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Abstract
Most work on named entity recognition (NER) focuses solely on English. Through the use of training data augmentation
via machine translation (MT), multilingual NER can become a powerful tool for information extraction in multilingual
contexts. In this paper, we augment NER data from culinary recipe ingredient lists by means of MT and word alignment (WA),
following two approaches: (i) translating each entity separately, while taking into account the full context of the list and
(ii) translating the whole list of ingredients and then aligning entities using three types of WA models: Giza++, Fast Align,
and BERT, fine-tuned using a novel entity-shuffling approach. We depart from English data and produce Italian versions via
MT, span-annotated with the entities projected from English. Then, we use the data produced by the two approaches to train
mono- and multilingual NER BERT models. We test the performance of the WA and NER models on an annotated dataset of
ingredient lists, partially out-of-domain compared to the training data. The results show that shuffling entities leads to better
BERT aligner models. The higher quality NER data created by these models enables NER models to achieve better results,
with multilingual models reaching performances equal to or greater than their monolingual counterparts.
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1. Introduction
Named entity recognition (NER) is a sequence labeling
task with a long history of works mainly focusing on
the recognition of entities such as people, locations, and
organizations. Multilingual NER has also attracted re-
search efforts, with recent SemEval campaigns including
tasks on multilingual complex NER (MultiCoNER) [1, 2].
Despite its popularity and various mono- and multilin-
gual NER datasets being available, specific domains such
as the culinary one likely require new annotated data. In
addition, NER is often the first step in information extrac-
tion for knowledge graph construction and, to the best
of our knowledge, all literature in the domain of cuisine
on this topic solely focuses on English data [3, 4, 5, 6, 7].
Therefore we argue that, given cuisine’s multicultural
nature, more research in this direction is warranted.

Entity label projection [8] aims to address this scarcity
by automating the data generation process for NER. This
task consists in taking the labels associated with spans
from a source text and automatically applying them to
its translation in another language, i.e. the target text.
Through this task, we attempt to find an efficient auto-
matic way of developing models for entity projection
across languages to produce high-quality multilingual
data for recipe Named Entities (r-NE) [4]. Departing
from an English-language dataset containing ingredients
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from culinary recipes, annotated at the span level with
entity category labels, we first rely on a MT engine to
translate each source entity 𝑠𝑖 individually into Italian,
while keeping the full context into account. This results
in a first entity-wise (EW) translated EN–IT–ES dataset
where entities are linked across languages.1

Using these synthetic alignments, we train BERT mod-
els to align source and target entities, shuffling the latter
to prevent the model from learning to simply predict the
original entity order. We then test the models on two
novel entity alignment datasets, partially out-of-domain
compared to the training data, e.g., as regards the used
food products, units of measure, and cooking processes.
As baselines to evaluate the BERT alignment models,
we use Giza++ [9] and Fast Align [10], two statistical
word alignment (WA) models. In order to produce higher-
quality r-NE data, we translate the ingredient lists across
their whole length, predicting target entity spans with
the best BERT models from the previous step, along with
the baseline models. We thus obtain various sentence-
wise (SW) translated datasets in Italian, trading some
alignment accuracy for better translations.

Both types of training data, EW and SW, are then used
to fine-tune mono- and multilingual BERT NER models
on the task of recognizing entities in food recipes. The
models are trained on various combinations of mono- and
multilingual data and are tested on the entity annotations
from the two aforementioned novel testing datasets.

Our contribution is three-fold: (i) We show the efficacy
of fine-tuning alignment models by shuffling entities in
contexts where most of the information depends on the
presence of lexical items rather than the dependencies

1Experiments on Spanish (ES) are included in Appendix A.
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linking them. (ii) We showcase the performance delta
between mono- and multilingual NER models when fine-
tuning on the synthetic data produced by our alignment.
These models can be used to label large datasets in multi-
ple languages at a finer granularity level compared to cur-
rently available monolingual resources. (iii) We release
code and data to produce data in multiple languages.2

The rest of the paper is structured as follows. Sec-
tion 2 presents relevant past research on the subjects
of cross-lingual entity alignment and recognition. Sec-
tion 3 introduces the datasets and corpora used in the
experiments, along with their annotation process. Sec-
tion 4 presents architecture, training, and evaluation de-
tails for the models comprising our pipeline. Section 5
discusses the conducted experiments and their results.
Finally, Section 6 summarizes the paper and draws con-
clusions. Appendix A shows further results including
Spanish. Appendix B presents statistics and gives insight
on the additional training data used. Appendix C lists
information on the computational requirements.

2. Related Work
Word alignment was first approached for statistical MT,
with models such as IBM 1-5 [11], used in well-known
implementations such as Giza++ and Fast Align. With the
advent of Transformers [12] and the BERT model [13],
this task has been approached by employing both ques-
tion answering [14] and token classification [15] models,
trained on freely available resources, such as XL-WA [16].

