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Abstract
This paper investigates how decoder-only instruction-tuned LLMs handle lexical ambiguity. Two distinct methodologies
are employed: Eliciting rating scores from the model via prompting and analysing the cosine similarity between pairs of
polysemous words in context. Ratings and embeddings are obtained by providing pairs of sentences from Haber and Poesio
[1] to the model. These ratings and cosine similarity scores are compared with each other and with the human similarity
judgments in the dataset. Surprisingly, the model scores show only a moderate correlation with the subjects’ similarity
judgments and no correlation with the target word embedding similarities. A vector space anisotropy inspection has also
been performed, as a potential source of the experimental results. The analysis reveals that the embedding spaces of two out
of the three analyzed models exhibit poor anisotropy, while the third model shows relatively moderate anisotropy compared
to previous findings for models with similar architecture [2]. These findings offer new insights into the relationship between
generation quality and vector representations in decoder-only LLMs.
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1. Introduction
Lexical ambiguity (LA) is a peculiar characteristics of
human language communication. Words often carry mul-
tiple meanings, and discerning the intended sense re-
quires nuanced comprehension of contextual cues. LA is
a broad concept subsuming several semantic phenomena,
such as regular and irregular polysemy, homonymy, and
the coinage of new senses. Humans handle such ambigu-
ity effortlessly, leveraging contextual information, prior
knowledge, and pragmatic inference. However, for Large
Language Models (LLMs), which rely on statistical pat-
terns in text data, accurately resolving lexical ambiguity
remains a challenging task.

Despite their remarkable capability of using words ap-
propriately in context, one critical aspect that requires
deeper investigation is whether such models possess
human-like lexical competence, enabling them to gener-
alize from multiple instances of the same phenomenon,
or if they are simply mimicking these instances.
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In this paper, we aim to investigate how LLMs han-
dle LA. Specifically, we challenged three decoder-only
instruction-tuned models to generate lexical similarity
ratings for word pairs used in two different contexts,
with various degrees of sense similarity. To achieve this,
we employed a chain-of-thought approach, prompting
the models to produce a step-by-step reasoning process
before assigning their ratings, allowing them to better
distinguish between different senses of the same term.

For this task, we used the dataset released by Haber and
Poesio [1], which includes human similarity judgments.
The models’ generated ratings were correlated with hu-
man similarity judgments to determine whether their
lexical disambiguation competence aligns with that of
humans. Additionally, we computed the cosine similarity
between the models’ internal representation of the am-
biguous target words. Our research question is twofold:
i.) to assess if the models’ generated ratings are con-
sistent with their internal representations of the
target words; ii.) to determine whether the internal
representations have a more similar distribution to
human ratings than the generated responses.

We are aware that context-sensitive word embeddings,
like those of LLMs, can suffer from a representation degen-
eration problem (see Section ?? for further details), which
limits their semantic representational power. Hence, we
included in our analysis a brief overview of how this
phenomenon affects the internal representational space
of the models under our investigation.

To the best of our knowledge, this is the first study in
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which different decoder-only models were tested on their
metalinguistic competence regarding LA. Understanding
how LLMs manage this type of complex semantic phe-
nomenon, based on the interplay of multiple contextual
factors, can guide new improvements in training method-
ologies for the development of more sophisticated and
robust models that better mimic human-like language
understanding.

2. Related works
One of the main reasons for the success of Transformer-
based LMs is their ability to represent context-dependent
meaning. The specific meaning a token assumes in a
given context is encoded within the internal layers of
these models and is reflected in the spatial distribution of
the produced embeddings, where unique context vectors
for each token occurrence are placed distinctly [2].

Yenicelik et al. [3], extending Ethayarajh [2]’s study,
sought to obtain a general overview of BERT’s [4] em-
bedding space concerning polysemous words. They con-
firmed that BERT does indeed form contextual clusters,
which nevertheless obey semantic regularities in a broad
sense. These clusters may fulfill denotative, connotative,
or syntactic criteria, with converging groups consistent
with the idea of polysemy as a gradual continuum. How-
ever, the embedding space of such models shows regu-
larities influenced not only by linguistic factors but also
by one of the model’s training objectives, i.e., Next sen-
tence Prediction [5]. This confirms the flexibility and
richness of contextual representations but raises ques-
tions about their representativeness of proper linguistic
features. Several studies compared the contextual vectors
of encoder models like BERT and ELMO with human sim-
ilarity judgments, demonstrating that human judgments
usually correlate with the cosine similarity of polyse-
mous word pairs [1, 6], and even more with homonyms
pairs [7].

