
Fostering Metacognitive Skills in Programming:
Leveraging AI to Reflect on Code⋆

Giulia Paludo1,∗,†, Alberto Montresor1

1Department of Computer Science and Information Engineering, University of Trento, Via Sommarive 9, 38121 Trento (TN)

Abstract
The increasing use of AI among students has significant implications for established practices across all disciplines.
In the specific case of programming in Computer Science (CS) education, we are observing a debate between the
education system which sees AI-generated code as a threat to the learning’s quality, and the industry, which
expects professionals to best take advantage of AI-assisted programming. In this context, a successful mediation
lies in fostering skills such as metacognition and reflective learning to bridge the academic and professional
worlds. This paper reviews the literature on AI-assisted practices supporting metacognition and reflective
learning. Drawing on this review and the findings from a prior pilot study run by us, we designed the Reflective
AI Programming Lab (RAP Lab) where groups of three students collaborate to solve programming tasks using
exclusively AI-generated code, with restricted queries and a set of constraints on a designated platform which logs
all the interactions between students and the AI. The approach leverages AI-driven feedback and collaboration
enhancing dialogical practices as Pair Programming and promoting the development of critical reflection on
AI tools in CS. By having students explain in detail their reasoning and structure their solution strategies to
a third party (AI), this intervention stimulates metacognition and reflective learning by offering a different
perspective on problem solving. In fact, this approach promotes a deeper comprehension of the problem and
forces students to clarify and refine their thoughts when articulating their solution strategy. AI serves as an
impartial non-judgmental observer, allowing students to explore their mistakes without fear of embarrassment,
encouraging a risk-free environment where they are more likely to experiment, learn from their errors, and
engage in deeper reflective learning. Although this approach has yet to be validated, it will serve as the basis for
more extensive data collection with a larger sample in the upcoming semester.

Keywords
AI-aided Education, Metacognition, AI-aided Programming, Reflective Learning

1. Introduction

Until the summer of Artificial Intelligence, and despite the improvement of new technologies, the
educational community believed that certain core practices of many disciplines would still have their
hegemony [1]. However, the growing diffusion of AI has challenged this belief, makingmany crystallised
practices in education less effective than in the past and, more importantly, not fully aligned with the
needs of the labour market and the changes of socio-economic demands.

Programming in Computer Science (CS) education is among the disciplines most significantly im-
pacted by the introduction of generative AIs capable of writing code. For a long time, coding has
been regarded as a core competency and activity in computer science (CS) and software development;
recently, the introduction of specific AI assistants for code writing such as GitHub Copilot or ChatGPT
elicited a profound discussion about underpinning skills and professions. According to the report by
Williams [2] among the uses of AI, 66% of companies who answered to the survey reported using AI
assistants for code. Certainly, CS and Software Engineering cannot be reduced to code generation, but
having a competent agent for this task drastically changes the role of developers and software engineers

2nd International Workshop on Artificial Intelligence Systems in Education, University of Bolzano - Bolzano, Italy 25-28 November
2024
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open giulia.paludo@unitn.it (G. Paludo); alberto.montresor@unitn.it (A. Montresor)
GLOBE https://cricca.disi.unitn.it/montresor/ (A. Montresor)
Orcid 0009-0000-9270-2218 (G. Paludo); 0000-0001-5820-8216 (A. Montresor)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:giulia.paludo@unitn.it
mailto:alberto.montresor@unitn.it
https://cricca.disi.unitn.it/montresor/
https://orcid.org/0009-0000-9270-2218
https://orcid.org/0000-0001-5820-8216
https://creativecommons.org/licenses/by/4.0/deed.en


as well as the competencies they need to master [1]. In this respect, the role of education, at high school
and university levels, plays a pivotal role in bridging the education and job worlds.

1.1. Context and Problem Statement

Generative AI tools for programming have caught education unprepared, while the industry welcomed
this innovation with high enthusiasm, striving to successfully implement it in current processes and
have their professional best take advantage of it [3]. Without proper interventions and policies, this
debate risks resulting in a future misalignment between young graduates and industry requirements in
the CS community [3].