A number of past works have studied label projection
following a range of approaches. Jain et al. [8] project
PER, ORG, LOC and MISC labels (person, organization,
location, and miscellaneous) by translating sentences
and then finding potential matches using glossaries. Fei
et al. [17] align words using Fast Align and use POS tag-
ging to enhance data for semantic role labeling. García-
Ferrero et al. [18] use the AWESoME word alignment
model [19] to align machine-translated data from NER
datasets in seven languages. Li et al. [15] fine-tune a NER
model on English PER, ORG, LOC, MISC data from
CoNLL2003 [20] to infer on the source portion of parallel
Opus corpora [21] with the aim of creating silver NER
data. Subsequently, they train an XLM RoBERTa align-
ment model by using Wikipedia articles and project the
labels on the target portion of the parallel corpus, which
they use to train a target-language NER model.

NER can also be approached with large language mod-
els (LLM) [22, 23, 24] by prompting them to extract en-
tities from a given text. For example, PromptNER [25]
uses chain of thought [26] along with a list of entity def-
initions to prompt a variety of LLMs, obtaining results
on par with SOTA supervised NER systems. Similarly,

2Resources available at https://github.com/paolo-gajo/food

[27] use in-context learning [28] to evaluate GPT-3 [22]
for NER on the CoNLL2003 [20] and OntoNotes5.0 [29]
datasets by using retrieval-augmented generation [30]
and comparing the results to BERT and models based on
graph neural networks [31].

With regard to data specific to the culinary domain,
many English-language resources exist in various forms.
RecipeDB [32] is an ontology comprising 118 𝑘 web
recipes which can be used to relate foods and cooking
processes to taste profiles and health data. FoodOn [33]
is a “farm-to-fork” ontology which provides a structure
of relationships between food products across the whole
industrial supply chain. Bridging the gap between on-
tologies and NER datasets, FoodKG [34] is a knowledge
graph which can be used to find ingredient substitutions
based on dietary health requirements. It is built by lever-
aging FoodOn and Recipe1M+ [35], a dataset originally
intended for learning joint text/image embeddings on
over 1𝑀 culinary recipes. Expanding on Recipe1M+,
Bień et al. [36] construct RecipeNLG, comprising more
than 2𝑀 recipes. It is the biggest food NER dataset to
date, but its granularity stops at the sole food product
names. More fine-grained silver labels are obtained by Ko-
mariah et al. [37], who propose a new methodology to ex-
tract entities from AllRecipes.3 Doing so, they construct
FINER, a dataset comprising 64 𝑘 recipes with labels pre-
dicted by what the authors refer to as a “semi-supervised
multi-model prediction technique.” The dataset also con-
tains recipe tags such as vegetarian and vegan, which
can be useful for training recipe classifiers. Leveraging
RecipeDB [32], a large-scale structured corpus of recipes,
[38] generate a synthetic dataset of augmented ingredi-
ent phrases and compare the NER performance of various
rule-based and neural models.

Despite the wide availability of English-language re-
sources in the culinary domain, other languages are
largely understudied. To the best of our knowledge, the
only study to approach this domain in a multilingual set-
ting was conducted by Radu et al. [39], who obtain NER
tags automatically in English, German, and French by
using a regex-based tagger. Our work aims to partially
address this gap in past research by focusing on Italian.

3. Data
The entity alignment data used for training is gener-
ated through MT starting from TASTEset [40], a dataset
comprising ingredient lists from 700 food recipes, anno-
tated at the span level. We use TASTEset because it is
human-curated and its annotations are fine-grained. We
translate each entity one by one with DeepL,4 concur-
rently feeding the whole ingredient list and the single

3https://www.allrecipes.com
4https://www.deepl.com/en/docs-api

https://github.com/paolo-gajo/food
https://www.allrecipes.com
https://www.deepl.com/en/docs-api


entity as two separate inputs. This provides DeepL with
context, improving translation quality and retaining the
start and end span indexes in the target text by simply
concatenating each translated entity. To the best of our
knowledge, DeepL is currently the only MT engine ca-
pable of contextually translating a substring taken from
a sentence, which is why we are using it in this study.
Doing this, we obtain an Entity-wise Machine-translated
TASTEset (EMT). Since entities are automatically paired
to the source label, the distribution across English and
Italian is identical (Table 1).

We also generate shuffled variations of EMT, where
the entities within a single ingredient have a probability
𝑝 ∈ {0.1, 0.2, . . . , 1.0} of being shuffled, for a total of
ten variations. Figure 1 shows an example where entities
have been shuffled in the first and third target ingredients.
The rationale behind this approach is that, when training
on EMT, if the dataset were to be left as-is, the model
would simply learn to associate a source entity to the
target entity in the corresponding position, since entities
are simply translated and replaced in EMT.

Overall, we have 22 different variations of EMT, i.e.
the original and the 10 shuffled versions for each of the
two types of tokenization (mBERT’s WordPiece [13] vs
mDeBERTa’s SentencePiece [41]). The datasets have to
be tokenized during the generation of the dataset because
token indexes depend on the tokenizer being used when
converted from character-level span annotations.

We produce a second kind of synthetic dataset by first
translating the ingredient lists as a whole, and then align-
ing source and target entities by using the BERT, Giza++,
and Fast Align models presented in Section 4. We refer to
this type of dataset as Sentence-wise Machine-translated
TASTEset (SMT). As Table 1 shows, the SMT dataset pro-
duced by the BERT model trained on both XL-WA and
the shuffled version of EMT contains slightly fewer enti-
ties than the source material. This is due to the fact that
at times the models produce impossible predictions, e.g.
predicting the end of an entity to be before its start.5 This
problem does not exist with Giza++ and Fast Align, since
their alignments are word-based. As additional training
data for the BERT models, we use the EN–IT portion of
XL-WA. Table 9 in Appendix B reports the size of each
of the partitions we used.