Recently, the correlation between human similarity
judgments and model competence regarding LA was also
explored for larger decoder-models, such as GPT-4 [8].
However, this analysis only considers GPT’s generated
ratings, without examining the internal representations
of polysemous words. Hu and Levy [9] pointed out that
prompting might not be the most reliable way to evaluate
models, as the generated responses are not always consis-
tent with the model’s probability distribution.Their work
primarily addresses two tasks: token prediction and sen-
tence pair selection. In their evaluations, token prediction
is determined by identifying the token with the highest
probability from the entire vocabulary, while sentence
pair selection is based on the perplexity of two compet-
ing propositions. While their methodology yields strong
results, it is not directly applicable to our study due to the

non-deterministic nature of model outputs in response to
the task we propose. Specifically, presenting the model
with two alternative sentences is not feasible in our ex-
periment, as the objective is to have the model generate a
chain-of-thought output that differentiates between the
distinct senses of an ambiguous term and subsequently
produces a rating. One alternative would be to have the
model directly predict the rating and check which vocab-
ulary token (among the numbers in the rating scale) has
the highest probability. However, this approach would
not generate the contextual embeddings for the target
term necessary for our comparisons. Furthermore, as
discussed in section 3.3, ratings produced without the
chain-of-thought approach were inconsistent.

Since we are dealing with word similarities, the most
straightforward way to measure a model’s internal
knowledge about polysemic words is by using cosine-
similarities. However, given the contextual nature of
these models, embeddings might not transparently reflect
semantic properties, as they can be influenced by other
superficial contextual factors. This makes it challenging
to discern whether a high value of cosine similarity is due
to word sense similarity or to a general closeness of the
word embeddings in the space, the so-called anisotropy.

Anisotropy can indeed negatively affect the represen-
tational power of embeddings, and several methods have
been proposed to mitigate its effect [10, 11, 12]. Never-
theless, it has been demonstrated that anisotropy does
not have a negative impact on model performance [12].

Given these complexities, we decided to further inves-
tigate LA with large decoder-only models to highlight
differences with results obtained from smaller encoders
and to determine whether their behaviour aligns with
the human competence on LA. We compared the perfor-
mance of different instruction-tuned decoders to obtain
a more comprehensive overview of how these models
handle this phenomenon. To ensure a thorough evalu-
ation, we consider both the models’ generated ratings
for polysemous words and their cosine similarities. Ad-
ditionally, in our analysis, we took into account the level
of anisotropy exhibited by these models.

3. Experimental settings

3.1. Dataset
We use the dataset introduced in Haber and Poesio [1],
which includes a set of target words in various contexts.
Human judgments were collected on sentence pairs with
the same word, by asking participants to rate the similar-
ity of the target word meaning in the different contexts.
We chose to focus only on in-vocabulary tokens, as we
aimed to compare models’ performances on their gener-
ated embeddings, without employing additional opera-



Table 1
Sentence pairs for each similarity class based on the distribu-
tion of human ratings. Classes “Homonym” and “Same sense
& context” in boldface were manually identified [1].

Similarity class Count

Homonym 11
Different 45
Quite different 49
Quite similar 37
Similar 19
Equal 68
Same sense & context 7

Total 236

tions (e.g., mean pooling of subword embeddings). Thus,
we retain about 79% of the dataset sentence pairs (i.e.,
236 out of the original 297).

We further categorized sentence pairs according to
the distribution of the human ratings, dividing them
into four similarity classes depending on their interquar-
tile ranges.1 We also included the two manually iden-
tified groups from Haber and Poesio [1]. One consists
of sentence pairs with homonyms, and the other con-
sists of words having the same sense in highly similar
contexts. As these groups did not have human ratings,
we assigned ten ratings to each data point, randomly se-
lected around 0.01 for homonyms (indicating completely
different meanings) and around 1.00 for the other group.
The human ratings serve as the ground truth for the post-
hoc analysis in Section 4. The final dataset counts 35
target word types (see Figure 1 for their list and token
distribution), with a set of similarity judgments for each
pair.

