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Abstract
The extraordinary results achieved by Large Language Models are paired with issues that are critical in real-world applications.
The costs of inference and, in particular, training are extremely large, both in terms of time and computational resources, and
they become prohibitive when working in dynamic environments, where data and tasks are progressively provided over time.
The model must be able to adapt to new knowledge, new domains, new settings, without forgetting the previously learned
skills. Retraining from scratch easily becomes too costly, thus Continual Learning strategies are of crucial importance. This is
even more evident when data consist of “long” documents, that require several resources to be processed by modern neural
models, leading to very long prompts. This paper investigates LLM-based Task-Incremental Learning in the case of tasks
exploiting long sequences of text, as it is typical in summarization, question-answering on long documents, reviewing long
contracts, and several others. We show how adapting the model by Task Arithmetic with LoRA, which was proposed for
visual data, yields promising results also in the case of such “long” text data. To our best knowledge, this is the first work
along this challenging direction. The outcome of the investigation of this paper is generic enough to represent an important
starting point for further research in processing linguistic data in every language.
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1. Introduction
The quality of Language Models (LMs) has been rapidly
improving in the last decade, showing outstanding skills
when scaled to large data and networks [1], leading to
the nowadays popular Large Language Models (LLMs).
Solving more complex tasks with LLMs often requires
processing “long” documents and articulated long in-
structions. However, handling lengthy prompts can be a
significant obstacle for real-world applications, raising
costs and resources required during both inference and,
in particular, training. This issue can become critical
when the LLM needs to be specialized to many different
tasks, domains, and, more generally, when it is applied
to dynamic settings that require multiple adaptations.
For instance, in real-world applications, models need to
be re-trained from time to time, as new data/tasks be-
come available. In such scenarios, the need for Continual
Learning (CL) [2, 3] strategies becomes imperative. From
a very generic perspective, CL focuses on the develop-
ment of algorithms capable of sequentially learning from
a stream of data, while preserving what was learnt in
past experiences, avoiding catastrophic forgetting [4].

In this work, motivated by the aforementioned issues,
we study the problem of Continual Learning from “long”
sequences of text, exploiting LLMs. We investigate sev-
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eral strategies based on LoRA [5] to adapt an LLM to
multiple tasks that are sequentially proposed over time.
In particular, we first follow the route of training a single
adapter in a sequential manner, then we explore Task
Arithmetic to fuse multiple adapters trained indepen-
dently [6]. We consider the possibility of assigning dif-
ferent weights to each task, and we shed some light on
what are the factors that contribute the most to catas-
trophic forgetting and to effective task adaptation. The
outcomes of such an investigation reveals that: (1) there
is limited sensitivity to task-order, i.e., regardless of the
sequence in which tasks are presented, the overall av-
erage performance remains relatively stable, a property
that, to our best knowledge, was never evaluated in the
case of tasks composed of long documents; (2) despite its
simplicity, Task Arithmetic demonstrates effectiveness
in addressing forgetting phenomena when learning from
long texts, strongly reducing the gap from multiple mod-
els independently adapted to the task data. Moreover, (3)
we are the first to evaluate a recently proposed bench-
mark (SCROLLS [7]) in a CL setting, offering reference
results for further activity in processing long sequences
of text. We remark that while our experiments are based
on data in English language, the generic issues we explore
about handling long sequences of text are intrinsically
shared by every language.

2. Related Work
In the last few years, a variety of approaches were pro-
posed by the scientific community in the context of CL
(see [3] and references therein). The main goal is the one
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of learning from newly provided information, with mod-
els that are capable of acquiring new knowledge without
forgetting the previously learned one, and, more impor-
tantly, without storing the full dataset and retraining
from scratch every time [8]. Several efforts are dedi-
cated to the case of lifelong Reinforcement Learning [9]
and of Supervised Learning [10], distinguishing among
scenarios and categories of approaches [11], ranging
from parameter isolation, regularization methods, and
replays [12]. Unsupervised or Self-Supervised Learning
approaches are also becoming popular [13, 14, 15], and
the case of adaptation of pre-trained backbones [16].