For testing, we annotated an English–Italian dataset
of recipes, obtained from GialloZafferano (where the En-
glish recipes are translated from the Italian ones).6 For the
annotation process, we recruited a professional translator
who is a native speaker of Italian, with an MA in Special-
ized Translation in both English and Spanish. Figure 2
shows the instructions given for the first multi-class en-
tity annotation task, which consider the same entities as

5The effect on model performance upon training is negligible given
that these predictions constitute less than 1% of the total.

6https://www.giallozafferano.it

Class EMT (en/it) SMT (it) GZ (en) GZ(it)
food 4,020 4,017 5,958 6,473
qty. 3,780 3,777 10,186 6,564
unit 3,172 3,159 8,148 4,450
process 1,091 1,090 217 265
phys. q. 793 791 1,245 1,547
color 231 231 482 479
taste 126 125 98 72
purpose 94 94 69 126
part 55 55 220 263
total 13,362 13,259 26,631 20,272

Table 1
Dataset class distributions. EMT and SMT refer to the entity-
and sentence-wise machine-translated TASTEset. GZ refers
to our testing dataset.

A   4 • cups • flour ; 1/2 teaspoon salt ; 1 teaspoon baking soda

B   farina 4 tazze ; 1/2 cucchiaino sale ; cucchiaino 1 bicarbonato di sodio

s1 s2 s3

s1,1 s1,2 s1,3 s2,1 s2,2 s2,3 s3,1 s3,2 s3,3

Maligner(A, B) = t1,3 = {'start': 9, 'end': 14}

t1,1

t1 (shuffled) t2 (unshuffled) t3 (shuffled)

t1,2 t1,3 t2,1 t2,2 t2,3 t3,1 t3,2 t3,3

Figure 1: Aligning source 𝑠𝑖 and shuffled target 𝑡𝑗 entities.

TASTEset, and the second cross-language entity-linking
annotation task, carried out by the same annotator at
a later time. The annotation was carried out in Label
Studio.7

The GialloZafferano (GZ) dataset comprises 597
recipes. The alignments were annotated manually on
a subset of 300 recipes, with the possibility of more than
one source entity being aligned with one target entity,
and vice versa. This is because some recipes contain more
than one ingredient option in English but not in Italian
(and vice versa), e.g., Cocomero (anguria) 1 fetta
vs Watermelon 1 slice. The GZ dataset contains a
total of 46,903 NER annotations and 9,842 alignments.

We manually scrutinized GZ and found that the paired
recipes do not always coincide completely. Some ingredi-
ents may be missing in either language or be an equiva-
lent rather than the same food product. In order to avoid
training the alignment models on excessively different
recipes, we chose to avoid annotating alignments when-
ever the number of source ingredients missing from the
target recipe surpassed a heuristic threshold of 1/3.

Note that in GZ quantities and units of measure are
localized and are thus listed in both imperial and SI units.
As shown in Table 1, this is reflected by the lower number
of instances annotated as quantity and unit in the
Italian portion of GZ, compared to its English portion.

7https://labelstud.io
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Instructions for the multi-class entity annotation task.
Annotate the ingredients below by assigning to spans of text
one of the following categories: quantity, unit, food,

color, part, physical quality, process,
purpose, taste. Use quantity for numerical values or

expressions such as ‘to taste’, identifying the quantity of an
ingredient. Unit stands for “unit of measure”, such as grams
(g) or ounces (oz). Use color for any color that is not part of

a food’s own name (e.g. ‘red’ can be tagged in ‘red wine’,
but not ‘black’ in ‘blackberries’). Part refers to parts of an

ingredient, such as ‘wings’ in ‘chicken wings’. Use physical
quality for attributes which already characterize an

ingredient at the start of the preparation. Process refers to
actions that the reader is supposed to carry out. The label
purpose answers the question, “What is this entity used

for?” Finally, use taste for words referring to a taste, such
as ‘unsweetened’ or ‘dry’, with relation to a wine.

N.B.: The annotations cannot overlap. You can either
choose to annotate multiple spans with the same label, or

avoid annotating one or more spans of text.

Instructions for the cross-lingual entity linking task.
Link each source language entity to its corresponding entity
in the target language with an arrow. Entities should only
be linked if they share the same use. For example, the “2”

in “2 tablespoons chopped onions” does not have the same
function as in “2 cebollas largas picadas”, since one refers to

tablespoons and other to the number of onions. However,
“onions” and “chopped” could still be linked, as they are

equivalent in the two sequences. Individual source entities
can be linked to multiple target entities and vice versa.

N.B.: Entities can still be linked if they differ slightly in
form or content but still clearly perform the same function
in the same ingredient context. For example, “340” and “450”

could still be linked if they both refer to the quantity of
grams of the same source and target food products.

Figure 2: Annotation task instructions.