3.2. Models
To assess the capability of LLMs to capture varying
degrees of LA, we selected three decoder-only open
models of comparable size. We chose instruction-
tuned models exclusively, as this configuration
is more suitable for conditional text generation:
Meta-Llama-3-8B-Instruct [13], hereafter referred
to as LLaMA; Gemma-1.1-7B2, hereafter referred to as
Gemma; and Mistral-7B-Instruct-v0.23, hereafter
referred to as Mistral. All models are instruction-tuned
autoregressive LLMs with around 7 Billion parameters.
We chose these models as they are representative of
popular and widely used open-weights LLMs. We used
the Huggingface implementation of the models for our
experiments.

1See Appendix 4 for the interquartile ranges values and a visual
representation.

2https://huggingface.co/google/gemma-1.1-7b-it
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

3.3. Prompting
We report experimental results using a single prompt.4

The prompt was designed to closely follow the method-
ology used by Haber and Poesio [1] for modeling the LA
task to collect crowdsourced data, ensuring a fair com-
parison between LLMs’ ratings and human judgments.
In our setup, we provided the models with two sentences,
each containing the same target word. We then prompted
the models to return a rating score indicating how similar
the word’s usage was in the two occurrences. The rating
score ranged from 1 to 100, where 1 indicated that the
word was used with completely different senses in the
two sentences, and 100 indicated that the word was used
with the same sense across sentences. We formulated
the instructions following common rules of thumb for
prompting LLMs [14].

In preliminary experiments, we asked the model to
return the similarity rating first and then to return the
motivation of such rating. We observed that i.) the rating
was quite inconsistent with the underlying motivations
given by the models, ii.) the motivations were usually
more appropriate than the ratings, and that iii.) the mod-
els tended to return the same rating for all the sentence
pairs. Thus, we chose to ask the model to provide the
motivation first, followed by the rating. This allowed
the models to provide more accurate ratings. Such a be-
havior is in line with the literature on “chain-of-thought”
prompting [15]. Additionally, we chose beam search as a
generation strategy, with 2 beams. The models sampled
the next generated token among the 50 most probable
words. We combined this strategy with nucleus sampling,
by setting a probability threshold of 0.95.

3.4. Embedding Extraction and
Cosine-similarity

Building on the experiments in Haber and Poesio [1]
and Loureiro and Jorge [16], we used the embeddings
generated from the last layer and the average of the em-
beddings from the last four layers as contextual embed-
dings for the generated tokens. The idea behind this
approach is that the last layer embeddings represent the
most contextual and generation-focused features, while
the preceding layers capture more general aspects of the
processed sequence. This method allowed us to obtain
two sets of contextual embeddings for each generation.
Due to the unidirectional design of the decoder architec-
tures, the repetition of the input sentences across genera-
tions was necessary. The model had to process all tokens
in both sentences before providing sufficient contextual
embeddings, making the input vectors unsuitable for the
task. Once the vectors for each generated token were
obtained, we isolated the embeddings corresponding to

4The full prompt is available in Appendix A.



Figure 1: The distribution of the target words in our dataset.

the tokens of the target words contained in the stimulus
sentences (repeated by the model at the beginning of the
generation). Afterwards, cosine similarity values were
calculated between the target word vectors extracted
from the last layer and the last four layers.

3.5. Investigating anisotropy in
decoder-only models

The so-called representation degeneration problem [17] is
a well-known phenomenon observed in several Trans-
former architectures, even in those trained on data other
than text [18]. This issue causes most of the model’s
learned word embeddings to drift to a narrow region of
the vector space [2], making them very close to each
other in terms of cosine similarity, and consequently lim-
iting their semantic representational power. Since our
work primarily focuses on analyzing LLMs’ ability to
capture subtle semantic properties such as polysemic re-
lations and relies in part on the computation of cosine
similarity between token pair embeddings, we decided
to further investigate this phenomenon.