Of course, neural models for processing language are
a subject of study in the context of CL [17]. We mention
the case of language modeling in Lamol [18], which is
trained to concurrently solve a task and mimic training
examples, thereby preserving the distribution of previ-
ous tasks. Sun et al. [12] introduce Distill and Replay,
which learns to solve the task, to generate training exam-
ples formatted as context-question-answer, and to distill
knowledge from a model trained on the previous task(s).
Differently, Reasoning-augmented Continual Learning
[19] focuses on creating reasoning pathways to preserve
and improve LLMs’ reasoning abilities and information
transfer.

Together with works that learn new models from
scratch, several approaches devise fine-tuning strategies
for pre-trained Transformers in language processing, that
turn out to be efficiently adaptable to a downstream task
by learning only a small number of task-specific parame-
ters. It is the case of models that tune the input prompt
[20] or of generic Adapters [21], such as the popular LoRA
[5], which introduces new weight matrices, parametrized
by the product of low-rank ones. Evaluating these mod-
els with long contexts [22] is not frequent in the scientific
literature, especially in the case in which multiple fine-
tunings are sequentially applied, typical of CL, which
is the main focus of this paper. In particular, LoRA and
Task Arithmetic [23] has been jointly studied to handle
CL problems in vision [6], that is what this paper extends
to the case of language and long sequences. We also men-
tion works that focus instruction-based model for CL,
such as ConTinTin [24], where each task is modelled by
a specific instruction that directly defines the target con-
cept along with a few instances that illustrate. Scialom
et al. [25] and Luo et al. [4] investigate natural language
instructions paired with memory buffers and replays.

3. Task-Incremental Learning on
Long Sequences of Text

Task-Incremental Learning (TIL) is a continual learning
scenario where the same model is trained on tasks that
are presented in a sequential manner. The main challenge

consists in profitably learning from the last-presented
task without forgetting the previous ones [3]. In order
to cope with TIL on Long Sequences of Text, specifically
focusing on LLMs, we consider different learning strate-
gies. In this Section we describe each of them in detail,
after having formally introduce the TIL problem.

Problem. We are given a model parameterized by
𝜃, which is a vector collecting the learnable variables.
In TIL, a set 𝒯 of 𝑘 tasks is sequentially presented to
the model, i.e. one at a time. Each task 𝑡 ∈ 𝒯 , features
data sampled from a task-specific distribution, collected
into dataset 𝒟𝑡 := (𝒳𝑡,𝒴𝑡), composed of raw samples
and labeling information, respectively. The model is not
only expected to learn from 𝒟𝑡, but also to not forget
knowledge already acquired from the past tasks. In the
following, to keep the notation simple, we indicate each
task by a numerical index, thus 𝑡 ∈ 𝒯 = {1, . . . , 𝑘}. In
this case of study, the model is a pre-trained LLM with
billions of parameters, and all the TIL tasks are charac-
terized by long input sequences. Such a combination
constitutes a computationally demanding mix, making
offline/joint training potentially very expensive, that is
where CL solutions are very convenient. We consider the
case in which LLMs are fine-tuned exploiting adapters
[26]. In particular, we focus on LoRA [5], that introduces
additional learnable parameters while keeping the rest of
the network freezed. This is both less resource demand-
ing, and it also alleviates catastrophic forgetting, since
the LoRA weights 𝜃𝑙 are usually of a number that is a
small fraction with respect to total model parameters,
i.e. |𝜃𝑙| ≪ |𝜃|. Hence, it is a perfect candidate for the
experience of this paper.

