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Abstract
The growing interest in Large Language Models (LLMs) has accelerated research efforts to adapt these models for various
languages. Despite this, pretraining LLMs from scratch for non-English languages remains underexplored. This is the case
for Italian, where no truly open-source research has investigated the pretraining process. To address this gap, we introduce
Minerva (https://nlp.uniroma1.it/minerva), the first family of LLMs trained entirely from scratch on native Italian texts. Our
work is the first investigation into the challenges and opportunities of pretraining LLMs specifically for the Italian language,
offering insights into vocabulary design, data composition, and model development. With Minerva, we demonstrate that
building an LLM tailored to a specific language yields numerous practical benefits over adapting existing multilingual models,
including greater control over the model’s vocabulary and the composition of its training data. We provide an overview of the
design choices, pretraining methods, and evaluation metrics used to develop Minerva, which shows promising performance
on Italian benchmarks and downstream tasks. Moreover, we share the lessons learned throughout Minerva’s development to
support the academic and industrial communities in advancing non-English LLM research. We believe that Minerva serves as
an important step towards closing the gap in high-quality, open-source LLMs for non-English languages.
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1. Introduction
Large Language Models (LLMs) have revolutionized the
way Natural Language Processing (NLP) tasks are ap-
proached, achieving remarkable results in existing areas
and opening the door to entirely new research directions
and applications. As a result, the energy and resources
dedicated to the study and creation of LLMs are grow-
ing exponentially. However, most LLMs – both closed-
and open-source – are predominantly designed for En-
glish, posing significant challenges and limitations for
their use in non-English settings. In practice, generat-
ing Italian text using multilingual or language-adapted
English models, e.g., from Mistral [1] or Llama [2, 3], is
computationally more expensive and often less effective
compared to using a model specifically designed for the
Italian language. This inefficiency stems from the vocab-
ulary of an English or multilingual LLM – i.e., the lexical
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units, or tokens, that the model can use to compose text
– when it is not optimized for the Italian language, result-
ing in Italian words being split into an excessive number
of tokens. Consequently, this creates longer sequences
of tokens, slower generation times, and higher compu-
tational costs, especially since many popular attention
mechanisms have a quadratic complexity with respect to
sequence length.

Efforts to create language-specific LLMs are increasing,
and fall primarily into two main categories: i) adapting
existing English-centric LLMs to other languages, and
ii) training LLMs from scratch. The advantages of adapt-
ing existing English-centric LLMs to other languages
are enticing: starting with a proven model can reduce
the computational requirements, and adaptation can be
achieved with relatively modest amounts of data. There
are several language adaptation techniques, which range
from fine-tuning the model on data for the target lan-
guage [4, 5] tomodifying themodel’s architecture [6, 7, 8],
making these techniques flexible for different budgets
and objectives. However, these techniques may not fully
capture language-specific nuances and can degrade the
performance in the original language, indeed an unde-
sirable effect. Alternatively, training LLMs from scratch
provides the freedom to make design choices tailored
to the linguistic features of the target language—includ-
ing morphology, lexicon, syntax, and semantics—which
are often overlooked in English-centric models [9]. It
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also allows for incorporating culturally relevant con-
tent, reducing biases that might be present in models
primarily trained on English data, thus leading to more
inclusive and accurate representations of language use.
Unfortunately, while there are several efforts on adapt-
ing English-centric LLMs to the Italian language, e.g.,
Llamantino-2 [4], Llamantino-3 [5], DanteLLM [10], and
Camoscio [11], inter alia, there is no truly open-source
endeavor exploring what can be achieved by training an
LLM from scratch on Italian data.

With this work, we follow the latter path and introduce
Minerva, the first family of LLMs designed specifically
for the Italian language and pretrained on Italian text.1

We present the design choices for our models, our data
processing, and the evaluation results regarding our Min-
erva LLMs, showing that our models – with 350M, 1B,
3B, and 7B parameters – outperform comparable multi-
lingual models and even rival larger models adapted for
Italian. We conclude with a discussion on the benefits
and challenges of pretraining LLMs from scratch for the
Italian language, sharing our experience and findings to
provide valuable insights for the academic and industrial
communities interested in training non-English LLMs
from scratch. Lastly, we describe the technical details of
Minerva-7B, our latest model with 7.4 billion parameters,
for which we share our initial results.