In CS education, many educators perceive AI-generated code as a threat to learning, concerned
that students will rely on these tools as shortcuts, bypassing the deeper understanding of underlying
concepts [4]. There are fears that the mastery of fundamental coding skills will be diluted, that students
may use AI tools to cheat, and that traditional programming exercises and assessments may become
obsolete [1]. These concerns are further amplified by studies showing that Large Language Models
(LLMs) can produce results comparable to those of top-performing students, raising questions about
the role of manual coding skills in educational settings [5].

At the same time, the industry’s adoption of AI tools has fundamentally shifted the skillsets expected
from future software developers and engineers. Competencies such as problem-solving, critical thinking,
and metacognitive skills–rather than merely writing code–are becoming central to professional practice.
Without adjustments to educational approaches, there is a risk that students will graduate lacking the
skills necessary to collaborate effectively with AI tools in the workplace, exacerbating the disconnect
between academic learning and industry needs [6].

This situation calls for a reassessment of how programming is taught in CS education. Rather than
seeing AI as a threat, it could be harnessed as a tool for developing higher-order thinking skills such
as metacognition and reflective learning. The challenge lies in designing interventions that not only
leverage AI’s capabilities but also foster a deeper understanding of how these tools can support students’
problem-solving processes and encourage critical reflection on their use.

1.2. Contribution

This paper presents a novel pedagogical approach that integrates AI-assisted programming with
metacognitive and reflective learning practices, aimed at addressing the educational challenges posed
by the increasing use of AI in CS education. The contributions of this work are threefold:

• Literature Review on AI and Metacognitive Practices: We provide an extensive review of the
existing literature on AI-assisted practices in education, particularly focusing on how these tools
can support metacognition and reflective learning in the context of programming.

• Design of the Reflective AI Programming Lab (RAP Lab): Based on insights from both the
literature and a prior pilot study, we propose a structured learning environment, the RAP Lab,
where students collaborate to solve programming tasks exclusively using AI-generated code.

• Exploring AI’s Role in Promoting Reflective Learning: By situating students in a risk-free en-
vironment where AI acts as an impartial observer, the RAP Lab fosters critical thinking and
metacognition. Students are required to articulate their problem-solving strategies, offering
explanations of their reasoning to a third party (the AI), which in turn prompts them to reflect
more deeply on their approaches.

The outcomes of this approach, though yet to be validated on a large scale, offer a promising direction
for the future of programming education, where AI tools are leveraged not merely for efficiency but as
catalysts for developing deeper cognitive skills.



2. State of the Art

This section explores the current research landscape on AI and programming education, focusing on
how AI-driven tools are reshaping teaching practices and student learning experiences, and on the role
of metacognition and reflective learning, examining how these cognitive processes are supported by AI
tools.

2.1. Current Practices in Programming Education with AI

The initial steps toward effectively implementing AI for educational purposes in programming focus
on tutoring, with chat bot or plugins able to provide feedback and suggestions to the students [7].
However, the most prevalent use of AI by students in personal settings revolves around receiving
real-time feedback, correcting typographical errors, and interpreting error messages [8]. These AI-
driven functionalities streamline the debugging process by quickly addressing minor issues, allowing
developers to avoid spending excessive time on routine error correction.

In a broader context, AI plays a critical role in enhancing programming efficiency by automating rou-
tine, time-consuming tasks [9]. This enables developers to shift their focus from repetitive, mechanical
aspects of coding to more complex, high-level problem-solving activities, where creativity and critical
thinking are paramount.

In this section, we will explore the current practices and implications of AI in programming education
research.

2.1.1. AI Tutors and AI Driven Feedback for Programming Education

Emerging applications of LLMs to learn programming include AI tutors, such as CodeHelp [10], which
provides real-time guidance on solving exercises for introductory CS education. These methods
are already widely used, as they offer on-demand expert help even in large-scale settings, offering
personalised learning experiences. In fact, these tools offer convenient interaction and real-time support
and can be accessible in the form of a chatbot or a form with different inputs (programming language,
problem encountered and error message [10].