We conducted an analysis of the distribution of the
models’ generated tokens in the vector space to under-
stand the extent of representation degeneration and its
implications for the semantic representation of our tar-

get tokens. For each model, we sampled 1,000 pairs of
random tokens from all generations of the model across
the entire dataset. We extracted the representations of
these tokens from both the last layer and the average
of the last four layers. We then computed the average
cosine similarity of the sampled embedding pairs for the
last and last four layers separately.

3.6. Evaluation
We compared the Model Rating Scores (MRSs), the Cosine
Similarity Scores (CSSs), and the Human Rating Scores
(HRSs) collected by Haber and Poesio [1] by means of
Spearman Correlation. The correlation between MRSs
and CSSs should shed light on the internal coherence of
each model and aims at answering the following ques-
tion: Is the metalinguistic knowledge of the model
consistent with its internal representations? By com-
paring HRSs with MRSs and HRSs with CSSs, we aim
to explore a different issue: Do the human ratings
have a more similar distribution to what a model
generates rather than its internal representation
or vice-versa? Before computing the correlation, we
rescaled the CSSs in the range 0.01 − 1.00. We also
rescaled the MRSs from the range 1− 100, to the range
0.01− 1.00. As for the HRSs, we used the average of the



Table 2
Spearman correlation measures between Model Rating Scores
(MRS), Human Rating Scores (HRS), and Cosine Similarity
Score (CSS). The results with CSS are computed both with the
last hidden state vectors (Last) and with vectors averaged from
the last four hidden states (Last4). The model’s result with the
correlation score farther from zero for each comparison is in
boldface. P-values < 0.05 are marked with *.

Model MRS vs. HRS CSS vs. HRS MRS vs. CSS

Last4 Last Last4 Last

Mistral 0.404* −0.020 −0.020 0.047 0.042
Gemma 0.446* −0.002 0.001 0.066 0.056
LLaMa 0.616* 0.016 0.110 −0.002 0.118

collected ratings for each sentence pair in the correlation.

4. Results and analyses
Table 2 reports the correlations among human ratings,
model ratings, and cosine similarities. First, we consider
the correlation between cosine similarities and human
ratings. The three models exhibit a near-zero correla-
tion between CSS and HRS, which is always negative for
Mistral (−0.020) and positive for LLaMa (0.016, 0.110).
Second, we compare model ratings to human ones. We
observe that there is a moderate-to-high correlation for
LLaMa (0.616), and a low-to-moderate correlation for
Mistral (0.404) and Gemma (0.446). Thus, despite being
more correlated than cosine similarities, the models’ rat-
ings often differ from human ones. We observed some re-
current patterns in the score assignments by each model5.
LLaMA frequently assigns similarity ratings of 20, 60,
and 80. Gemma shows a preference for very low or very
high scores, leaving the middle range sparsely populated.
Mistral appears the most balanced in its evaluations, yet
it still favors round values (100, 90, 80, etc.) and shows
a strong preference for values close to 1. However, these
rating preferences do not seem to correspond to lexical
preferences. Although MRS appears to correlate better
with HRS than CSS, the unstable nature of prompt results
and their sensitivity to biases from the data or prior train-
ing make them less suitable for inspecting the model’s
competence regarding complex semantic features like
polysemy.

In addition to this, we observe that in the comparison
between CSS and HRS, the cosine similarity distributions
of Mistral and LLaMA appear similar, while Gemma’s
distribution is shifted towards higher values. We can
surmise that this may be attributed to a greater anisotropy
in the embedding space characterizing the Gemma model
(see Section 4.1 for a thorough analysis). Overall, the CSS

5Figure 3 in the appendix enables a detailed examination of the
ratings generated by the models. An interactive version of these
plots will be available on GitHub.

Table 3
Average cosine similarities between 1000 random pairs of to-
kens for each model.

Model Avg Cosine Similarity

Last4 Last

Mistral 0.138 0.137
Gemma 0.672 0.746
LLaMA 0.24 0.228

reflects the similarity distribution indicated by the human
subjects far less accurately than the MRS.