2. Building a Pretraining Dataset
for Italian LLMs

The field of LLMs is growing at an astonishing pace, with
new models, datasets, benchmarks, and techniques pre-
sented every week. However, over the past few months,
academic and industrial researchers have increasingly
recognized the fundamental role of the data used to pre-
train LLMs. Unsurprisingly, the majority of the leading
companies are not releasing their training data as they
seek to maintain an advantage over the competition, with
very few exceptions (e.g. OLMo by AllenAI [12] and
OpenELM by Apple [13]). In this section, we describe the
different sources of data used in the training of the Min-
erva models, and Table 1 provides an overview of these
(cf. Appendix A for more details). Most importantly, the
training datasets we used are entirely available online,
making our process transparent and allowing researchers
to better study the connection between pretraining data
and model behavior.

2.1. Data Sources
The training data for our Minerva models consists of
three main categories: Italian, English, and code data.

1https://nlp.uniroma1.it/minerva

Dataset Minerva – Model Size

Name Lang. 350M 1B 3B 7B

RedPajama-V2 Italian – – – 894B
CulturaX Italian 35B 100B 330B 237B
Wikipedia Italian – – – 1.3B
Gutenberg Italian – – – 0.15B
Wikisource Italian – – – 0.12B
EurLex Italian – – – 1.6B
Gazzetta Ufficiale Italian – – – 1.7B
FineWeb English – – – 1,076B
CulturaX English 35B 100B 330B –
Wikipedia English – – – 5.3B
ArXiv English – – – 33B
Gutenberg English – – – 7B
StackExchange English – – – 22B
The Stack V2 Code – – – 201B

Total # of tokens 70B 200B 660B 2.48T

Table 1
Datasets used to train Minerva with their languages (second
column) and number of tokens (third to sixth columns).

We only use the code data to train our largest model, i.e.,
Minerva-7B.

2.1.1. Italian Data

Web data. The majority of the text used to train LLMs
is sourced from Web-scraped data, typically from Com-
monCrawl (CC). Therefore, a significant portion of Italian
text included in our training datasets is also of this nature,
inherently exposing our models to potential biases and
toxic content commonly found on the Web. Because pre-
processing techniques, such as language identification,
perplexity filtering, deduplication, and content classifi-
cation are computationally expensive, the most sensible
choice is thus to rely on preprocessed collections, such
as CulturaX [14] and RedPajama v2 [15]. These collec-
tions already include Italian data, and have undergone
various levels of filtering and deduplication, as discussed
in Section 2.2.

Curated data. While Penedo et al. [16] suggest that
high-quality Web data is sufficient on its own to train
LLMs, curated data sources are often used to further im-
prove the model performance and introduce a broader
diversity of data types, such as encyclopedic and aca-
demic text [17], as well as scientific and math-related
text. Therefore, we include curated texts from several
sources, includingWikipedia (encyclopedic/world knowl-
edge data), EurLex and Gazzetta Ufficiale (law, economics,
and politics), and the Gutenberg Project (novels, poetry,
etc.).

2.1.2. English Data

Web data. Mirroring our approach with the Italian
data, we use preprocessed collections of English data
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from the Web. Given that English is the most popular
language on the Internet and has been the primary focus
of LLM research, there are numerous options that already
provide a large amount of tokens from filtered, dedupli-
cated, and cleaned sources. For our Minerva-350M, 1B,
and 3B models, we collect data from the English partition
of CulturaX, capping the number of tokens to the same
amount as the Italian ones, as shown in Table 1. Instead,
to train Minerva-7B, we use a portion of FineWeb [18],
which includes filtered and deduplicated CC dumps with
various timestamps. Specifically, we use the CC dumps
from 2023-14 to 2024-18 to match the total number of
tokens in the Italian Web partition of our training data.

Curated sources. We include the 5.3B tokens from
the English Wikipedia and 7B tokens from the copyright-
free books in Project Gutenberg. Additionally, we include
data from arXiv and StackExchange, which are included
in the RedPajama dataset.