AI-driven feedback in programming languages plays an even more important role than in other
disciplines, allowing more effective code revision under personalised guidance. This fosters inclusivity
not only for diverse learners, but also provides more opportunities for those who are coming from non-
CS backgrounds [11]. However, an open discussion on AI-driven feedback, especially when introduced
at early stages of learning, raises concerns about its limitations, including the potential for students to
become overly reliant on AI for fixing minor issues, hindering their development of autonomy [12]. In
this regard, improper use of AI tutors without appropriate guidance can impede the development of
the necessary AI literacy skills, preventing students from engaging with AI tools and content with the
necessary critical awareness.

Furthermore, despite useful and punctual feedback on errors and suggestions, more often AI lacks
pedagogical depth necessary to support the comprehension of concepts beyond the practical help.
Beyond AI tutoring and feedback, AI in programming has also been implemented as an upgrade to
established techniques in the CS community as pair programming or debugging duck [13].

In pair programming, two programmers work together at the same time on a code with two different
roles: a driver who is writing the code and a navigator which provides further check and input [12][11].
Instead, the debugging duck technique consists of explaining the code line by line to a rubber duck
or any object as if capable of understanding. These methods both imply verbal transposition of the
program and metal organisation of the strategy employed, resulting in thinking aloud to help the
developer understand how to fix the bug. AI upgrades these techniques by creating a more realistic and
rich interaction, while making it more accessible as well. In fact, easy access to these tools allow to
reinforce practice of conscious revisions and gain the habit of these Socratic approaches to revision
even without a teammate [13] [14].



2.1.2. Assessment Challenges and Practice Shifts

Beyond benefits, mentioned practices of generative AI in coding have two main drawbacks: debates
about the most adequate assessment [15] and the risk of losing creativity and novelty in programs [16].
Studies have shown that LLMs can emulate the performance of the best students especially when tasked
with introductory exercises and this phenomenon poses concerns about the modality and the value
of assessment especially when based on the generated code [1]. In this light, traditional assessments
relying on code generated by the students’ needs to be rethought to accommodate this new reality and
stimulate learners in developing new skills.

The previously mentioned practices start finding new solutions to these issues. The case of using
more massively AI and ”Explain in Plain English” (EiPE) questions [17] introduces for students a
different task to master, understanding and correctly explaining code in a prompt, and a new view on
learning accomplishments for teachers. Despite being sensitive to low complexity exercises and specific
programming languages, these original approaches stimulate an attentional shift in addressing the
learning goal and its evaluation using LLMs to effectively complement existing pedagogical techniques
in CS.

2.1.3. From Code Writers to Code Editors

In the future, we expect developers to write less code themselves, with important consequences in
current training and education [18]. As LLMs become more proficient in handling complex tasks and
more integrated into the coding workflow, the challenge of education is shifting from solely training code
writers to also training skilled code editors. Although this has immediate advantages on productivity, it is
not the same for the long-term impact of future professional code expertise [12, 11] [16]. The comparison
with the publishing domain can help in tuning this perspective [19]. In programming, the ability to
understand and refine code written by a third party is a sophisticated competence that will become
even more essential [10]. This transition can only happen with apt interventions in programming
education more focused on the holistic view deeper problem-solving skills, code explanation, strategies
comparison rather than the mechanical process of writing code [20].

2.1.4. Explaining Code in Natural Language

Addressing programs through a verbal instruction sequences removes the barriers of code implementa-
tion, creating opportunities for deeper focus. Natural language-oriented programming (NLOP) provides
numerous advantages, including improved outcome quality, enhanced collaboration, and in a broader
sense, democratisation of software development [21].

Explaining code in natural language in fact implies a true understanding of the code generated or
reviewed by requiring articulating the purpose of the different pieces [14]. Research indicates that
Natural Language Processing supports problem-solving and human-machine interaction by requiring a
higher level of detail and specification, which reduces errors and improves efficiency [20] . Describing
code in natural language formalises and extends the debugging duck technique, commonly used by
developers to identify issues in their code. While the practice of explaining code in natural language
isn’t new, it remains underutilised and is often poorly mastered by novice CS students.

2.1.5. Boosting Code Comprehension

LLMs in programming education can provide more than mere assistance with code generation by
fostering critical thinking skills such as better understanding and explaining code [20]. These are
transversal skills between academics and professional environments [18]. In fact, collaborative settings
in CS with specific approaches like Agile are based on the ability to clearly explain and share the code
done to others. Contexts involving multidisciplinary teams and diverse levels of expertise require these
abilities also to get both smoother processes within teams [22].



