
G. Li, K. C. C. Chang, F. Huang, R. Cheng, Y. Li,
Can llm already serve as a database interface? a
big bench for large-scale database grounded text-
to-sqls, 2023. arXiv:2305.03111.

[8] I. Magar, R. Schwartz, Data contamination:
From memorization to exploitation, 2022.
arXiv:2203.08242.

[9] L. R. D. V. C. G. A. F. R. R. F. M. Z. Federico Ranaldi,
Elena Sofia Ruzzetti, Prompting llms in italian lan-
guage for text-to-sql translation, in: Proceedings
of CLIC 2023, Location, 2023.

[10] L. Ranaldi, A. Nourbakhsh, E. S. Ruzzetti, A. Pa-
trizi, D. Onorati, M. Mastromattei, F. Fallucchi, F. M.
Zanzotto, The dark side of the language: Pre-
trained transformers in the DarkNet, in: R. Mitkov,
G. Angelova (Eds.), Proceedings of the 14th Inter-
national Conference on Recent Advances in Natu-
ral Language Processing, INCOMA Ltd., Shoumen,
Bulgaria, Varna, Bulgaria, 2023, pp. 949–960. URL:
https://aclanthology.org/2023.ranlp-1.102.

[11] L. Ranaldi, E. S. Ruzzetti, F. M. Zanzotto, Pre-
Cog: Exploring the relation between memoriza-
tion and performance in pre-trained language mod-
els, in: R. Mitkov, G. Angelova (Eds.), Proceed-
ings of the 14th International Conference on Re-
cent Advances in Natural Language Processing, IN-
COMA Ltd., Shoumen, Bulgaria, Varna, Bulgaria,
2023, pp. 961–967. URL: https://aclanthology.org/
2023.ranlp-1.103.

[12] F. Ranaldi, E. S. Ruzzetti, D. Onorati, L. Ranaldi,
C. Giannone, A. Favalli, R. Romagnoli, F. M. Zan-
zotto, Investigating the impact of data contam-
ination of large language models in text-to-SQL
translation, in: L.-W. Ku, A. Martins, V. Srikumar
(Eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, Association for Com-
putational Linguistics, Bangkok, Thailand and vir-
tual meeting, 2024, pp. 13909–13920. URL: https:
//aclanthology.org/2024.findings-acl.827.

[13] G. Attanasio, P. Basile, F. Borazio, D. Croce, M. Fran-
cis, J. Gili, E. Musacchio, M. Nissim, V. Patti, M. Ri-
naldi, D. Scalena, CALAMITA: Challenge the Abili-
ties of LAnguage Models in ITAlian, in: Proceed-
ings of the 10th Italian Conference on Computa-
tional Linguistics (CLiC-it 2024), Pisa, Italy, Decem-
ber 4 - December 6, 2024, CEUR Workshop Proceed-
ings, CEUR-WS.org, 2024.

[14] L. Ranaldi, G. Pucci, Does the English matter?
elicit cross-lingual abilities of large language mod-
els, in: D. Ataman (Ed.), Proceedings of the 3rd
Workshop on Multi-lingual Representation Learn-
ing (MRL), Association for Computational Linguis-
tics, Singapore, 2023, pp. 173–183. URL: https:
//aclanthology.org/2023.mrl-1.14. doi:10.18653/
v1/2023.mrl-1.14.

[15] L. Ranaldi, G. Pucci, F. Ranaldi, E. S. Ruzzetti,
F. M. Zanzotto, A tree-of-thoughts to broaden
multi-step reasoning across languages, in: K. Duh,
H. Gomez, S. Bethard (Eds.), Findings of the Associ-

https://aclanthology.org/C12-2040
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
http://dx.doi.org/10.18653/v1/2021.emnlp-main.779
http://dx.doi.org/10.18653/v1/2021.emnlp-main.779
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
http://dx.doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2212.13492
http://arxiv.org/abs/2212.13492
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2203.08242
https://aclanthology.org/2023.ranlp-1.102
https://aclanthology.org/2023.ranlp-1.103
https://aclanthology.org/2023.ranlp-1.103
https://aclanthology.org/2024.findings-acl.827
https://aclanthology.org/2024.findings-acl.827
https://aclanthology.org/2023.mrl-1.14
https://aclanthology.org/2023.mrl-1.14
http://dx.doi.org/10.18653/v1/2023.mrl-1.14
http://dx.doi.org/10.18653/v1/2023.mrl-1.14


ation for Computational Linguistics: NAACL 2024,
Association for Computational Linguistics, Mex-
ico City, Mexico, 2024, pp. 1229–1241. URL: https:
//aclanthology.org/2024.findings-naacl.78. doi:10.
18653/v1/2024.findings-naacl.78.

[16] L. Ranaldi, G. Pucci, A. Freitas, Empowering cross-
lingual abilities of instruction-tuned large language
models by translation-following demonstrations, in:
L.-W. Ku, A. Martins, V. Srikumar (Eds.), Findings
of the Association for Computational Linguistics
ACL 2024, Association for Computational Linguis-
tics, Bangkok, Thailand and virtual meeting, 2024,
pp. 7961–7973. URL: https://aclanthology.org/2024.
findings-acl.473.

[17] J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang,
B. Qin, R. Cao, R. Geng, N. Huo, X. Zhou, C. Ma,
G. Li, K. C. C. Chang, F. Huang, R. Cheng, Y. Li,
Can llm already serve as a database interface? a
big bench for large-scale database grounded text-
to-sqls, 2023. URL: https://arxiv.org/abs/2305.03111.
arXiv:2305.03111.