2.1.3. Code Data

Previous work has highlighted the importance of includ-
ing source code in the pretraining corpus of an LLM,
in order to improve not only its code understanding
and generation, but also its general reasoning capabil-
ities [19] even for tasks that do not directly involve or
require programming. Therefore, for our largest model
– Minerva-7B – we also include a portion of code data.
More specifically, we extract 200B tokens from The Stack
V2 [20], selecting the data from their deduplicated parti-
tion, which includes 17 of the most popular programming
languages on GitHub.

2.2. Data Preprocessing
As mentioned above, our preprocessing effort remains
minimal, as we rely on the preprocessing pipelines used
in CulturaX, RedPajama, and FineWeb. To evaluate the
content and quality of our training data, we employ the
methodology described in Elazar et al. [21] to analyze the
URL domain distribution within the Italian partition of
CulturaX and RedPajama, as these partitions had never
been utilized in training an LLM prior to Minerva. We
provide an overview of our analysis together with a few
insights in Appendix B.

2.3. Data Filtering and Deduplication
Previous work on English-centric LLMs [22] has already
emphasized the importance of training LLMs on “clean”
data. Two of the most important parts of data cleaning
are filtering, i.e., removing content that does not satisfy a
set of criteria, and deduplication, i.e., removing portions

of text that appear too often so as to minimize memoriza-
tion.

As mentioned above, for the corpus used to train the
Minerva models, we rely mainly on collections of data
that has already been filtered and deduplicated. However,
there are some minor considerations that depend on each
collection of data. More specifically, we use CulturaX
as-is, relying on their filtering and deduplication pipeline.
Unfortunately, RedPajama v2 is not filtered and dedupli-
cated; however, its data is tagged with meta-information
that can be used to apply filtering and deduplication.
Such metadata includes, for example, the perplexity score
of each text computed via a language model trained on
Wikipedia, which is used to partition RedPajama v2 into
three partitions: head, middle, tail. For our training cor-
pus, we only include a document if it is classified as
head or middle according to its perplexity score. More-
over, we use the precomputed metadata to remove exact
duplicates and apply fuzzy deduplication. The latter is
performed by using the hash provided for each document
with Locality Sensitive Hashing and Jaccard similarity 0.7
to decide whether two documents are fuzzy duplicates.
Note that we only apply fuzzy deduplication within each
CC dump, rather than across all the dumps. This decision
is motivated by two observations: first, applying fuzzy
deduplication across all CC dumps is computationally
expensive; second, previous work [18] has shown that
per-CC deduplication is not only sufficient, but is also
beneficial, when training English LLMs.

3. Minerva LLMs
In this section, we provide an overview of the Minerva
LLMs: we describe their tokenizers, the design choices
behind the model architecture, and how we trained the
resulting LLMs.

3.1. Vocabulary and Tokenizers
The vocabulary of an LLM is mainly impacted by its size,
i.e., the number of tokens in the vocabulary itself, and
how the tokenizer is trained, i.e., which tokens make up
the vocabulary. These two factors impact the fertility
of the resulting tokenizer, which measures the average
number of tokens (subwords) into which a word is split.
Tokenizers with lower fertility are preferable, as the input
and output sequences they produce are shorter, result-
ing in an efficiency gain, especially as most attention
mechanisms are quadratic with respect to the sequence
length. Unsurprisingly, the vocabulary allocation of an
English-centric LLM minimizes the fertility of English
text, and results in high fertility values for Italian text, as
shown in Table 2.



Fertility (↓ – lower is better)

CulturaX Wikipedia

Tokenizer |Vocab| Ita Eng Ita Eng

Mistral-7B 32,000 1.87 1.32 2.05 1.57
Gemma-7B 256,000 1.42 1.18 1.56 1.34
Minerva-350M 32,768 1.39 1.32 1.66 1.59
Minerva-1B 32,768 1.39 1.32 1.66 1.59
Minerva-3B 32,768 1.39 1.32 1.66 1.59
Minerva-7B 51,200 1.32 1.26 1.56 1.51

Table 2
Fertility rates (lower is better) for Minerva tokenizers com-
pared to other LLMs. The fertility rates are computed on
a randomly sampled collection of texts from CulturaX and
Wikipedia in both Italian (Ita) and English (Eng).