4. Models
Entity Alignment As baselines, we use two statistical
models: Giza++ [9] and Fast Align [10]. Giza++ com-
bines a HMM [42] alignment model and IBM M1-5 [11].
Fast Align is much more lightweight, only leveraging
IBM M2. We use two multilingual BERT models as well:
mBERT [13] as the baseline multilingual Transformer
model and mDeBERTa [43] because of its larger size
(276𝑀 vs 179𝑀 param.) and performance. When using
the BERT models, we follow Nagata et al. [14] and treat
entity alignment as a question-answering task, enclosing
the source word to be aligned within rarely used charac-
ters, e.g., ‘∙’, feeding the model both the source sequence
𝐴 and the target sequence 𝐵 at once. Figure 1 exempli-
fies this, where the model 𝑀𝑎𝑙𝑖𝑔𝑛𝑒𝑟 is trained to predict

Data P mBERT mBERTx

EMT

0.0 35.93±0.79 38.87±0.48
0.1 43.13±2.51 44.49±1.21
0.2 42.54±1.37 44.02±3.32
0.3 42.49±3.64 46.61±1.62
0.4 42.31±2.58 47.04±4.01
0.5 41.87±1.93 47.22±1.64
0.6 44.84±2.19 46.89±3.36
0.7 42.87±3.61 47.36±2.06
0.8 44.08±1.98 48.34±2.73
0.9 42.87±3.27 47.28±1.49
1.0 41.65±2.25 45.98±1.97

XL-WA – 21.04

Data P mDeBERTa mDeBERTax

EMT

0.0 42.17±1.19 46.98±3.77
0.1 57.00±0.94 58.45±1.37
0.2 55.03±2.40 57.02±2.43
0.3 57.09 ± 3.61 60.25±2.35
0.4 57.26 ± 1.09 59.21±2.59
0.5 55.97 ± 3.11 58.43±2.53
0.6 58.37 ± 2.46 61.07±2.94
0.7 57.07 ± 1.58 60.68±3.01
0.8 57.31 ± 1.20 62.08±3.74
0.9 56.95 ± 2.69 61.05±1.27
1.0 57.59 ± 1.81 60.87±1.13

XL-WA – 31.71

Table 2
Exact metric results of the alignment task; averaged out of 5
random runs, besides the XL-WA baseline. Best in bold.

an entity within a shuffled ingredient’s boundaries.
We train the models for up to 3 epochs on each dataset

with a batch size of 16. The optimizer’s learning rate is
set at 3× 10−4, while 𝜖 is 10−8. Each training run, we
select the best model based on the Exact metric 𝐸 [44]:

𝐸 =

∑︀𝑛
𝑖 𝑒𝑥𝑎𝑐𝑡(𝑝𝑖, 𝑔𝑖)

‖𝑝𝑟𝑒𝑑𝑠‖ , (1)

where 𝑝𝑟𝑒𝑑𝑠 is a list of predictions and 𝑒𝑥𝑎𝑐𝑡(𝑝𝑖, 𝑔𝑖) is
the Kronecker delta:

𝑒𝑥𝑎𝑐𝑡(𝑝𝑖, 𝑔𝑖) =

{︃
1, if 𝑝𝑖 = 𝑔𝑖,

0, if 𝑝𝑖 ̸= 𝑔𝑖
(2)

with the predicted and gold strings 𝑝𝑖 and 𝑔𝑖 having
been lowercased and stripped of excess punctuation and
spaces. We calculate mean Exact and its standard devia-
tion out of five random runs for each model.

In order to improve the models’ ability to align enti-
ties, we optionally train them on an intermediary word-
alignment task using the EN–IT training and dev sets
of XL-WA. In addition, we train mBERT and mDeBERTa
solely using said XL-WA partitions in order to test them
directly on GZ. This serves as a baseline which will allow
us to gauge the positive effects of fine-tuning on EMT.



Class Fast Align Giza++ mBERTx mDeBERTax
Qty. 18.41 35.21 30.09 54.95
Unit 30.94 15.24 24.81 29.75
Food 61.95 77.01 81.66 83.49
Process 15.27 51.91 62.60 83.21
Color 33.70 84.81 67.04 85.93
Phys. q. 39.00 71.76 61.41 87.66
Taste 0.00 27.03 35.14 75.68
Purpose 25.64 61.54 94.87 89.74
Part 52.48 63.37 13.86 14.85
Macro avg. 30.82 54.21 52.38 67.25

Table 3
Exact metric results of the alignment task by class on GZ for
the best models (trained on IT⊕ES). Best in bold.

Entity Recognition For the NER task, treated
as token classification, we once again use mBERT.8

To test the efficacy of the multilingual approach,
we also use the following monolingual models
when training and testing on a single language:
bert-base-uncased (henceforth “BERTen”) for
English [13] and bert-base-italian-uncased
(“BERTit”) [45] for Italian. We forgo mDeBERTa for this
task, as the focus is showing a comparison between
models of equivalent size and performance. Prior to
training, the data is preprocessed and labeled using
the BIO annotation scheme [46]. We ignore subword
tokens when calculating cross-entropy loss, following
established methodology.9

We train the models on the EN–IT, EN–ES, EN–IT–
ES language subsets of EMT and of the four versions
of SMT, produced by mBERT, mDeBERTa, Giza++, and
Fast Align. For the BERT models, we use the same hyper-
parameters used for the alignment task, but with a lower
learning rate of 2 × 10−4. The models are evaluated
using the macro F1-measure. Details on the employed
computational resources can be found in Appendix C.