Single-model TIL with LoRA (S-TIL). In the straight-
forward implementation of a TIL problem, tasks are pre-
sented to the model sequentially starting from the first
one up to the 𝑘-th one. The order may be given a priori,
or established according to some criteria, such as tasks
similarity or difficulty (curriculum-like learning [27]). At
the beginning, when considering the first task, 𝑡 = 1,
we start from a model with freezed parameters 𝜃 and
additional trainable weights 𝜃𝑙1 initialized as described
in [5]. At task 𝑡, with 𝑡 > 1 instead, the LoRA weights
are initialized with the LoRA parameters from previous
step, i.e., 𝜃𝑙𝑡−1. It is worth noticing that in such a way, at
the end of the 𝑘 tasks, the final model parameters will
be constituted by the original 𝜃, still unchanged, and a
single set of adapter parameters 𝜃𝑙𝑘 , that was sequentially
trained over all the tasks.

Multi-model TIL with LoRA (M-TIL). Another way
to face the problem of learning the multiple tasks in TIL,
is to build a specialized model per task, independently on
the other ones. This usually yields strong performance
on each sub-problem, guaranteeing no catastrophic for-
getting issues, since the model to use is simply retrieved



Table 1
Selected datasets from the SCROLLS benchmark and their main features.

Dataset Task Domain Metric #Examples
Train Validation

Contract NLI Natural Language Inference Legal EM 7191 1097
Qasper QA Science F1 2567 1726

QuALITY Multi Choice QA Literature, Misc EM 2523 2086
QMSUM Query-based Summarization Meetings ROUGE-L 1257 272

SummScreenFD Summarization TV ROUGE-L 3673 338

in function of the task to solve. At the same time, such
a strategy requires the storage, deployment and mainte-
nance of 𝑘 independent models, which is unsustainable
with billion-sized models like current LLMs. Even when
using adapters such as LoRA, maintaining many of them
can be still hard to handle.

Task Arithmetic TIL with LoRA (TA). Based on
the concept of “task vectors”, Task Arithmetic (TA) [23]
was proposed to combine together the weights learned
in a multi-model continual learning scenario. A task
vector represents the direction in the weights space of
a pre-trained model toward a certain task. In TA, mul-
tiple directions are fused together via a simple linear
combination of them. Similarly, LoRA adapters steers
the model behavior to improve performance on a spe-
cific task. Therefore, LoRA weights trained separately
(multi-model) can be updated with task arithmetic [6]:

𝜃𝑙final =
∑︁
𝑡∈𝒯

𝜆𝑡𝜃
𝑙
𝑡, (1)

where 𝜆𝑡 is a scalar weighting the importance of task 𝑡.

Fine-tuning by Memory Buffer (FTB). In princi-
ple, TA can be applied as it is, without requiring further
fine-tuning. However, we also consider refining the pa-
rameters using a memory buffer with examples from all
the tasks. Indeed, experience replay is a well-known and
effective strategy in Reinforcement Learning and Contin-
ual Learning problems. Examples were chosen randomly,
evenly distributed across the given tasks. Since we are
dealing with long documents, we keep it small.

4. Experiments
We experimented LLMs in TIL exploiting sequences of
long texts from a benchmark made public to the scientific
community in the last few years [7]. Notice that these
benchmarks are not designed for TIL. Thus, using them
in TIL is indeed a novel experience off the beaten track.

4.1. Datasets
We consider five out of seven datasets of SCROLLS [7],
that is the reference benchmark for tasks composed of

long documents. Datasets belong to different domains,
and they are about different tasks, that we adapted to
TIL by means of instruction tuning. An overview of the
benchmark is provided in Table 1, and here we briefly
describe each dataset.

Qasper. Qasper [28] (QSPR) is Question Answering
(QA) dataset on academic papers. Crafted by NLP experts,
it contains questions based on title and abstract of the pa-
per. There are different kind of inquiries: abstractive, ex-
tractive, yes/no questions, including unanswerable ones.
To answer the question, the entire paper must be read.

QuaLITY. QuALITY [29] (QALT) is a multiple-choice
QA dataset, drawing upon English source articles with an
average length of about 5,000 tokens. Original texts are
provided in HTML format, retaining paragraph breaks
and basic formatting such as italics, but with images
removed. Questions are designed to require details from
different parts of the text to properly answer them.