Given the importance for our Minerva LLMs of hav-
ing a low fertility on Italian text, we intentionally train
the Minerva tokenizer on a balanced mix of English and
Italian data (and code data for the 7B model). Our anal-
ysis shows that this strategy leads to a much improved
fertility on Italian data, while at the same time maintain-
ing similar fertility on English data. More specifically,
for Minerva-350M/1B/3B, we opted for a vocabulary size
similar to that of Mistral-7B (around 32k tokens): in this
case, the fertility of the Minerva tokenizer is ~20% better
than the Mistral tokenizer on the Italian Wikipedia and
only ~1% worse on the English Wikipedia. Following
recent trends in LLMs, for Minerva-7B, we increased the
vocabulary size to around 50k tokens, which resulted in
a further fertility improvement of ~6% and ~5% on the
Italian and English Wikipedias, respectively, notwith-
standing the addition of code data to the training data.
We provide more details on the tokenizer in Appendix C.

3.2. Model Architecture
While the field of LLMs is moving rapidly, one of the best
models when our efforts started was Mistral. Therefore,
our Minerva LLMs are based on Mistral’s model archi-
tecture. The Minerva LLMs are, therefore, a family of
decoder-only transformer models, with a few standout
features, such as grouped-query attention (GQA) [23],
which boosts inference speed and reduces memory re-
quirements for increased throughput, and sliding win-
dow attention (SWA) [24, 25], which manages longer se-
quences more efficiently at reduced computational costs.
Specifically, the GQA is configured to share one key-value
pair every four queries, while the SWA configuration han-
dles up to 2,048 tokens with a maximum context length of
16,384 tokens. We build four models with different sizes
by scaling the number of attention heads, hidden size,
intermediate size, and hidden layers, while maintaining
a ratio of ~3.5 between the hidden size and intermediate
size, as in the original Mistral model. However, following

the more recent model releases by Mistral, Minerva-7B
does not use SWA. Instead, it implements full attention
across its entire context length, which can extend up to
4096 tokens, i.e., double the number of tokens for the
SWA used in Minerva-350M/1B/3B. The parameters for
each model size are detailed in Table 3, for which we
provide a more in-depth description in Appendix D.

Building Minerva on top of Mistral’s model architec-
ture also brings other benefits, such as broad compati-
bility with the ecosystem of libraries, frameworks, and
tools that has emerged over recent months, including
llama.cpp [26], FlashAttention [27], and vLLM [28].

3.3. Model Training
We train all the Minerva LLMs using MosaicML’s LLM
Foundry.2 The training process is conducted on the
Leonardo Supercomputer3 hosted and maintained by
CINECA. Each node in Leonardo is equipped with 4 ×
custom NVIDIA A100 SXM4 with 64GB of VRAM.

All our models are trained using the AdamW opti-
mizer [29] with 𝛽1 = 0.9, 𝛽2 = 0.95, 𝑒𝑝𝑠 = 10−8 (with the
only exception being Minerva-7B, which is trained us-
ing 𝑒𝑝𝑠 = 10−5) on a standard causal language modeling
training objective. To smooth the training process, we
follow standard practice in the literature and employ a
warmup-then-cooldown learning rate scheduling. More
specifically, we first increase the learning rate linearly
during the initial training phase (2% of the total num-
ber of training steps for Minerva-350M/1B/3B and 0̃.3%
for Minerva-7B) until the peak learning rate is reached
(2×10−4 for Minerva-350M/1B/3B, 3×10−4 for Minerva-
7B), and then decrease the learning rate with a cosine
scheduling until the end of the training process. The hy-
perparameters used for each model are shown in Table 7.