5. Results and Discussion
Entity Alignment Table 2 reports the Exact scores for
the entity alignment experiment. The entity shuffling
approach appears to be very effective for creating data
which can make the models better at generalizing. The
performance of every single model is greatly enhanced
when shuffling ingredients just 10% of the time, with
increased shuffling frequency not leading to any signifi-
cant further improvement. The increase in performance
seems to be greater for models which have undergone
intermediate training on XL-WA, with mDeBERTax gain-
ing almost 12 points in the Exact metric, when fine-tuned

8We do not use the larger mDeBERTa model due to the computa-
tional cost deriving from the number of language combinations.

9https://huggingface.co/docs/transformers/en/tasks/token_
classification

on shuffled data. Unsurprisingly, the larger mDeBERTa
performs much better than the smaller mBERT across
the board. Although the model obtaining the highest
mean performance is obtained at 𝑃 = 0.8, an overlap
can be observed between all the confidence intervals for
𝑃 ≥ 0.1. However, this is not true when going from
𝑃 = 0 to 𝑃 = 0.1. Consequently, increased shuffling
past 10% does not seem to provide a concrete perfor-
mance gain, which is why we decided to produce SMT
by using the BERT trained on the least-shuffled version
of EMT.

In and of itself, the intermediary training step on
XL-WA provides a slight performance boost when
looking at mBERT vs mBERTx and mDeBERTa vs
mDeBERTax. Still, this increase is much smaller com-
pared to the one gained through shuffling. While fine-
tuning the models on a general word-alignment task can
be beneficial, the target domain is likely too different from
the training data for this to produce a large performance
boost. This is especially true as regards the structure of
the sentences, since the test data is comprised by short
lists of entities separated by semicolons, while the train-
ing data is a domain-balanced sample of sentences from
Wikipedia. An additional performance boost is provided
by multilingual fine-tuning, while cross-lingual settings
(e.g., fine-tuning on ES and testing on IT) lead to worse
outcomes. Table 6 (Appendix A) shows the results.

Table 3 reports the performance of the best overall
models on each class. As the results show, the much
lighter Giza++ model surpasses mBERTx, only trailing
behind mDeBERTax. The poor scores achieved by the
two BERT models are largely attributable to their poor
scores on the unit and part classes. We hypothesize
that this poor class-specific performance has to do with
units of measure often being very short strings. Training
mDeBERTa only on the unit instances does not improve
its performance, with the model scoring a lower 18.08
Exact metric. Inspecting its individual predictions in this
single-class scenario, we noticed that the model does
learn to always predict two consecutive tokens, but the
enclosed token does not match the original text when
converted into characters. This is due to two separate
issues: (i) the model selects the wrong span, e.g., select-
ing an ingredient such as “carote” (carrots) rather than
the unit “g” or (ii) the model’s prediction is empty when
converted to characters. Since mBERT and mDeBERTa
both have poor performance on this class while using two
different tokenization algorithms (WordPiece vs Senten-
cePiece), the problem may lie in the models’ tokenizer’s
token-to-character conversion method.10 We plan to shed
light on this in the future. As regards the part class,
the poor performance could be explained by the small

10https://huggingface.co/docs/transformers/en/main_classes/
tokenizer#transformers.BatchEncoding.char_to_token

https://huggingface.co/docs/transformers/en/tasks/token_classification
https://huggingface.co/docs/transformers/en/tasks/token_classification
https://huggingface.co/docs/transformers/en/main_classes/tokenizer#transformers.BatchEncoding.char_to_token
https://huggingface.co/docs/transformers/en/main_classes/tokenizer#transformers.BatchEncoding.char_to_token


Train Test Aligner NER F1

it it

–

mBERT

0.89±0.01
mBERTx 0.91±0.02

mDeBERTax 0.94±0.01
Fast Align 0.84±0.01

Giza++ 0.87±0.03
–

BERTit

0.86±0.01
mBERTx 0.9±0.04

mDeBERTax 0.94±0.0
Fast Align 0.85±0.04

Giza++ 0.91±0.03

en
it

– mBERT 0.79±0.05
en 0.9±0.01
en BERTen 0.91±0.01

Table 4
Model performance for the entity recognition task, in terms of
F1 measure. All results are macro avg. out of 5 random runs.

number of training instances (55). However, the models
obtain high scores on the purpose class, also just 94 in-
stances (mBERTx gets 94.87 Exact score). Unfortunately,
repeating the approach we used for the unit class is not
feasible, as fine-tuning the model on just 55 instances
does not produce any reliable results (𝐸𝑝𝑎𝑟𝑡 = 3.96),
meaning this will have to be left for future work.

The rest of the results from Table 3 are generally in
line with the average results from Table 2. The scores
achieved by the baselines for each class do not have any
evident outliers, save for Fast Align scoring a 0 on taste.
More generally, Fast Align, being the simplest and most
lightweight model, performs on average well below the
other more complex models.

Entity Recognition Table 4 reports the results for the
NER task. The aligner column indicates which alignment
model, out of the best ones listed in Table 3, has produced
the SMT training data used to fine-tune the NER model.
When no alignment model is specified, the training data
being used is EMT. Note that in this case we are not using
EMT’s shuffled versions, as there is no relation between
any two recipes when fine-tuning on the NER task.

