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Abstract 
Here we discuss strategies and results of a small-sized training program based on Italian child-
directed speech (less than 3M tokens) for various network architectures. The rationale behind these 
experiments [1] lies in the attempt to understand the effect of this naturalistic training diet on 
different models' architecture. Preliminary findings lead us to conclude that: (i) different 
tokenization strategies produce mildly significant improvements overall, although segmentation 
aligns more closely with linguistic intuitions in some cases, but not in others; (ii) modified LSTM 
networks (eMG-RNN variant) with a single layer and a structurally more controlled cell state 
perform slightly worse in training loss (compared to standard one- and two-layered LSTM models) 
but better on linguistically critical contrasts. This suggests that standard loss/accuracy metrics in 
autoregressive training procedures are linguistically irrelevant and, more generally, misleading 
since the best-trained models produce poorer linguistic predictions ([2], pace [3]). Overall, the 
performance of these models remains significantly lower compared to that of 7-year-old native-
speaker children in the relevant linguistic contrasts we considered [4]. 
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1. Introduction 
According to the mainstream LLM development 

pipeline, Transformer-based architectures [5] 
outperform sequential training models, like LSTM [6], in 
various NLP tasks. When small-sized training data are 
available, optimization becomes necessary [7], [8], but 
common optimization techniques neglect the 
linguistically relevant fact that these models (i) conflate 
semantic/world knowledge with morpho-syntactic 
competence, (ii) require unreasonable training data 
compared to that needed by children during language 
acquisition, (iii) the higher their performance, the lower 
their return in cognitive/linguistic terms [9]. In this 
paper we address these three issues, starting from the 
observation that while world knowledge uses all 
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training data available, and the more the better, 
structural (morpho-syntactic and compositional 
semantic) knowledge might require a much smaller 
dataset (from 10 to 100 million words, according to [10]). 
We explore this intuition further and, based on prolific 
literature from the ‘80s showing that typical child errors 
are structurally sensitive and never random [11], we 
model networks’ architecture to bias learning towards 
plausible structural configurations, possibly preventing 
these “small” language models (SLM) from producing 
wrong linguistic generalizations. We started from a mild 
revision of the LM training and evaluation pipeline for 
Italian including alternative approaches to tokenization 
based on pseudo-morphological decomposition (§2.2); 
we then approached a more structurally-driven update 
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of the cell state in LSTM networks, which we will call 
eMG-RNN variants (§2.3); we finally adopted a precise 
testing benchmark for specific linguistic contrasts in 
Italian following BLiMP design [12] (§2.4). We will first 
set the stage in section (§2) and discuss one alternative 
tokenization strategy (MorPiece). A simple modification 
to the gating system in LSTM is proposed that mimics 
certain linguistic constraints. Then, we will describe the 
relevant experiments we have run (§3) and draw some 
conclusions based on the observed results (§4). A general 
discussion with a description of the next steps will 
conclude this paper (§5). 

2. Revisiting LM training pipeline 
LM training pipeline is relatively rigid: after corpus 
cleaning (i), the data are prepared/optimized for 
tokenization (ii), then the tokenized input is batched for 
training autoregressive models (iii), mostly feeding 
transformer-based architectures (iv). Once the models 
are trained, the evaluation step requires their assessment 
using some standard tasks (v). In the next sub-sections, 
we will identify various criticalities in this pipeline, 
eventually proposing strategies to mitigate these 
problems and, in the end, training linguistically more 
informative SLM. 

2.1. Corpus creation and cleaning 
The primary data we collected for Italian replicates 

plausible linguistic input that children may be exposed 
to during acquisition, in line with [1]. It consists of about 
3M tokens divided into child-directed speech (CHILDES 
Italian section), child movie subtitles (from 
OpenSubtitles), child songs (from Zecchino D’Oro 
repository), telephone conversations (VoLIP corpus, 
[13]), and fairy tales (all from copyright expired 
sources). Simple cleaning consisted of removing 
children’s productions from CHILDES files as well as 
any other metalinguistic annotation (speakers’ 
identification, headers, time stamps, tags, links, etc.). 
Dimension and rough lexical richness of each section are 
reported in Table 1 (Type-Token Ratio, TTR) before and 
after the cleaning procedure. 

Table 1 
Corpus profiling before (bc) and after (ac) cleaning. 