Finally, to evaluate the internal coherence of the mod-
els in terms of the agreement between the generated
similarity scores and hidden representations, we also
compared the cosine similarities and model ratings of
each model. In this case, the highest correlation is ob-
tained by LLaMa, which nonetheless exhibits a very weak
correlation (0.118 on the last layer), meaning that one
can not reliably predict MSR based on the CSS. We spec-
ulate that a complex phenomenon like polysemy is only
sub-optimally represented at the token embedding level.

4.1. Anisotropy
As shown in Table 3, the degree of anisotropy varies
quite significantly among the three decoder-only models,
especially between Gemma and the other two models,
Mistral and LLaMA. Gemma exhibited the highest co-
sine similarity scores, approximately 0.67 for the last
four layers and slightly higher for the last layer (0.75),
corroborating the findings of [2] regarding anisotropy
in decoder models such as GPT-2, which peaks in the
last layer. Conversely, Mistral showed the lowest scores
(0.137 for both the last and last four layers), followed by
LLaMA (0.24 for the last four layers and 0.228 for the
last layer), indicating a much more isotropic space than
one would expect for models with similar architecture
and comparable size. This suggests that anisotropy might
not be the same in all Transformer-based models. Rather,
it appears to be a property that is present at varying de-
grees in models, with some exhibiting greater anisotropy
than others. This may be due to specific differences in
how models were trained, both in terms of data used, and
pre-training, fine-tuning, and post-training techniques.
We aim to further investigate this aspect in the future.

Due to these differences, we decided not to apply
any post-processing method [12, 10] to mitigate the
anisotropy of our target vectors. However, looking in
detail at the relationship between the models’ anisotropy
and their respective cosine similarities, it seems that the
relatively low degree of anisotropy in both Mistral and
LLaMa does not result in a better correlation between
their CSS and HRS. On the contrary, despite a generally



moderate level of anisotropy found in these decoder-only
models, the CSS of the target tokens correlate less with
the HRS than the MRS. This finding suggests that the low
correlations of cosine similarities can not be (entirely)
due to the embedding anisotropy and that conversely the
latter does not affect the model generation abilities signif-
icantly. This appears to confirm recent trends suggesting
that cosine similarity is a suboptimal measure to explore
Transformers’ geometries [19].

5. Conclusion and future work
Our study investigates how LLMs handle LA, using two
distinct methodologies: Eliciting rating scores from the
model and analyzing the cosine similarity between pairs
of polysemous words. We calculated the Spearman cor-
relation between HRS vs. MRS, HRS vs. CSS, and MRS
vs. CSS. The aim was to determine whether the model’s
metalinguistic knowledge aligns with its internal repre-
sentations and to assess if human ratings more closely
match the outputs generated by the model than its inter-
nal representations.

The lack of correlation between CSS and MRS provides
intriguing insights into the relationship between the in-
ternal representations of LLMs and the responses they
generate in metalinguistics tasks, like explicitly assigning
similarity ratings. Specifically, the argument presented
by Hu and Levy [9] appears to be validated: Generated
responses do not always reflect the model’s internal pro-
cessing. Hu and Levy [9] compared model generations
with their probability distributions and found the latter
method to be more accurate. In contrast, in our study,
using the internal representations of the model (i.e., the
contextual embeddings, as motivated in Section 2) proved
to be a less reliable method. The most straightforward
conclusion is that generative LLMs might be suboptimal
for estimating word sense similarity. The superior per-
formance of probability estimation reported by Hu and
Levy [9] might be due to its direct link to the predic-
tion training objectives of LLMs. To further investigate
the relationship between CSS and MRS, we inspected
the anisotropy of the embeddings. The average cosine
similarity among a sample of generated tokens was rela-
tively low, indicating that anisotropy did not affect our
cosine similarity measures and is not characteristic of
all decoder-only models under investigation. The lack
of anisotropy observed in some of the analyzed decoder-
only models is at odds with the conclusions of Ethayarajh
[2], who reported a higher anisotropic space for GPT-2.

Only MRS yielded a moderate correlation with HRS,
indicating that LA is not fully captured by the analyzed
models, in text generation and vector representations. In
conclusion, the relationship between human judgments,
model generations, and internal representations appears

unclear and calls for further research. Despite the low
anisotropy of the examined models, cosine similarity did
not reveal a correlation between the generations and
the internal representations of the models, indicating
a need for deeper investigation. We plan to repeat the
experiments by leveraging recent results with sparse au-
toencoders [20] to decompose the meanings of lexically
ambiguous words. This could provide a deeper under-
standing of the models’ ability to handle and represent
polysemy.