Practices taking advantage of code explanation have been established teaching strategies in program-
ming education. However, traditional mediums revised by a human tutor are not highly efficient or
effective especially in large scale settings. Within this purpose, Denny et al. [17] brought this practice
in a new approach by combining LLMs generated code with EiPE questions. This method requires
students to reverse-engineer AI-generated code by providing a prompt able to exactly replicate the
initial code. Engaging students with LLMs in this way provides a clear example of the potential of such
tools in this direction of promoting deep understanding of problem and solution, however it presents
limitations in terms of complexity of the pieces of code with this technique [23].

2.1.6. Impact and Use Differentiation

Despite the acknowledgement of the many benefits of introducing AI in terms of personalised learning,
immediate and punctual support, researchers have analysed the delicate relationships between students’
levels of proficiency and AI usage which should orient practices and activities development. A recent
study by Zhang and their colleagues [8] observed that higher levels of academic self-efficacy were
associated with reduced use of AI tools revealing that confident students are less likely to engage with
AI. On the other hand, lower self-efficacy for the academic setting was observed to lead to higher
risk of AI dependence[8]. Students with low performance using AI as self-thought have more risks
for over reliance and conversely better performing students since they do not feel the need, or risk
to miss an enhancement opportunity. Furthermore, utilising AI as a shortcut can result in decreased
creativity and lack of authentic learning [8]. These findings support the need for proper interventions
in curricula for AI training and literacy to empower students while preventing negative effects on
academic performance and cognitive discrepancies.

2.2. Metacognition, Metalearning and Reflective Learning

The simplest way to define metacognition as “thinking about thinking” [24] as it refers to the awareness
of one’s own individual mental abilities [25]. It has two dimensions: knowledge and regulation. While
knowledge includes all the ideas learners have about their cognitive performance including strategies
and what could influence it, regulation refers to the processes of monitoring ongoing the activities
and it includes planning, awareness of the task performance and strategy recall [26]. In our scope, the
key aspects of metacognition are awareness and monitoring of reasoning, with the goal of regulating
behaviour [27]. More broadly, metacognition helps individuals develop a system of heuristics and
methods to better organize and approach problem-solving [28]. From the age of three, metacognition
supports learning processes at different levels recalling specific strategies or monitoring our processes
for efficiency [25]. The complexity and heterogeneity of this definition makes it difficult to frame with
high precision from a scientific perspective [29].

However, educational psychology has accumulated evidence to support the importance of metacog-
nition for enhancing and supporting the learning process, especially when it comes to self-directed
learning, a crucial skill within the 21st century technological revolutions.

In education, specific activities and practices can help learners fully benefit from metacognition
by making it explicit. For example, while we may naturally generalize a learned strategy to a new
scenario, metacognitive interventions enhance the ability to consciously retrieve, compare and apply the
appropriate strategy, leading to more efficient decision making and higher quality of the outcome[30].
This process also fosters greater awareness of the thought process and reasoning, allowing learners
to refine and upgrade previous knowledge for future applications [31]. Metacognition and related
concepts, such as Higher Order Thinking Skills (HOTS) which include critical thinking, problem solving
and motivation, have become fundamental in evolving work environments that demand high-quality,
original information processing [32].

In recent years, new constructs have emerged in the literature to specifically address metacognition
within the context of learning, most notably through the concept of metalearning. While metacognition
is more universal and encompasses the aspects of knowledge and regulation of cognitive strategies[30],



Meta-Learning

Learning Process
Optimization

Learning Strategies
Enhancement

Strategies'
Adaptation

Strategies'
Awareness

Metacognition

Knowledge

Strategies

Factors affecting
performance

Regulation

Monitoring

Adaptation
Self-

Awareness

Planning

Strategies
Transfer and

recall

Heuristics
Development

Metacomprehension

Metamemory

Reflective 
Learning

Figure 1: The interplay between metacognition, metalearning and reflective learning.

metalearning focus specifically on the understanding of how one learns, emphasizing processes that
enhance learning to optimize both current and future learning experiences [33]. Metalearning provides
a framework for understanding, adapting and optimizing the learning process, highlighting the powerful
interplay between strategies and self-awareness in learning.