[18] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding,
J. Zhou, Text-to-sql empowered by large lan-
guage models: A benchmark evaluation, 2023.
arXiv:2308.15363.

[19] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding,
J. Zhou, Text-to-sql empowered by large language
models: A benchmark evaluation, 2023. URL: https:
//arxiv.org/abs/2308.15363. arXiv:2308.15363.

[20] L. Ranaldi, G. Pucci, When large language models
contradict humans? large language models’ syco-
phantic behaviour, 2024. URL: https://arxiv.org/abs/
2311.09410. arXiv:2311.09410.

[21] C. Deng, Y. Zhao, Y. Heng, Y. Li, J. Cao, X. Tang,
A. Cohan, Unveiling the spectrum of data con-
tamination in language model: A survey from de-
tection to remediation, in: L.-W. Ku, A. Martins,
V. Srikumar (Eds.), Findings of the Association for
Computational Linguistics ACL 2024, Association
for Computational Linguistics, Bangkok, Thailand
and virtual meeting, 2024, pp. 16078–16092. URL:
https://aclanthology.org/2024.findings-acl.951.

[22] M. Ravaut, B. Ding, F. Jiao, H. Chen, X. Li, R. Zhao,
C. Qin, C. Xiong, S. Joty, How much are large lan-
guage models contaminated? a comprehensive sur-
vey and the llmsanitize library, 2024. URL: https:
//arxiv.org/abs/2404.00699. arXiv:2404.00699.

[23] OpenAI, Gpt’s family, 2023. URL: https://platform.
openai.com/docs/models.

[24] S. Golchin, M. Surdeanu, Time travel in llms: Trac-
ing data contamination in large language mod-
els, 2024. URL: https://arxiv.org/abs/2308.08493.
arXiv:2308.08493.

[25] C. Deng, Y. Zhao, X. Tang, M. Gerstein, A. Cohan,
Investigating data contamination in modern bench-

marks for large language models, 2024. URL: https:
//arxiv.org/abs/2311.09783. arXiv:2311.09783.

[26] Contaminated datasets index, https://hitz-zentroa.
github.io/lm-contamination/, 2023. Accessed: 2024-
09-23.

[27] R. Zhong, T. Yu, D. Klein, Semantic evaluation for
text-to-SQL with distilled test suites, in: B. Webber,
T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Association for Com-
putational Linguistics, Online, 2020, pp. 396–411.
URL: https://aclanthology.org/2020.emnlp-main.29.
doi:10.18653/v1/2020.emnlp-main.29.

[28] L. Ranaldi, A. Freitas, Aligning large and small
language models via chain-of-thought reasoning,
in: Y. Graham, M. Purver (Eds.), Proceedings of the
18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), Association for Computational
Linguistics, St. Julian’s, Malta, 2024, pp. 1812–1827.
URL: https://aclanthology.org/2024.eacl-long.109.

[29] L. Ranaldi, G. Pucci, F. M. Zanzotto, Modeling eas-
iness for training transformers with curriculum
learning, in: R. Mitkov, G. Angelova (Eds.), Pro-
ceedings of the 14th International Conference on
Recent Advances in Natural Language Processing,
INCOMA Ltd., Shoumen, Bulgaria, Varna, Bulgaria,
2023, pp. 937–948. URL: https://aclanthology.org/
2023.ranlp-1.101.

[30] D. Zheng, M. Lapata, J. Z. Pan, Archer: A
human-labeled text-to-sql dataset with arith-
metic, commonsense and hypothetical reason-
ing, 2024. URL: https://arxiv.org/abs/2402.12554.
arXiv:2402.12554.

https://aclanthology.org/2024.findings-naacl.78
https://aclanthology.org/2024.findings-naacl.78
http://dx.doi.org/10.18653/v1/2024.findings-naacl.78
http://dx.doi.org/10.18653/v1/2024.findings-naacl.78
https://aclanthology.org/2024.findings-acl.473
https://aclanthology.org/2024.findings-acl.473
https://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
http://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2311.09410
https://arxiv.org/abs/2311.09410
http://arxiv.org/abs/2311.09410
https://aclanthology.org/2024.findings-acl.951
https://arxiv.org/abs/2404.00699
https://arxiv.org/abs/2404.00699
http://arxiv.org/abs/2404.00699
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2311.09783
https://arxiv.org/abs/2311.09783
http://arxiv.org/abs/2311.09783
https://hitz-zentroa.github.io/lm-contamination/
https://hitz-zentroa.github.io/lm-contamination/
https://aclanthology.org/2020.emnlp-main.29
http://dx.doi.org/10.18653/v1/2020.emnlp-main.29
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2023.ranlp-1.101
https://aclanthology.org/2023.ranlp-1.101
https://arxiv.org/abs/2402.12554
http://arxiv.org/abs/2402.12554

	1 Introduction
	2 Background
	2.1 The Task
	2.2 Data Contamination in Modern Benchmarks
	2.3 Termite

	3 Dataset
	3.1 Spider: Characteristics and Content
	3.2 Termite: a Text-to-SQL Repository Made Invisible to Engines
	3.3 Comparing Hardness of Termite vs. Spider

	4 Methods
	4.1 Prompting LLMs in Italian for Text-to-SQL Translation
	4.2 Measuring Hardness of queries in Spider and Termite

	5 Experiments
	5.1 Experimental Setup
	5.2 Baseline Results

	6 Limitations & Future Works
	7 Conclusions