QMSum. QMSum, presented in [30], is a question-
based document summarization benchmark. The dataset
is characterized by long meetings transcripts, collecting
1,808 query-summary pairs from 232 different meetings.

ContractNLI. Contract NLI [31] (CNLI) is the first
dataset for Natural Language Inference in contracts.
Given a premise and a contract, a model has to classify
whether the premise is entailed by, contradicting to or not
mentioned by the contract. There are 607 contracts and
17 unique hypotheses, combined to get 10,319 examples.

SummScreenFD. SummScreen [32] (SumScr) is a
summarization dataset of TV series transcripts and hu-
man written recaps. Examples come from two differ-
ent sources, but in SCROLLS, authors only kept Forever-
Dreaming (FD), due to its greater variety of shows.

4.2. Experimental Setup and Results
We consider Mistral-7B-v0.1 [33] as the backbone LLM
for all the fine-tuned models in our TIL experiments. Al-
beit trained on a restricted context length of at most 8,192
tokens, it supports longer inputs of size up to 32,768. The
LLM was quantized via 4-bit quantization in order to
fit long sequences on a single A6000 GPU. During train-



ing, the micro batch size was set to 1, with 32 gradient
accumulation steps. LoRA adapters were updated with
AdamW for 3 epochs in all the experiments, regardless
of the dataset. At inference time, outputs were generated
using Beam Search with beam size set to 2. We com-
pared: (𝑖) Mistral-7B-v0.1-Instruct, the instruction-tuned
version of mistral, referred to as Mistral-7b-instruct; (𝑖𝑖)
The case of multiple independent LoRA adapters, each of
them trained in a single dataset, i.e., M-TIL (Section 3);
(𝑖𝑖𝑖) Classic TIL with a single model, progressively up-
dated on the sequence of tasks, i.e., S-TIL (Section 3),
considering both the case in which tasks are provided in
a certain order (S-TIL↓) or in the opposite one (S-TIL↑);
(𝑖𝑣) Task Arithmetic (Section 3) with evenly values 𝜆’s
(TA) or with tasks-specific 𝜆’s based on prior knowledge
(WTA).

Evaluation. Due to the different nature of each task
in SCROLLS, there are different metrics to take into ac-
count for each of them. In particular, summarization-like
tasks (QMSum and SummScreenFD) are evaluated with
ROUGE score [34] (1,2 and L) , whereas, ContractNLI
and QuaLITY are assessed with Exact Match (EM). Fi-
nally, results on Qasper are measured by F1. A global
overview of the metrics can be found in Table 1. We in-
dicate with 𝑆𝑖 the score yielded by the associated metric
for task 𝑖. Following the way the SCROLLS benchmark
was proposed, scores are averaged to provide a unique
index of Overall Performance 𝑂𝑃 . Since we focus on
TIL, we evaluate 𝑂𝑃 after each task 𝑡, and we also com-
pute the Overall Forgetting at task 𝑡 (𝑂𝐹𝑡), also known
as index of negative backward transfer [35], which tells
how strongly the previously considered tasks have been
negatively affected by learning from the current task 𝑡,
i.e., a measure of catastrophic forgetting [4]. Formally,

𝑂𝑃𝑡 =
1

𝑡

𝑡∑︁
𝑖=1

𝑆𝑡,𝑖, 𝑂𝐹𝑡 =

[︃
1

𝑡− 1

𝑡−1∑︁
𝑖=1

(𝑆𝑖,𝑖 − 𝑆𝑡,𝑖)

]︃
+

,

where [·]+ keeps the positive part, and 𝑆𝑡,𝑖 is the score
of task 𝑖 after having learned from task 𝑡 ∈ 𝒯 . Since the
test set of SCROLLS is not public, we used the SCROLLS
validation set as test set, and sampled a sub-portion of
the training data to build a validation set. After cross-
validation, we set the rank of LoRA to 8, dropout-rate
to 0.05, and 𝛼 to 16 (see [5] for param description) and
learning rate 3 · 10−4 (linearly decaying).