4. Evaluation
Wemeasure the 0-shot performance of ourMinerva LLMs
on ITA-Bench [30], a suite of benchmarks that have
been created either by translating existing benchmarks
from other languages, or by adapting existing Italian
benchmarks so that they can be used for LLM evaluation.
ITA-Bench includes a set of 10 benchmarks commonly
used to evaluate LLMs, namely, ARC Challenge (ARC-
C), ARC Easy (ARC-E) [31], BoolQ [32], GSM8K [33],
HellaSwag (HS) [34], MMLU [35], PIQA [36], SciQ [37],
TruthfulQA [38], and Winogrande (WG) [39]. Overall,
these benchmarks offer a comprehensive view of the capa-
bilities of an LLM on a wide variety of aspects, including
scientific knowledge, world knowledge (e.g., geography,
politics, economics), commonsense knowledge, physical

2https://github.com/mosaicml/llm-foundry
3https://leonardo-supercomputer.cineca.eu/
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Model Params Layers Hidden Size Inter. Size Att. Heads KV Heads SW Length Ctx. Length

Minerva-350M 352M 16 1152 4032 16 4 2048 16,384
Minerva-1B 1.01B 16 2048 7168 16 4 2048 16,384
Minerva-3B 2.89B 32 2560 8960 32 8 2048 16,384
Minerva-7B 7.40B 32 4096 14336 32 8 None 4,096

Table 3
Overview of the main hyperparameters for our Minerva models. We include the number of parameters (approximately, 350M,
1B, 3B, and 7B) and the corresponding number of layers, hidden size, intermediate size, attention heads, key-value heads,
sliding window length, and maximum context length.

Size Name ARC-C ARC-E BoolQ GSM8K HS MMLU PIQA SciQ TQA WG AVG

0.4B Minerva-350M-base-v1.0 24.6 36.4 60.7 48.2 32.6 25.7 59.5 63.7 46.5 58.4 45.6
1B Minerva-1B-base-v1.0 26.6 42.2 57.1 49.7 39.6 27.0 62.9 73.5 44.6 60.0 48.3

3B OpenELM-3B 27.0 37.9 60.9 49.7 40.7 28.3 56.7 81.8 47.3 58.4 48.9
3B XGLM-2.9B 27.5 41.4 59.1 65.7 44.5 27.4 59.9 77.8 43.1 60.2 50.6
3B Minerva-3B-base-v1.0 31.4 49.1 62.1 55.8 52.9 29.2 66.9 79.9 41.4 62.2 53.1

7B OLMo-7B-0724-hf 30.7 44.0 72.9 52.5 47.9 30.9 58.7 85.1 44.6 61.2 52.8
7B LLaMAntino-2-7b 33.7 50.8 70.9 52.2 54.9 33.8 64.4 86.1 44.3 64.1 55.5
7B Minerva-7B-base-v1.0 42.0 68.8 79.5 50.0 62.6 36.2 69.8 87.7 38.5 65.0 60.0
7B Mistral-7B-v0.1 42.8 61.3 78.2 56.1 60.4 38.0 65.5 90.8 43.5 68.8 60.5
8B Llama-3.1-8B 44.0 61.1 78.0 57.8 62.9 38.7 67.7 90.3 43.0 69.2 61.3

Table 4
Zero-shot evaluation results of the Minerva models on a set of standard benchmarks translated from English to Italian.

interactions, coreference, and math reasoning, among
others. Employing automatically-translated benchmarks
is far from ideal, but it allows us to better compare the
scores obtained in Italian with those obtained in English,
while awaiting as the Italian research community devel-
ops Italian-specific benchmarks [40].

As shown in Table 4, the average performance of the
Minerva models increases steadily with the model size.
For our 3B model, we also provide a comparison with
two models of the same size: XGLM [41], a multilingual
LLM byMETA, and OpenELM [42], a very recent English-
only model developed by Apple. Our evaluation shows
that Minerva-3B outperforms XGLM and OpenELM by a
significant margin, i.e., +4.4% and +3.7% on average.