When training and testing on Italian data, the best
results are obtained for both mBERT and BERTit when
fine-tuning on SMT data produced by mDeBERTa. When
fine-tuning them on EMT, the performance is notice-
ably lower, with a 5-point difference for mBERT and an
8-point difference for BERTit. The data produced by
mBERT also allows both models to outperform the EMT
baseline, although by smaller amounts. Conversely, the
data produced by Fast Align and Giza++ worsens the data
quality in 75% of the cases. When fine-tuning mBERT
on bilingual ES-IT data, the performance on the test set
remains essentially unvaried (see Table 8 in Appendix A).

Looking at the baselines at the bottom of Table 4, we
can see that fine-tuning mBERT on English data yields
worse performance when testing on GZ, compared to fine-

tuning on EMT’s Italian data. Our data augmentation
strategy is thus providing an evident performance boost,
with entity alignment producing bigger improvements
than machine-translating each entity individually.

In all settings, mBERT performs on par with the mono-
lingual models. This shows that a single multilingual
model can suffice when extracting entities from multilin-
gual corpora, saving time and compute.

6. Conclusions
We explored a simple novel technique to automatically
generate high-quality multilingual NER data by com-
bining machine translation and cross-language entity
linking. For our experiments, we relied on the English-
language TASTEset dataset, which includes recipes
whose lists of ingredients are span-annotated for entity
recognition. Moreover, we manually curated a novel
English–Italian cross-language dataset, featuring the
same kind of annotation, with the addition of cross-
language alignments.

We machine translated the entities in TASTEset’s
recipes individually and shuffled them within ingredi-
ent boundaries. Leveraging this augmented data, we
then fine-tuned BERT entity-alignment models. Using
statistical word-alignment models as baselines, we tested
these BERT models on our English–Italian parallel cor-
pus. The results showed that models fine-tuned using our
novel approach consistently outperform those trained on
unshuffled data, along with two statistical baselines.

We then created additional synthetic data by first trans-
lating TASTEset’s recipes in their entirety, and then align-
ing the entities in the machine-translated target text us-
ing the best models obtained from the first part of the
study. These data allowed us to obtain better NER models,
compared to the ones we would have obtained by using
the original recipes translated entity by entity. We tested
monolingual English and Italian BERT models against
mBERT, and showed that the latter is capable of obtaining
the same performance as its monolingual counterparts
when tested on monolingual NER data.

In future work, we plan to extend the annotation of
our datasets, both in terms of number of instances and
annotators. We will also prioritize solving the token-to-
character conversion issues encountered in this study.
Furthermore, we plan to leverage this data augmentation
technique in order to improve multilingual text-to-graph
models, since all of the literature in this regard focuses
on English-only data [3, 4, 5, 6, 7].
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A. Incorporating Spanish
In order to test more thoroughly the soundness of our
approach, we carry out an equivalent study with Spanish.

A.1. Data
We annotated an English–Spanish dataset of recipes ob-
tained from My Colombian Recipes,11 which we refer
to as MCR. MCR is translated from English to Spanish,

11https://www.mycolombianrecipes.com

which is evident from the fact that on the website all
Spanish recipes have an English counterpart, but not vice
versa. We believe approximately 5-10% of the dataset’s
instances to be possible MT. A good indication of this is
the fact that the English “to taste” is sometimes translated
as “para probar”, likely an MT mistake, while other times
the correct “al gusto” is used. Although using machine-
translated data is not ideal, this was our best choice for a
Spanish-language parallel recipe corpus, due to the lack
of availability of similar online resources. The use of MT
data has implications with respect to the evaluation of
the models, as their performance would likely be lower in
a real-world scenario involving recipes written directly
in Spanish. Nonetheless, given the limited amount of
data we hypothesize as being machine-translated, we
believe the impact would not be large enough to discredit
our results, which focus on the improvement over the
cross-lingual EN–ES baseline, rather than the absolute
performance of the best model.

MCR contains 276 recipes, 104 of which are bilingual
and annotated with alignments. Due to this imbalance
between the number of English and Spanish recipes, the
number of entities is around 3x for the former, as shown
in Table 5. In total, MCR contains annotations for 15,257
entities and 3,565 alignments. Along with the ingredient
lists, MCR also contains cooking instructions for all its
recipes, along with nutritional facts for 139 of them.

A.2. BERT Model
As a monolingual Spanish BERT model base-
line to compare against mBERT, we use
bert-base-spanish-wwm-cased (“BERTes”) [47].

A.3. Results
Entity Alignment Table 6 reports the results for the
alignment task, complete with the settings including
Spanish-language data.

Fine-tuning on the same language as the test set yields
better results than cross-lingual scenarios. Furthermore,
the best performance on MCR is obtained when fine-
tuning mDeBERTax on both Italian and Spanish.