Investigating S-TIL. Dealing with long sequences of
text might affect the TIL procedure in function of the or-
der in which tasks are presented. We study different task
orderings based on the average length of the sequences
of text in each task, from tasks involving shorter out-
put sequences to the ones involving longer sequences
and vice-versa. As anticipated, we named them S-TIL↑
and S-TIL↓, respectively. Results of this experience are

presented in detail in Table 2. The training order does
strongly affect the final performance on single tasks, pro-
moting higher scores on more recently seen datasets. On
one hand, this is expected, since the older ones are more
likely affected by catastrophic forgetting. Catastrophic
forgetting (last columns of Table 2) at 𝑡 = 𝑘 = 5 is be-
low 10% in both cases. On the other hand, there is an
evident peak of forgetting in S-TIL↓ at 𝑡 = 3, which is
then reduced when learning from the following tasks.
The peak is due to a strong reduction of performance
in the first two tasks after having learned from Qasper
(QSPR). We investigated this aspect, and found that the
model fails in generating the perfectly-formatted output
string that is then exploited in the EM metric. When
moving to the following task, this skill is partially recov-
ered. We hypothesize that the presence of unanswerable
questions in Qasper negatively bias the types of answers
in SummmScreenFD (SumScr) and QMSum, where all
the questions have an answer instead.

Comparing Instances S-TIL and M-TIL. Figure 1
compares the models of Table 2 (for 𝑡 = 𝑘) with M-
TIL, which is composed of multiple adapters, each of
them specifically trained on a task, and thus forgetting-
free. Performance of both S-TIL’s are lower of M-TIL,
as expected, but sometimes not far from it. Comparing
S-TIL↑ and S-TIL↓, we see that they get similar overall
performances, but the latter yields better results in three
out of five tasks. The quality of S-TIL↑ (w.r.t. S-TIL↓)
improves going right-to-left, and, symmetrically, the one
of S-TIL↓ increases going left-to-right, as expected, since
they were trained in opposite order (relative gain is > 1
in SumScr due to forward transfer).

SumScr QMSum QSPR QALT CNLI
0

20

40

60

80

100

O
P k

 (%
)

  

 

 

 

 1
.0

2

 0
.7

3

 0
.7

8  0
.6

8

 0
.8

6

 0
.6

4

 0
.3

3

 0
.8

2

 0
.7

7

 1
.0

0M-TIL (Ref)
S-TIL
S-TIL

Figure 1: Test results in TIL: overall performance at 𝑡 =
𝑘 = 5, i.e., 𝑂𝑃𝑘 . We compare the cases of S-TIL↑ and S-TIL↓
(see Table 2), with the ones of multiple-independently trained
adapters, i.e., M-TIL. Relative Gain is indicated on the bars.

The Role of TA. We compared all the introduced
models with the case of merging independently-trained
adapters with TA. Table 3 shows that TA results to be
a simple yet competitive solution, with average perfor-
mance on par with S-TIL↓. Actually, observing task-wise
performance, we can see how TA outperforms S-TIL↓
across all the datasets, with the exception of ContractNLI



Table 2
Evaluation score (%) on test data, for each task, after having learned from task 𝑡 (i.e., 𝑆𝑡,𝑖) in S-TIL↑ (left) and S-TIL↓ (right).
The order of columns (dataset names) reflect the task-order followed during training. Tasks becomes available in order, thus −
indicate that the value cannot be computed yet. The 𝑂𝐹𝑡 column is about catastrophic forgetting (the lower the better).