We could not extract embeddings from commercial
models, such as those provided by OpenAI, which are
accessible only through APIs. However, it would be valu-
able in future research, if and when this functionality
becomes available, to analyze and compare the internal
representations and the generated outputs of these state-
of-the-art models.

Another promising avenue for future research is to
examine the differences between vector representations
and generated tokens with respect to linguistic phenom-
ena beyond polysemy and lexical ambiguity. For instance,
incorporating out-of-vocabulary words could allow for
an exploration of semantic shifts caused by the addition
of prefixes or suffixes (e.g., “order” vs. “dis-order”), offer-
ing valuable insights. This analysis would benefit from
using a tokenization strategy that treats morphemes as
subtokens, alongside an investigation into the degree of
anisotropy in these models.
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A. The prompt
The following text box shows the prompt used to test
LLMs in our lexical ambiguity experiment. The under-
lined text was replaced by sentences and word targets
from the dataset shared by Haber and Poesio [1].

You will receive two sentences. Your task is to
rate how similar is the use of the word ‘word’
in the two sentences.

• Sentence 1: s1

• Sentence 2: s2

You must follow the following principles:

• Assign a rating on a scale of 1-100, where
1 means that the word is used with com-
pletely different senses in the two sen-
tences and 100 means that the word is
used in the same sense across the two
sentences.

• Return your answer in this way:

– Rewrite the two sentences follow-
ing this template:

∗ Sentence1: <text>

∗ Sentence2: <text>

– Motivation: <a concise motiva-
tion for your rating>

– Rating score: <only a float num-
ber on a scale of 1-100 and nothing
else>.

• Interrupt generation after the rating
score.

Question: how similar is the use of the word
word in the following two sentences?
s1
s2
Answer:

B. More on human-rated pairs
Table 4 shows the interquartile ranges of the human rat-
ings collected by Haber and Poesio [1] and related only
to the sentence pairs filtered as described in Section 3.1.
The ranges are plotted in Figure 2.

In Table 5, the Spearman correlation measures between
Model Rating Scores (MRS), Human Rating Scores (HRS),
and Cosine Similarity Score (CSS). Sentence pairs from
the similarity class ‘Homonym’ and ‘Same sense & con-

Table 4
The interquartile ranges of the human ratings related to the
sentence pairs selected for our experiments.

Quartile Range

First 0− 0.556
Second 0.556− 0.845
Third 0.845− 0.934
Fourth 0.934− 1.00

Figure 2: The distribution of the human ratings given to
sentence pairs filtered as described in Section 3.1.

Table 5
Spearman correlation measures between MRS, HRS, and CSS.
The CSS are computed both with last hidden state vectors
(Last) and the average of the last four (Last4). In bold is the
model’s result with the correlation score further from zero for
each comparison. ‘Homonym’ and ‘Same sense & context’
pairs were not included in the computation. P-values < 0.05
are marked with *.
Model MRS vs HRS CSS vs HRS MRS vs CSS

Last4 Last Last4 Last

Mistral 0.333* −0.010 −0.100 0.018 0.026
Gemma 0.420* −0.130 0.126 0.18 0.028
LLaMa 0.583* −0.067 0.098 0.052 0.053

text’, for which Haber and Poesio [1] did not provide
crowdsourced data, were not included in the computa-
tion.

C. Additional Figures



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: In this image, the scatterplots of the results are reported for the three models. In the first row, the results related to
Gemma (a, b, c); in the second row, Mistral’s results (d, e, f); in the third row LLaMa’s results (g, h, i). In the first column (a,
d, g), we plotted the comparison between HRSs (on the x-axis) and MRSs (on the y-axis); in the second column (b, e, h), the
comparison between CSSs (on the x-axis) and HRSs (on the y-axis); in the third column c, f, i), we compared CSSs (on the
x-axis) and MRSs (on the y-axis). In the plots, each color refers to a different target word.
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