Finally, Minerva-7B achieves the highest performance
among the Minerva LLMs family, as expected. No-
tably, Minerva-7B, achieves a higher average score than
Llamantino-2. This is an interesting comparison be-
cause the pretraining data for Llama-2, i.e., the pretrained
LLM used to build Llamantino-2, is not available and has
never been disclosed, making the model open-weights
but not entirely open-source.4 When compared to closed-
sourced LLMs such as Mistral-7B-v0.1 or Llama-3.1-8B,
Minerva still lags behind in some tasks, such as BoolQ
or GSM8K, which may require better reasoning capabil-
ities and/or more pretraining data. As we can observe
from Figure 1, which tracks the progress of Minerva-7B

4We stress that, for Llamantino-2, only the data that has been used
for the language adaptation process is available, whereas the pre-
training data is not.

on ITA-Bench every 10,000 training steps, the model is
still slowly improving towards the end of the pretraining
phase, suggesting that a larger training corpus or multi-
ple epochs may be beneficial in future developments.

5. Downstream tasks
In this section, we show the results of the Minerva mod-
els when adapted to two downstream applications. This
analysis is particularly relevant for Minerva-350M and
Minerva-1B, which can be utilized for specific tasks rather
than as general-purpose models, offering lower computa-
tional costs. The tasks in this analysis include: i) Italian
Abstractive News Summarization, and ii) Machine Trans-
lation, in both directions (IT-EN and EN-IT).

News Summarization. Following Sarti and Nissim
[43], we fine-tune Minerva models (up to 3B) on a con-
catenation of two Italian news summarization datasets:
Fanpage.it and Il Post newspapers [44]. A detailed
overview of the hyperparameters used to train our mod-
els is provided in Appendix E. We can find that Minerva-
3B obtains the best results (0.30 vs 0.29 of the second best
in terms of Rouge-L); however, it is not as parameter-
efficient as IT5-Large, probably because encoder-decoder
models are more suitable for fine-tuning than decoder-
only models [45]. In Table 8, we report the full results of
Minerva fine-tuned on the aforementioned datasets and
compared to baselines in Sarti and Nissim [43], which



Progress over time: average accuracy on ITA-Bench
Minerva-7B-base-v1.0

Figure 1: Tracking the progress of Minerva-7B during its pretraining process. Here, we report the average accuracy on
ITA-Bench every 10,000 steps, i.e., every 40B tokens approximately.

include mBART, mT5, and IT5.

Machine Translation. We also evaluate our Minerva
LLMs in few-shot [46] machine translation on two bench-
marks, FLORES [47] and OPUS-100 [48]. We explore
how LLMs perform this task relying only on in-context-
learning few-shot examples, reporting our results with
5-shot prompting. We rely on the vLLM library [28] and
change the default parameters with temperature=0 and
max_tokens=512.

We highlight that Minerva-3B reaches competitive re-
sults in MT in both EN-IT (84.8 on Flores and 76.7 on
Opus in terms of COMET score) and IT-EN (85.7 and 78.0).
Compared with other models of similar size, Minerva-3B
shows strong results when the target language is Italian
(+1.7 and +2.7 compared to Gemma-2B and Qwen-1.5B
on Opus). Minerva-7B further showcases this by achiev-
ing the highest performance among models tested when
translating from English into Italian. The full results are
reported in Table 5.

6. Conclusion and Future Work
In this paper, we demonstrated the feasibility and bene-
fits of pretraining Italian language models from scratch,
which not only improves the computational efficiency
and performance of an LLM for a target language but re-
duce linguistic biases inherited from English training cor-
pora [49]. The Minerva models (https://nlp.uniroma1.it/

FLORES OPUS

Model EN-IT ↑ IT-EN ↑ EN-IT ↑ IT-EN ↑

Minerva-1B 66.37 73.72 57.40 64.61
Minerva-3B 84.83 85.67 76.74 78.04
Minerva-7B 87.02 87.20 79.07 79.91
Gemma-2B 83.31 86.51 75.05 78.94
Qwen-1.5B 80.18 86.16 74.01 78.95
TinyLlama-1.1B-v1.1 73.40 83.62 65.72 75.44
LLaMa-2-7B 85.24 87.47 77.30 80.36
Mistral-7B 86.56 87.75 78.08 80.56
Qwen-7B 86.00 87.66 78.50 81.21

Table 5
COMET scores measure the translation capabilities of our
Minerva models and other LLMs on the FLORES and OPUS
datasets. This evaluation is conducted in a 5-shot setting,
where each model receives five random translation examples
from the development set before the test instance.