2.2. Tokenization: MorPiece (MoP)  
Popular vLLMs use either Byte-Pair Encoding (BPE) 
[14], [15] or (fast)WordPiece (fWP) [16] algorithms for 
tokenization. The simplicity and computational 
efficiency of these approaches contrast with the limited 
morphological analysis they provide. In rich inflectional 
languages (e.g., Italian) and agglutinative languages 
(e.g., Finnish), this might induce linguistically unsound 
generalizations. Here, we explore a more 
morphologically informed strategy, inspired by the 
Tolerance Principle (TP) and Sufficiency Principle (SP) 
[17], aiming to break words into potentially relevant 
morphemes without relying on morpheme tables [18]. 
The experiments we conduct compare the impact of 
different strategies when integrated into various 
network architectures. We refer to MorPiece (MoP) as a 
TP/SP-based strategy, which can be algorithmically 
described as follows: each token is traversed from left to 
right to create a “root trie,” and from right to left to 
create an “inflectional trie” [19]. Each time a node N of 
the trie is traversed (corresponding to the current 
character path in the word), the frequency counter 
associated with this node (Nc) is updated (+1). Nodes 
corresponding to token endings (characters before white 
spaces or punctuation) are flagged. Once both tries are 
created, the optimization procedure explores each 
descendant, and for every daughter node Dk its 
frequency k is compared to HN, the approximation of the 
harmonic number for N used both in TP and SP [17], 
where c is the frequency of the mother node Nc: 

HN = c/ln(c) (F1)  

If k > HN and c ≠ k, a productive boundary break is 
postulated (based on the inference that since there are 
different continuations and some of them are 
productive, i.e. sufficiently frequent according to SP, 
those might be real independent morphemes). We can 
check if this break respects HD for the relevant nodes Dj 
and Ni in the “inflectional trie”. This means there exists 
a path where the frequency i of the daughter node Ni (in 
the “inflectional trie” the dependency between D and N 
is reversed) is lower than j/ln(j), where j is the frequency 
of the mother node Dj. If this is the case, the continuation 
is not considered “an exception”, in the sense of TP [17], 
suggesting that the continuation is, in fact, a productive 
independent morpheme. A “++” root node is then 
activated, the node Dk linked to it, and so on recursively, 
following the FastWordPiece tokenization strategy [20]. 
During recognition, the LinMaxMatch identification 
approach is adopted, as in FastWordPiece. Figure 1 
illustrates the relevant morpheme breaks (indicated as 
“||”) obtained by applying this morpheme-breaking 
procedure in the root and infl tries fragments. 

Section tokens bc tokens ac TTR 
Childes 405892 346155 0.03 
Subtitles 959026 700729 0.05 

Conversations 80826 58039 0.11 
Songs 240309 222572 0.08 

Fairy tales 1103543 1287826 0.05 
Total 2973879 2431038 0.03 



Various parametric controls have been considered to 
tune this procedure: (i) a branching factor (bf) parameter 
that excludes nodes with an excessively high number (> 
bf) of continuations (the rationale being that when too 
many continuations are present, they are unlikely to 
correspond to inflections; this often happens near the 
root of each trie); (ii) a cutoff parameter indicating the 
lower frequency boundary for a mother node (this is 
necessary to ensure a minimum number of observations; 
for example, if cutoff = 8, we exclude from the “root” trie 
any branching daughter with a frequency < 5). As in 
BPE, minimum frequency control for tokens is also 
implemented to exclude infrequent dictionary entries. 

 

Figure 1: Visualization of a fragment of the “root” and 
the “infl(ectional)” trie created by MorPiece on our 
corpus (cutoff=100, bf=10).  

Consider the word “cerca” (“to search for”) 
represented in the “root” trie. In the last “c-a” the 
relation between Hfc and “a” frequency indicates that a 
break might exist between the nodes “c” 
(frequency=1813) and “a” (frequency=1307), since Hfc = 
1813/ln(1813) and 1307 > Hfc. This hypothesis is 
confirmed by the failure of the Hfc check at the relevant 
“infl” “a-c” segment (“a” frequency=10121, “c” 
frequency=466619): 10121 < 466619/ln(466619). If Hfc had 
been greater than “a” frequency, then no segmentation 
advantage would have been observable.  