Lastly, the concept of Reflective Learning emerges as a practical approach in the educational context
to promote the active use of metacognitive strategies, by providing tasks that students need to navigate
meaningfully [34] [27] which cannot be accomplished through mechanical or repetitive methods.

The triad of metacognition, metalearning and reflective learning (Figure 1) express its highest value
when brought to informal settings, where fostering these concepts leads to improved outcomes and
more meaningful learning experiences [34] [27].

2.3. Previous Pilot

We conducted a previous pilot study with an intensive two-day programming challenge called “Hack-
aprompt”, with 39 students with different backgrounds in CS and Software Engineering, coming from
two universities (Trento and Innsbruck). Students were organized in groups of three, equipped with one
laptop each, to solve programming problems using only AI-generated code. All the interactions between
students and the AIs were logged; furthermore, pre and post questionnaires have been completed by
most of the participants, focusing the aspects of problem-solving skills, approach to the problem, AI
literacy and metacognitive skills; finally, two groups voluntarily agreed to switch on video recording
and screen sharing.

Data analysis revealed notable effects from such an intensive interaction with AI. The activity led
to significant improvements in AI literacy, clarity in code communication within group settings, and
metacognitive awareness. We also observed improvements in specific problem-solving skills, such as
problem decomposition and solution planning. Qualitative data further highlighted activity’s benefits in
fostering deeper understanding of problems in the preliminary stages and a more reflective transferable
to autonomous practice [35] .



3. Metacognition and CS Education

There is an increasing emphasis on encouraging students to focus on deeper code comprehension and
explanation, moving beyond mere information retrieval and superficial data processing. This approach
aligns with the concepts of metacognition and higher order thinking skills (HOTS), which are key to
enhancing both the learning experience and its outcomes [36].

The integration of AI into learning processes, along with shifts in educational strategies, has a
profound impact on these concepts. By engaging with AI, students expand their learning environments
beyond traditional content-based approaches. In this dynamic, students not only learn from AI, but AI
also adapts to their interactions, creating a mutually adaptive learning experience.

This interaction transforms programming education by accelerating the learning process, providing
more immediate feedback and support, and enabling students to tackle complex problems earlier, even
before they have fully mastered a programming language and its underlying theoretical concepts.
Through this hands-on approach, as students transition from thinking like code writers to code editors,
the need for metacognitive abilities grows significantly [37].

Although often not prioritised in CS education, metacognition and the related metalearning concept
are central to effective learning. These skills help students become more self-aware and reflective, while
more importantly enabling them to adapt and apply apt strategies more effectively in their reasoning
processes [14] [27]. The impact of advanced metacognitive skills in academic settings was observed by
numerous studies. Metacognition-based interventions have shown positive effects at both the personal
and performance levels, with reports of increased confidence and preparedness correlating higher GPAs,
outperforming peers trained with traditional approaches [38, 39]

From a practical perspective, advanced metacognitive skills become crucial when students engage
in more complex cognitive tasks that require them to externalize their individual reasoning to an
interlocutor with no previous knowledge or ability to interpret–similar to the debugging duck technique
[40].

In this context, the shift from traditional code writing to the implementation of AI assistance fosters
improved code writing supported by more sophisticated metacognitive reflection and tailored feed-
back [41]. In the specific case of our pilot, an intensive and exclusive use of AI generated code obtained
in a limited queries chat modality drives a deeper level interaction with content since the students have
to rethink more in depth to the problem to best explain it and evaluate AI’s code with a critical eye.
Compared to other approaches mentioned, this technique, engaged with medium complexity exercises,
turns routine writing tasks into opportunities for critical thinking, self-assessment and exploration of
new strategies.

3.1. Metacognitive Strategies in CS Education through AI

Introducing metacognitive practices in CS and programming education involves designing activities,
tasks, and exercises that shift the focus from the implementation phase to decomposition, evaluation and
editing/debugging. These strategies aim to foster awareness and reflection during learning, encouraging
students to develop habits they can apply across various contexts [42] (Figure 2).