This is not the case for mBERTx and mDeBERTa,
whose performance is hindered by the addition of Italian
training data. MCR is much narrower in terms of culi-
nary variety, focusing solely on Colombian recipes. On
the other hand, GZ contains not just traditional Italian
recipes, but an international range of dishes. This is prob-
ably the reason why bilingual training is helpful on GZ,
but is not beneficial with relation to MCR: adding data
from a separate locale helps the models when approach-
ing the more varied GZ, helping them generalize more
effectively over its data. Conversely, they are thrown off
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TS / EMT SMT GZ MCR
mBERTx mDeBERTax

Class en / it / es it es it es en it en es
food 4,020 3,999 4,012 4,017 4,018 5,958 6,473 3,600 1,143
quantity 3,780 3,764 3,778 3,777 3,780 10,186 6,564 2,945 962
unit 3,172 3,151 3,169 3,159 3,171 8,148 4,450 2,325 760
process 1,091 1,066 1,089 1,090 1,091 217 265 1,236 379
physical q. 793 785 791 791 793 1,245 1,547 897 285
color 231 226 231 231 231 482 479 309 97
taste 126 121 123 125 123 98 72 8 2
purpose 94 94 94 94 94 69 126 89 34
part 55 53 55 55 55 220 263 142 44
total 13,362 13,259 13,342 13,339 13,356 26,631 20,272 11,551 3,706

Table 5
Dataset class distributions. EMT and SMT refer to the entity- and sentence-wise machine-translated TASTEset. GZ and MCR
refer to our testing datasets.

Data P mBERT mBERTx mDeBERTa mDeBERTax
GZ MCR GZ MCR GZ MCR GZ MCR

EMT

it
0 35.93±0.79 38.87±0.48 42.17±1.19 46.98±3.77

0.1 43.13±2.51 44.49±1.21 57.00±0.94 58.45±1.37
0.2 42.54±1.37 44.02±3.32 55.03±2.40 57.02±2.43

es
0 49.03±0.59 50.38±1.10 51.93±0.65 53.20±0.83

0.1 63.69±0.96 67.60±0.74 70.43±2.48 71.07±3.62
0.2 66.07±1.30 70.20±1.66 69.25±1.94 72.62±1.93

it–es
0 33.82±5.30 46.59±0.98 41.54±1.87 47.72±1.56 46.98±3.77 40.33±1.97 45.17±2.58 52.70±1.09

0.1 43.36±2.72 64.57±2.35 46.14±3.85 67.16±2.19 58.45±1.37 53.68±2.45 57.64±0.83 72.95±1.75
0.2 44.37±1.57 67.62±0.33 47.14±1.43 69.10±1.10 57.02±2.43 54.87±1.37 58.84±2.68 72.71±1.83

XL-WA
it – 21.04 31.71
es – 54.14 58.56

it–es – 23.60 53.89 33.56 70.47

Table 6
Alignment task results (Exact metric). All results are averaged out of 5 random runs, besides the XL-WA baselines. Best in bold.

by the addition of out-of-domain data when tested on
MCR’s narrower domain.

Comparing the EMT fine-tuning results with the base-
lines at the bottom of Table 6, we can see that further
fine-tuning on EMT does provide a boost, compared to
training only on XL-WA. Nonetheless, the difference in
performance is much greater when testing on GZ, com-
pared to MCR. When looking at mBERTx, fine-tuned on
both Italian and Spanish, the model improves by more
than 23 Exact points on GZ, while the gap in performance
is just under 16 points on MCR. This effect is even more
dramatic for mDeBERTax, with a difference of more than
25 points on GZ, but only 2.48 points on MCR.

Compounded with the fact that, in general, the metrics
are much higher when testing on MCR compared to GZ,
this points to MCR being a much less challenging test
set, compared to GZ. As previously mentioned, part of
the dataset is likely machine translated, and since an MT
engine is more likely to follow rigidly defined patterns
compared to a human translator, this might play a role
into the alignment task being easier on these data.

Table 7 reports the performance of the best overall
models on each of the individual classes, on both GZ and

MCR. Giza++ essentially matches mDeBERTa’s perfor-
mance on MCR, which once again points to entities in
MCR being easier to identify compared to GZ. However,
the similar performance is largely due to mDeBERTa per-
forming poorly on the unit and part classes, due to the
reasons outlined in Section 4.

Entity Recognition Table 8 reports the results for the
NER task for all language settings. For each language,
we use the aligner models which obtained the highest
results on the entity alignment task. Note that, since the
aligner performance does not significantly improve with
increased shuffling (see Section 5), we only train aligner
models up to 𝑃 = 0.2 for the Spanish setting due to
computational constraints.

In the Spanish monolingual setting, both BERTes and
mBERT obtain F1 scores between 0.92 and 0.95 when
fine-tuned on SMT, with the models fine-tuned on EMT
trailing behind by 11 to 12 points. As all the models
perform similarly and the standard deviation is also close
to zero, it once again appears that the entities contained
in the MCR dataset are not too challenging for both the
mono- and multilingual models to identify.