The proposed algorithm has a linear time complexity 
of O(2n), as each trie must be explored deterministically 
exactly once to evaluate the HN/D frequency relation. 
The best linguistic results (relatively linguistically 
coherent segmentations) for our Italian corpus were 
obtained with cutoff=100 and bf=10. We found that it 
was unnecessary to filter the proposed inflectional 
breaks using the infl trie double check (TP) since the 
LinMaxMatch strategy already efficiently filtered out 
initially overestimated breaks. However, as an 
anonymous reviewer correctly pointed out, this strategy 
does not guarantee total inclusion of every token of our 

training corpus (in contrast to BPE, for instance). We 
acknowledge this limitation, but we emphasize that our 
goal was to produce a smaller, potentially more efficient 
lexicon. In our experiments, while BPE generated a 
lexicon of 96028 tokens (67169 when the minimum 
lexical frequency was set to 2), MoP produced a lexicon 
of just 55049 tokens (cutoff=100, bf=10). 

2.3. Revisiting LSTM architecture 
Despite many variants of the standard LSTM 

architectures, notably Gated Recurrent Units [21] or 
LSTM augmented with peephole connections [22], and 
the discouraging equivalence results for these variations 
[23], we observe a recent revival of RNN-based model 
architectures [24]. We believe, in fact, that the core 
intuition behind the LSTM architecture may be 
linguistically relevant and worth exploring further, 
although generally more performant models (for 
instance in terms of GLUE benchmark, [25]) are usually 
preferred [26]. The linguistic intuition is that the “long-
term memory” (cell state C in Figure 2) in LSTM 
networks could effectively model various types of non-
local dependencies using a single mechanism. 
Linguistically speaking, filler-gap dependencies (1) and 
co-referential dependencies (2) are both “non-local 
dependencies” but they are subject to non-identical 
locality conditions: 

(1) a. cosa i  credi  che abbia riposto _ i?  
 what  (you) believe that  (he) shelved? 
 what do you believe he shelved?  
b. *cosa i credi che abbia riposto il libro [AdvP senza 
 leggere _ i]]?  
b'. cosa i credi che abbia riposto _ i [AdvP senza 
 leggere _ i]]?  
 what do you believe he shelved (*the book) 
 without reading? 

(2) a. [il panino]i, chi credi che loi abbia mangiato? 
 the sandwich, who (you) believe it has eaten? 
b. *[il panino]i, chi credi che _i abbia mangiato? 
 the sandwich, who (you) believe has eaten? 
 the sandwich, who do you believe have eaten 
 *(it)? 

While both dependencies require C(onstituent)-
command generalizations to be captured [27], the 
adjunct island in (1), [28], but not clitic left-dislocation in 
(2), [29], can, for instance, be licensed with a(n extra) gap 
(1).b'. Aware of these differences, we decided to simply 
alter the gating system to allow the LSTM to create 
distinct pathways: one to “merge” new tokens, the other 
to decide if a long-distance dependency is necessary, and 
subsequently to “move” the relevant items [30]. The 
processing implementation of these operations is 
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inspired by expectation-based Minimalist Grammars 
formalism, eMG [31], and it is then named eMG-RNN. 

Following this implementation, merge applies 
incrementally, token by token, and move means “retain 
in memory”.  In more detail, the cell of an eMG-RNN 
network performs the forward processing described in 
the computational graph in Figure 2: (i) the input at time 
t (xt) is linearly transformed to a lower dimension vector 
(E, loosely used for “embedding”), then concatenated (C) 
with the previous hidden state/output, if any (ht-1). Two 
pathways, both transformed using a sigmoid function 
(σ), lead, on the one hand, to the move gate, on the other, 
to the merge gate. In the first case, the result of the 
sigmoid transformation is multiplied (⊙,	the	Hadamard 
product) with the input (this either erases or allows 
some component of the original vector to be added (+) 
to the previous (if any) context/cell state (ct-1) as in LSTM 
forget gate). The merge gate, on the other direction, will 
privilege the new token if the result of the sigmoid 
combination of the incoming token and the previous 
hidden state is low, otherwise (1 - this activation, as in 
GRUs update gate) will favor items in the context/cell 
state (transformed through a tanh function to simulate 
memory decay). 

 

Figure 2: eMG-RNN cell computational graph.  

This architecture is the most performant compared 
to various alternatives tested for the BabyLM 2024 
challenge [32]. 