Metacognitive strategies incorporate scaffolding and self-regulation techniques [24] using tasks such
as explaining their reasoning, thinking aloud and editing outcomes with a focus on deeper understanding.
For instance, students might be asked to discuss the process they followed, either because required by
the task itself (as in our pilot’s activity) or via prompts aligned with Bloom’s taxonomy for cognitive
skills [37] with questions like “Can I identify patterns in my actions?” or “Which were the strategies
employed for this outcome?” [41, 39, 19]. These guided reflections help students recognize patterns and
approaches, allowing them to identify areas of improvement, develop an organized problem-solving
strategy, and ultimately foster the conditions for self-awareness and confidence in learning.

According to Cornoldi [25], an intervention can effectively address metacognition by involving the
following aspects:

• discussion of perspectives and beliefs;



G
en

er
al

 P
ro

ce
ss

W
it

h
 A

I
W

it
h

ou
t 

A
I

Decomposition Abstraction Pattern
Recognition

Algorithm
definition

Debugging

Pr
ob

le
m

Initial problem
overview

First problem
riformulation and
simplification via

prompt

Algorithms and strategies
discussion via prompting

Problem analysis 

Second more in depth
problem overview

Requirements and
elements

identification 

Strategies
overview and

Recall

Algorithm and Code
implementation

Code editing
and revision

Figure 2: Comparison of the process behind a programming task or problem with and without AI

• analysis of errors;
• analysis and intentional attention to the application of strategies;
• the individual is oriented to master the competence and become proficient rather than to the
performance,;

• stimulation of the ability of getting into others’ thoughts.

A deep engagement with AI offers a comprehensive opportunity to integrate all the previously
mentioned strategies through the outlined techniques. Specifically, translating the envisioned solution
into prompts to guide AI output, rather than writing code manually, entails:

• discussing the code expected with what received addressing strengths and weaknesses;
• analysing errors or noncompliance with exercises constraints;
• carefully evaluating appropriate strategies and how guiding LLMs toward the right approach;
• trying to understand the LLMs approach to forecast misunderstandings and adapt prompting. 

3.2. Prompt Engineering to Enhance Metacognitive Skills

Human-AI interaction in this context centers on prompt engineering and the user’s ability to differentiate
between useful and inaccurate AI-generated code. It also involves steering the AI model toward greater
accuracy by crafting precise and effective prompts [19].

The role of prompt engineering in learning is thus twofold: it fosters deeper analysis of one’s own
thinking while uncovering the capabilities and limitations of AI-generated content, encouraging users
to critically evaluate the results to meet their specific requirements [23].

With this foundation, using prompts to generate AI code becomes a tool for developing students’
metacognitive skills, as it requires them to articulate their envisioned solutions through prompts. While
this process may not be inherently unique, it challenges metacognition, especially when interacting
with AI leads to unexpected results or misunderstood instructions. In tasks with ambiguous elements,
such instances are frequent, prompting students to reassess even the smallest details they may have
overlooked when coding independently [8].

In addition to evaluating their solutions, these reflections focus on understanding why specific
results are produced, how to refine prompt formulations to better guide the model, and identifying the
weaknesses in the generated output.



Current models often generate inefficient code (where efficiency refers to the program’s ability to
achieve the desired outcome in the smallest amount of time), requiring human intervention to identify
areas for improvement and enhance code quality [20]. This process sharpens editing skills and fosters a
deeper understanding, making students more proficient at analyzing code and devising strategies when
coding independently.

On one hand, integrating AI extensively into coding can make the process seem much easier; on
the other, inefficiencies, challenges with prompt engineering, and mistakes made by LLMs often lead
users to prefer manual coding. However, the editing process offers several valuable learning outcomes,
reinforcing comprehension and analysis through active engagement with both the tasks and AI tools.
This interaction emphasizes the discussion of perspectives and assumptions, a more rigorous analysis
of errors, careful application of strategies, and a focus on mastering skills rather than merely achieving
performance. It also encourages students to consider the thoughts and approaches of others—an ability
individuals develop from childhood but which is often overlooked or underemphasized in educational
settings [41].