Model Test set Qty. Unit Food Process Color Phys. q. Taste Purpose Part Macro avg.
Fast Align GZ 18.41 30.94 61.95 15.27 33.70 39.00 0.00 25.64 52.48 30.82
Fast Align MCR 54.27 71.82 62.73 42.77 66.67 45.68 0.00 58.82 40.00 49.20
Giza++ GZ 35.21 15.24 77.01 51.91 84.81 71.76 27.03 61.54 63.37 54.21
Giza++ MCR 90.29 89.31 76.93 76.30 79.76 75.72 50.00 82.35 68.57 76.58
mBERTxen–it–es GZ 30.09 24.81 81.66 62.60 67.04 61.41 35.14 94.87 13.86 52.38
mBERTxen–it–es MCR 95.30 3.93 89.32 81.72 87.50 77.02 100.00 100.00 9.52 71.59
mDeBERTaxen–it–es GZ 54.95 29.75 83.49 83.21 85.93 87.66 75.68 89.74 14.85 67.25
mDeBERTa MCR 97.05 11.25 90.48 93.91 94.32 93.95 100.00 97.06 14.29 76.92

Table 7
Results of the alignment task by class for the best models, using the Exact metric. Best on GZ in bold, best on MCR underlined.

In the bilingual fine-tuning scenario, the training data
is a concatenation of the SMT datasets produced by the
models obtaining the highest performance on the two test
sets. Since this is a bilingual fine-tuning scenario, we only
use mBERT, as the monolingual models would not be able
to be fine-tuned appropriately on this multilingual data.
In this setup, the usefulness of the BERT-based aligners
becomes more evident. Indeed, while performance on
MCR is largely similar to the other setups, with all models
outperforming the baseline by a large amount, the same
cannot be said for mBERT’s performance on GZ. Fine-
tuning mBERT on the combination of the Italian and
Spanish data aligned by Fast Align and Giza++ makes
the NER model considerably worse at identifying entities
in GZ, with a performance decrease of 20 F1 points with
the data created by Fast Align and of 21 F1 points with
that created by Giza++. The opposite is true when fine-
tuning the mBERT NER model on the SMT data created
by mDeBERTa, with the model achieving an F1 of 0.94,
beating the baseline by 5 points. Compared to the model
fine-tuned on data created by Giza++, this represents a
26 F1 point increase in performance.

As regards the baseline model fine-tuned on
TASTEset’s English data and tested on MCR’s Spanish
entities, we can see that, unexpectedly, the model obtains
a 0.88 F1 score, outperforming the mBERT (0.83 F1) and
BERTes (0.84 F1) models fine-tuned on the monolingual
Spanish EMT data. Despite this, fine-tuning on SMT
data produced through our alignment approach allows
the NER models to beat this 0.88 F1 baseline, reaching
scores as high as 0.95 F1, as previously mentioned.

In all three scenarios, mBERT achieves performances
comparable to those of the monolingual models. This
shows that, when inferring on multilingual corpora to
extract entities, a single multilingual model can be used,
saving time and computational resources both during
training and inference.

B. XL-WA
As additional data for intermediate word-alignment train-
ing, we use XL-WA [16], a multilingual word-alignment

Train Test Aligner NER F1

it it

–

mBERT

0.89±0.01
mBERT 0.91±0.02

mDeBERTa 0.94±0.01
Fast Align 0.84±0.01

Giza++ 0.87±0.03
–

BERTit

0.86±0.01
mBERT 0.9±0.04

mDeBERTa 0.94±0.0
Fast Align 0.85±0.04

Giza++ 0.91±0.03

es es

–

mBERT

0.83±0.01
mBERT 0.95±0.0

mDeBERTa 0.92±0.01
Fast Align 0.94±0.0

Giza++ 0.95±0.0
–

BERTes

0.84±0.0
mBERT 0.95±0.0

mDeBERTa 0.93±0.01
Fast Align 0.95±0.0

Giza++ 0.95±0.0

it–es

it

–

mBERT

0.89±0.01
Fast Align 0.69±0.01

Giza++ 0.68±0.03
mDeBERTa 0.94±0.01

es

–

mBERT

0.83±0.0
Fast Align 0.95±0.0

Giza++ 0.95±0.0
mDeBERTa 0.94±0.01

en

it

–
mBERT

0.79±0.05
es 0.88±0.01

en (GZ) 0.9±0.01
en (MCR) 0.93±0.0
en (GZ) BERTen

0.91±0.01
en (MCR) 0.93±0.0

Table 8
Entity recognition task F1 scores (5 random runs macro avg).

dataset [16] built from WikiMatrix [48], 12 featuring 14
EN–XX language combinations. Its training set is com-
posed of silver labels generated by a statistical model,
while the development and test sets are manually anno-
tated. Since XL-WA has a balanced domain distribution
and can be considered representative of general language,
it can be a good resource on which to train a baseline
word-alignment model. Table 9 reports statistics for the
EN–IT and EN–ES partitions used in this study.

12https://ai.meta.com/blog/wikimatrix/

https://ai.meta.com/blog/wikimatrix/


Sentences Alignments
Language Train Dev Train Dev

en–it 1,002 103 20,525 1,961
en–es 1,002 105 16,720 1,980

Table 9
Statistics for XL-WA’s EN–IT and EN–ES subsets.

C. Computational Resources
All models are trained on a single NVIDIA RTX 5000
Ada Generation, with 32 GB of VRAM. The total training
time is around 7-15 minutes for each alignment model,
depending on the training data combination, plus 30-60
minutes for training each on XL-WA. Training each NER
model takes around 6-7 minutes. All the training, includ-
ing multiple models for standard deviation calculation,
was carried out in under 48 hours.
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