2.4. A linguistically informed evaluation 
The last step in the pipeline requires a linguistically 

advanced set of oppositions to verify that the structural 
generalizations can be captured coherently. We adopted 
the lm-eval package [33] and we included a specific task 

based on English BLiMP [12]. Most of the contrasts are 
derived from the COnVERSA test [4]. They consist of 
minimal pairs ordered following an increasing 
complexity metric that considers the number of 
operations necessary to establish a dependency and the 
locality of such dependency. The examples below  
illustrate this point by comparing a local agreement 
dependency with, (3).b, or without, (3).a, a (linear) 
intervener and a more complex dependency that 
requires to process an object relative clause (4): 

(3) a. Il piatto è  pieno. Vs. Il piatto è piena.  
 the dish.S.M is full.S.M  … full.S.F 
b. Il muro della casa è rosso   
 the wall.S.M of the house is red.S.M  
 Vs. Il muro della casa è rossa.  
  the wall.S.M of the house is red.S.F  

(4) Ci sono due maestri. Uno insegna ed è ascoltato 
dagli studenti, l'altro si riposa. Quale maestro 
insegna? There are two teachers. One teaches and 
he’s listened to by the students, the other rests. 
Which one teaches?  
 Quello che gli studenti ascoltano.   
 The one who the students listen to   
Vs. Quello che ascolta gli studenti.  
 The one who listens to the students 

Four kinds of dependency (agreement, thematic role 
assignment, pronominal forms usage, questions 
formation and answering) are considered for a set of 32 
distinct syntactic configurations (a total of 344 minimal 
pairs to be judged, [4]). 

3. Materials and Methods 
We trained our models on the IUSS High-Performance 
Cluster with 2 GPU nodes, each with 4 A100 NVIDIA 
devices and 1T RAM. Each network has been trained 
with the full corpus using various batched strategies. (i) 
Naturalistic, line-by-line, single exposure to each 
sentence in the corpus (each epoch corresponds to an 
exposure of about 3M tokens); (ii) Conversational, two 
sequential lines are used for the input, that is, [line 1, 
line 2], [line 2, line 3], etc. are batched; this guarantees 
that a minimal conversational context for each sentence 
is provided. In this case, each epoch corresponds to an 
exposure of 6M tokens; (iii) fixed sequence length, 
considering the average sentence length of 54 words per 
sentence, a window of 60 tokens is used, that is, [tok_1, 
tok_2 … tok_60], [tok_2, tok_3 … tok_61] … are batched; 
with this regimen, each epoch corresponds to an 
exposure of 180M tokens. Roughly speaking, the bare 
amount of data processed by a 7 y.o. child ranges from 7 
to 70M tokens, [34], then training the networks with a 
naturalistic or conversational regimen for 3-10 epochs 
would result in a comparable exposure. We trained the 
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networks using torch.optim.lr_scheduler (step_size=5, 
gamma=0.1) and Adam optimizer (lr=0.001) with 16-bit 
automatic mixed-precision to speed up the (parallel) 
training for a maximum of 100 epochs. The networks 
have been implemented in PyTorch (v2.3.1), wrapped in 
Transformers structures (4.42.4) to maximize 
compatibility in the lm-eval (v.0.4.3) environment.  
CUDA drivers v.12.4 were used. The most relevant 
configurations tested are discussed in the next session.  

3.1. Configurations tested 
Three different tokenization strategies (BPE, 

FastWordPiece, and MorPiece) are compared using the 
best-performing LSTM network [35] , which consists of 
650 units for the embedding layer and 650 nodes for each 
of the two hidden layers. Five different network 
architectures are compared, with the GroNLP GPT-2-
small pretrained model [36] constituting our “top LLM 
performer”. This model was re-adapted to Italian from 
the GPT-2 English trained model, which was originally 
trained on approximately 10 billion token corpus, 
namely various orders of magnitude bigger than our 
corpus. We then trained on our corpus a comparable 
bidirectional transformer (BERT), two LSTM networks, 
respectively with 1 and 2 LSTM layers, and a one-layer 
eMG-RNN network (Table 2), as described in §2.3. 