4. The Reflective Programming AI Lab: Overview, Applications and
Educational Implications

Building on recent findings in the literature and insights from the pilot, we designed the new Reflec-
tive AI Programming Lab (RAP Lab), which will be implemented in both introductory and advanced
programming courses. The lab is structured to provide a practical and reflective learning experience,
featuring a set of exercises that must be solved exclusively using AI-generated code, under supervision
and with specific guidelines.

The RAP Lab follows a similar approach to the activity tested in the pilot but is conducted every two
weeks. In each lab session, a pair or triad of students, rotating throughout the semester, are given a
setup consisting of one computer with a pre-configured platform on which they will work.

The core activity involves solving programming exercises, aligned in content and complexity with
the theoretical course lectures, exclusively using AI-generated code. These exercises include specific
constraints, such as a limited number of queries to submit and restrictions on using certain functions.
Students will work with various programming languages and different LLMs, encouraging them to
explore beyond their comfort zones through hands-on engagement. The activity is entirely voluntary
and not graded.

This approach aims to enhance their flexibility, metacognitive skills, and technical competence.
To support this goal, students will also be prompted with metacognitive and metalearning reflection
questions based on Bloom’s taxonomy, which they will answer in a form after each session. These
questions are designed to summarize the lab experience while fostering self-awareness and building
the habit of reflective learning.

To better connect the lab sessions with the main lectures, all submitted queries will be recorded in a
log, providing the instructor with valuable data for curriculum adjustments and class discussions.

Lastly, although the lab is not graded, there is a need to track students’ progress. To achieve this, a
self-report questionnaire will be administered at the beginning, middle, and end of the semester. The
data collected will assess students’ perceived improvements, expertise, and learning across various
dimensions of the activity, including individual skills, technical competencies, AI literacy, and group
work.

The integration of AI into CS education, particularly in programming, has significant implications
for both curriculum and pedagogy.

As suggested by Hutson and Plate [19], there is a need to reconfigure educational approaches to
systematically incorporate revision and editing skills, emphasizing the ability to critically assess and
evaluate AI-generated content and code. Adjusting curricula in this direction promotes enduring
proficiency over mere performance, while highlighting verbal reasoning, communication skills, and
providing opportunities to train contextual judgment.



In this direction, encouraging students to internalize a Socratic approach empowers them to apply
this method of questioning beliefs and perspectives to problems across various disciplines. Our proposal,
which merges EipE and prompt engineering, provides effective tools for enhancing internal reasoning
and fostering greater self-awareness. It also helps students learn how to learn, cultivating the ability to
continuously improve their learning strategies [41].

In this context, theoretical knowledge is put into practice through discussion and deeper re-
elaboration [29]. By employing tools and pedagogies rooted in the Socratic approach, content is
thoroughly reworked in alignment with the principles of metacognitive interventions. This transforma-
tion shifts AI into IA–Intelligence Augmentation [14]–thereby accelerating and enhancing the quality of
the learning process.

A key implication is the need to design practical learning experiences that go beyond mere code
generation. Implementing methods that facilitate explicit discussion and application of theoretical
knowledge, either individually or in small groups [29], and mediated by AI and editing tasks, fosters
genuine and focused inquiry.

Moreover, leveraging AI in this way can promote inclusion by lowering implementation barriers,
enabling all students, especially those with difficulties, to develop relevant skills and contribute mean-
ingfully in group settings [43] . On a broader scale, AI can empower individuals to understand code
without needing to be experts, thereby democratizing access to programming knowledge and fostering
more informed and conscious users.

5. Conclusions

Despite the potential threat to academic integrity and quality in the field of CS, AI has been shown to
significantly enhance productivity and efficiency. This underscores the need for a thoughtful adaptation
of curricula to adequately prepare students for the demands of their future careers.

Although the literature on this topic remains fragmented, the strategic use of AI can positively impact
higher-order cognitive processes, particularly at the meta-levels of learning, such as metacognition,
metalearning, and reflective learning. Empowering students to become more aware of their thought
processes and to articulate their reasoning with clarity not only improves learning outcomes and
performance but also fosters the development of critical skills. In an ever-evolving technological
landscape, basic technical competencies may no longer suffice. Instead, reasoning flexibility, deeper
comprehension, and the ability to edit and refine ideas will be essential for future professionals.