minerva) showcase promising results on a variety of Ital-
ian benchmarks and downstream tasks, including news
summarization and machine translation. Most impor-
tantly, we describe, for the first time, the process of cre-
ating an Italian pretraining corpus with more than 1T
tokens, and we share findings and insights into the pre-
training process of Italian LLMs with the academic and
industrial communities, paving the way for future re-
search in training non-English language models. We
hope that our contributions will represent a stepping
stone for future work on language-specific and multilin-
gual large-scale language modeling.

https://nlp.uniroma1.it/minerva
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A. Data sources
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Minerva in its different sizes. The Tokens column shows
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Where Table 1 shows more tokens used for training, it
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Dataset Tokens Language Genre URL

RedPajama-Data-V2 688B Italian Web https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2
CulturaX 158B Italian Web https://huggingface.co/datasets/uonlp/CulturaX
Wikipedia 1.3B Italian Encyclopedic https://huggingface.co/datasets/wikimedia/wikipedia
Gutenberg 0.15B Italian Books https://huggingface.co/datasets/manu/project_gutenberg
Wikisource 0.12B Italian Books https://huggingface.co/datasets/wikimedia/wikisource
EurLex 1.6B Italian Law https://huggingface.co/datasets/joelito/eurlex_resources
Gazzetta Ufficiale 1.7B Italian Law https://huggingface.co/datasets/mii-llm/gazzetta-ufficiale
FineWeb 1,076B English Web https://huggingface.co/datasets/HuggingFaceFW/fineweb
CulturaX 330B English Web https://huggingface.co/datasets/uonlp/CulturaX
Wikipedia 5.3B English Encyclopedic https://huggingface.co/datasets/wikimedia/wikipedia
ArXiv 33B English Academic https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
Gutenberg 7B English Books https://huggingface.co/datasets/manu/project_gutenberg
StackExchange 22B English Forum https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
The Stack V2 201B Code Code https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids

Table 6
Detailed breakdown of each dataset.

B. Dataset Insights
We leveraged the WIMBD5 library to compute word
counts per URL domain on CulturaX. We decided not
to do this for RedPajama v2 or FineWeb as their origi-
nal data already provides token count and other insights
into the dataset distribution. Figures 2 and 3 show the
aggregation of word counts per domain for Italian and
English, respectively.

C. Tokenizer
We trained two tokenizers for Minerva. The first one is
shared by the three smaller sizes, 350M, 1B and 3B. It is
trained on a mix of 4GB of Italian text data and 4GB of
English text data, both from CulturaX. Our objective is
to have a balanced vocabulary across the two languages,
mirroring the training data. We use the SentencePiece
library6 to train a BPE tokenizer and we apply byte fall-
back. We set a vocabulary size of 32,768 as a multiple of
8, which is recommended by some GPU architectures.

For the 7B tokenizer, we increase the vocabulary size
to account for the inclusion of code data, up to 51,200.
We also train a BPE tokenizer7 with 4GB of English text,
4GB of Italian and 1GB of code. The text data is sampled
from the training mix of datasets for the 7B, as reported
in Table 1.

D. Model
The Minerva LLM family consists of four models, each
sharing the same underlying architecture, i.e., that of
Mistral-7B. The models are differentiated by their size,
ranging from 350 million parameters of Minerva-350M

5https://github.com/allenai/wimbd
6https://github.com/google/sentencepiece
7https://huggingface.co/docs/tokenizers/en/api/trainers

to 7 billion parameters of the largest model, Minerva-
7B. The Minerva family also includes Minerva-1B and
Minerva-3B, with 1 billion and 3 billion parameters, re-
spectively. More specifically, the Minerva-7B model is
based directly on the Mistral-7B architecture, with the
sole modifications being the vocabulary size, which we
increase to 51,200 tokens, and the context length, which is
set to 4,096 tokens without activating the sliding window
attention feature. Hence, Minerva-7B is structured as a
decoder-only transformer model, comprising 32 layers.
Each layer includes 32 attention heads, where each key-
value pair is shared among four queries. Additionally,
the model features feed-forward layers with a hidden
size of 4096 and an intermediate size of 14336, which is
3.5 times the hidden size. Minerva-3B is a scaled down
version of Minerva-7B, and it shares similar features with
Mistral-7B, including amaximum context length of 16,384
tokens, sliding window attention spanning 2,048 tokens,
and a vocabulary size of 32,768 tokens. To achieve ap-
proximately 3 billion parameters, we have reduced the
hidden size to 2560 and the intermediate size to 8960.
Minerva-1B and Minerva-350M differ from their larger
counterpart in several key respects. Both models have
16 attention heads, in contrast to the higher count in the
larger model. Additionally, the hidden and intermedi-
ate sizes of the feed-forward layers is reduced further:
Minerva-1B features a hidden size of 2048 and an interme-
diate size of 7168, while Minerva-350M has a hidden size
of 1152 and an intermediate size of 4032. The complete
list of parameters is reported in Table 3.