Table 2 
Network architectures 

4. Results 
Comparing BERT and LSTM architectures, LSTMx1 

qualifies as the most performant configuration (both in 
training and in minimal pair judgments). Considering 
training, the only batching regimen performing 
sufficiently well is the fixed sequence length (loss=0.8877 
with LSTMx1 vs. conversational loss=4.0240 or 
naturalistic regimen loss=4.5884). All networks reached 
a learning plateau around 10-12 epochs. Comparing the 
performances on COnVERSA, we realized that the 
results does not improve after 3 epochs of fixed sequence 
length (60 tokens) training regimen (this result is 

compatible with the overfitting hypothesis, [37]). 
Focusing on tokenizer training results with LSTMx1, we 
observed that BPE and FastWordPiece have comparable 
performance. MorPiece performs slightly worse, even 
though the tokenization seems linguistically more 
coherent (e.g., “farlo” – “to do it” is tokenized both by 
BPE and fWP as a single token, while it is split in two in 
MorPiece: “far” “+lo”) and the training faster (Table 3). 
This, however, only marginally impacts on minimal 
pairs contrast judgments, performing slightly better, 
overall, just in certain agreement cases. 

Table 3 
Impact of the tokenization strategy on LSTM training 

We then adopted the BPE tokenizer for architectural 
comparisons. Network training performances are 
summarized in Table 4 and graphically represented in 
Figure 3 for linguistic dimensions comparison. 

Table 4 
Network architectures and their performance on 
training (Loss/Accuracy) and COnVERSA test 

Model Loss/Accuracy COnVERA 
GroNLP	GPT-2s  0.73 (±0.02) 

BERT	 4.5488/0.65471 0.43(±0.02) 
LSTMx2	 0.7849/0.8283 0.48(±0.03) 
LSTMx1	 0.8784/0.8103 0.52(±0.03) 

eMG-RNN 0.9491/0.7815 0.61(±0.01) 
 

 
Figure 3: Performance of the 2 best RNN networks 
variants on COnVERSA compared to the 7 y.o. children. 
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Model Parameters Structure 
GroNLP GPT-2 

small 121M 12 Attention heads + 
768 hidden units 

BERT 113M 12 Attention heads + 
768 hidden  units 

LSTMx2 65M 650 Embedding + 2 
LSTM layers (650) 

LSTMx1 36M 650 Embedding + 1 
LSTM layers (650) 

eMG-RNN 73M 650 Embedding + 1  
eMG-RNN layer (650) 

Strategy Vocab size Training 
time x 
epoch 

Loss 

Corpus types 72931 ~1h 1.1520 
BPE 96028 ~4h 0.8877 
fWP 97162 ~4h 0.9491 
MoP 55049 ~3h 1.1151 



5. Discussion 
Overall, LSTM networks significantly outperform 

Bidirectional Transformers in this minimal pairs test on 
Italian. This finding is consistent with results previously 
discussed in the literature and suggests a clear 
advantage of recurrent, sequential model architectures 
(e.g., LSTM) over Bidirectional Transformers  in terms of 
linguistic generalizations [38] and partially justify the 
renewed interest for RNN networks that we have been 
observed in the last couple of years [24], [26]. As far as 
the tokenization procedure is concerned, it is somewhat 
premature to draw definitive conclusions from our 
experiments, as MorPiece has not yet been fully 
optimized or tested. Specifically, the optimal cut-off 
threshold and minimum branching factor have not been 
systematically evaluated. Nevertheless, a more 
morphologically coherent segmentation is expected to 
enhance sensitivity in certain minimal contrasts.  

Similarly, the eMG-RNN architecture could be 
further explored and optimized, particularly considering 
specific contrasts, which may help determine whether 
our linguistic modeling is on the right track. Evidence to 
the contrary is attested by the judgments of sentences 
with missing thematic roles, which are often incorrectly 
preferred by most models, including our eMG-RNN.  

In the end, our results suggest that Loss/Accuracy 
performance registered in training is not a significant 
predictor of the performance on the COnVERSA test, or 
more generally, of the linguistic coherence of the LM 
trained. Likewise, the models’ dimension is not a clear 
predictor either: Transformers trained on the same small 
dataset perform randomly (in all dimensions their 
performance is round 50%) while eMG-RNN, which has 
a number of parameters similar to LSTM-2, outperforms 
both LSTM-2 and LSTM-1 (half size of eMG-RNN). The 
training size remains a striking difference compared to 
the input received by children: this difference of one 
order of magnitude suggests that the bias considered in 
eMG-RNN are not yet satisfactory and that our 
Language Acquisition Device is still more efficient; in 
this sense, the Poverty of Stimulus Hypothesis remains 
unrefuted [39] by these results. Next steps will consider 
extending to 10M tokens the training corpus (to match 
the English counterpart [1]) and further exploring the 
effects of optimized tokenization procedures or other 
minimal modifications, and optimizations [24], of 
recurrent neural networks. 
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