𝑖→
𝑡↓

1.CNLI 2.QALT 3.QSPR 4.QMSum 5.SumScr
𝑂𝐹𝑡𝑆𝑡,𝑖

1 88.0 - - - - -
2 85.7 49.5 - - - 2.31
3 79.7 43.2 37.1 - - 7.31
4 82.9 40.7 27.6 21.9 - 7.82
5 75.7 39.1 30.2 15.5 18.6 8.99

𝑖→
𝑡↓

1.SumScr 2.QMSum 3.QSPR 4.QALT 5.CNLI
𝑂𝐹𝑡𝑆𝑡,𝑖

1 18.2 - - - - -
2 16.1 22.2 - - - 2.06
3 0.04 0.45 37.4 - - 19.94
4 13.6 13.3 35.8 47.7 - 5.00
5 11.8 7.0 32.0 44.2 88.2 7.60

Table 3
Results involving all the competitors. In ROUGE-based evaluations, we also report unigram overlap (ROUGE-1), bigram
overlap (ROUGE-2), together with the longest overlapping subsequence (ROUGE-L) – the last one is what is considered when
computing 𝑂𝑃𝑘 . Reference results (baseline, and “upper bound”) are in italic.

Method
SumScr QMSum QSPR QALT CNLI

OP𝑘
ROUGE-1/2/L ROUGE-1/2/L F1 EM EM

Ref1: Mistral-7b-instruct 18.1 2.3 10.8 16.2 2.7 11.8 5.4 0.0 0.0 5.6
Ref2: M-TIL 29.2 7.1 18.2 29.6 8.5 21.1 38.7 56.7 88.0 44.5

S-TIL↑ 30.0 7.8 18.6 20.6 5.7 15.5 30.2 39.1 75.7 35.8
S-TIL↓ 15.6 3.6 11.8 8.7 2.3 7.0 32.0 44.2 88.2 36.7

TA 20.7 4.56 13.9 18.8 5.6 14.2 36.0 45.6 72.6 36.5
WTA 19.4 4.26 13.4 18.5 5.5 14.1 34.7 47.9 74.7 36.9
TA-FTB 28.6 6.21 17.5 28.0 8.1 20.1 38.3 47.8 75.1 39.8
WTA-FTB 28.6 6.09 17.2 26.9 7.6 19.7 35.6 50.5 78.5 40.3
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Figure 2: Test results in TIL with Task Arithmetic (TA). TA
is explored with or without Fine-tuning by Memory Buffer
(FTB), and also in the case of task-specific weights provided
in advance (WTA). Same setting of Figure 1.

(CNLI), the last task in which S- TIL↓ was specialized. In
WTA, 𝜆’s for non-QA datasets were halved, since there
tasks involve generation of longer outputs that more
strongly condition the behaviour of the LLM, as already
discussed for Qasper. WTA yielded evident improve-
ments in the last two datasets, despite being less weighed,
keeping similar performance on the others. This suggests
that appropriately weighing the task-vectors in Eq. 1 is a
viable road to improve the model.

Impact of FTB. We also investigate the impact of

rehashing the memory of the TA/WTA model via fine-
tuning it on just 50 samples per the tasks (memory
buffer). Despite being a simple refinement stage, results
presented in Table 3 show a consistent boost of perfor-
mance when using the memory buffer (FTB), reaching
about 39.0 averaged score, when using the weighted
TA version, significantly reducing the gap from the 𝑘-
independent adapters solution of M-TIL. Figure 2 pro-
vides a quick view on the already presented results of all
the TA methods we considered, reporting also the Rela-
tive Gain w.r.t. M-TIL. Indeed, we can observe that the
relative drop in performance is always below the 11%.

5. Conclusions
We investigated Large Language Models in progressively
learning from tasks involving long sequences of text. A
pre-trained model was paired with one or more adapters
(LoRA), and we analyzed the role of Task Arithmetic,
showing that it yields performances that are not far from
the ones of multiple models independently trained to
solve each task. Our results suggests a viable road to
mitigate the need of large computational resources when
learning from tasks based on “long” documents. While we



exploited data in English language, the experiences of this
paper can be interpreted as generic attempts to leverage
long sequences in Continual Learning, in a sense going
beyond the language barrier. Future work will consider
schemes to automatically tune the Task Arithmetic [36].
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