E. News Summarization
Additional results. Table 8 reports the full results of
our evaluation on news summarization.
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https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
https://huggingface.co/datasets/manu/project_gutenberg
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
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Figure 2: Domain word count distribution for Italian CulturaX.

Model Optimizer lr betas eps Weight Decay Scheduler Warm-up Batch Size Steps

Minerva-350M AdamW 2 × 10−4 (0.9, 0.95) 10−8 0.0 Cosine 2% 4𝑀 16, 690
Minerva-1B AdamW 2 × 10−4 (0.9, 0.95) 10−8 0.0 Cosine 2% 4𝑀 47, 684
Minerva-3B AdamW 2 × 10−4 (0.9, 0.95) 10−8 0.0 Cosine 2% 4𝑀 157, 357
Minerva-7B AdamW 3 × 10−4 (0.9, 0.95) 10−5 0.1 Cosine 2000 4𝑀 591, 558

Table 7
Training configuration for various Minerva models.

Additional details on the experimental setup. To
finetune ourMinerva models we relied on the SFTTrainer
class.8 The hyperparameters we used are reported in
Table 9. We sought to be in-line with the decisions taken
in [43]. We also tried out different combinations, but we
noticed that the best evaluation scores are given by the

8https://huggingface.co/docs/trl/en/sft_trainer

reported parameters. Furthermore, we want to highlight
thatMinerva-350M andMinerva-1Bwere finetuned using
AdamW optimizer [29]. Minerva-3B was trained using
AdamW_Paged_32bit, a lighter version of AdamW, which
allows a larger batch size to be used during training.

https://huggingface.co/docs/trl/en/sft_trainer
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Figure 3: Domain word count distribution for English CulturaX.

F. Few-shot Machine Translation
Here, we provide more details on our experimental setup
for the Machine Translation task. In our experiments, we
test the capability of a base model (i.e., with no instruc-
tion fine-tuning or task-specific fine-tuning) to translate
a sentence from English to Italian and vice versa. Previ-
ously, LLMs have been shown to performwell in machine
translation and they now rival task-specific MT systems
on a number of benchmarks [50] and tasks [51]. In our
case, we prompt the language models by providing a set
of 5 randomly sampled English-to-Italian translations
(and vice-versa for the Italian-to-English translation). Fi-
nally, we measure the translation performance of the
models using COMET, a learned metric to assess the
quality between an automatic translation and a gold ref-

erence, as COMET has shown better correlation with
human judgement than other metrics, such as BLEU.



Model R1 ↑ R2 ↑ RL ↑

mBART Large 0.32 0.15 0.25

mT5 Small 0.34 0.16 0.26
mT5 Base 0.33 0.16 0.26

IT5 Small 0.35 0.17 0.28
IT5 EL32 0.34 0.16 0.26
IT5 Base 0.25 0.10 0.20
IT5 Large 0.38 0.19 0.29

Minerva-350M 0.35 0.17 0.27
Minerva-1B 0.35 0.17 0.27
Minerva-3B 0.39 0.20 0.30

Table 8
Rouge metrics of News Summarization fine-tuning.

Parameter Value

warmup ratio 0.2
weight decay 5 × 10−3
batch size 64
optimizer AdamW | PagedAdamW 32bit (only 3B)
learning rate 0.0005
scheduler Linear
epochs 7

Table 9
Hyper-parameters used to fine-tune our models.
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