The implications for CS education include modernizing established practices with AI integration and
providing supervised opportunities to develop AI literacy. Overall, the findings of this paper suggest that
curricula should be adjusted to meet emerging demands by emphasizing the development of individual
heuristics and problem-solving strategies, rather than focusing heavily on mechanical, “apply the rule”
exercises. AI-assisted tools can play a key role in successfully implementing these approaches.

The RAP lab embodies these principles by designing activities with AI that prioritize Socratic
interactions, placing less emphasis on code generation and focusing more on EIPe [17] and verbal
reasoning. The potential of such experiences lies in fostering deeper engagement during the phases of
comprehension and solution definition, with a stronger reliance on metacognition and higher-order
thinking skills.

In conclusion, strengthening the role of the editor encourages the ability to compare, elaborate, and
synthesize multiple perspectives, sparking new avenues of creativity while fostering AI literacy to
prevent over-reliance on AI.

References

[1] M. Daun, J. Brings, How ChatGPT Will Change Software Engineering Education, in: Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1, ACM,
Turku Finland, 2023, pp. 110–116. doi:10.1145/3587102.3588815.

http://dx.doi.org/10.1145/3587102.3588815


[2] Williams, T. Some Companies are Already Replacing Workers with ChatGPT, Despite Warnings it
Shouldn’t be Relied on for ‘anything important., Fortune (2023).

[3] T. Clear, Å. Cajander, A. Clear, R. Mcdermott, A. Bergqvist, M. Daniels, M. Divitini, M. Forshaw,
N. Humble, M. Kasinidou, S. Kleanthous, C. Kultur, G. Parvini, M. Polash, T. Zhu, A Plan for a Joint
Study into the Impacts of AI on Professional Competencies of IT Professionals and Implications
for Computing Students, in: Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 2, ACM, Milan Italy, 2024, pp. 757–758. doi:10.1145/3649405.3659527.

[4] T. P. Tate, S. Doroudi, D. Ritchie, Y. Xu, M. W. Uci, Educational Research and AI-Generated Writing:
Confronting the Coming Tsunami, 2023. doi:10.35542/osf.io/4mec3.

[5] J. Prather, P. Denny, J. Leinonen, B. A. Becker, I. Albluwi, M. Craig, H. Keuning, N. Kiesler, T. Kohn,
A. Luxton-Reilly, S. MacNeil, A. Petersen, R. Pettit, B. N. Reeves, J. Savelka, The Robots Are Here:
Navigating the Generative AI Revolution in Computing Education, in: Proceedings of the 2023
Working Group Reports on Innovation and Technology in Computer Science Education, ACM,
Turku Finland, 2023, pp. 108–159. doi:10.1145/3623762.3633499.

[6] M. Folmeg, I. Fekete, R. Koris, Towards identifying the components of students’ AI literacy:
An exploratory study based on Hungarian higher education students’ perceptions, Journal of
University Teaching and Learning Practice 21 (2024). doi:10.53761/wzyrwj33.

[7] M. Verleger, J. Pembridge, A Pilot Study Integrating an AI-driven Chatbot in an Introductory
Programming Course, in: 2018 IEEE Frontiers in Education Conference (FIE), IEEE, San Jose, CA,
USA, 2018, pp. 1–4. doi:10.1109/FIE.2018.8659282.

[8] D. Zhang, M. A. Bin Ahmadon, S. Yamaguchi, Human-AI Pair Programming by Data Stream and
Its Application Example, in: 2022 IEEE International Conference on Consumer Electronics-Asia
(ICCE-Asia), IEEE, Yeosu, Korea, Republic of, 2022, pp. 1–4. doi:10.1109/ICCE-Asia57006.2022.
9954649.

[9] T. Weber, M. Brandmaier, A. Schmidt, S. Mayer, Significant Productivity Gains through Program-
ming with Large Language Models, Proceedings of the ACM on Human-Computer Interaction 8
(2024) 1–29. doi:10.1145/3661145.

[10] P. Denny, V. Kumar, N. Giacaman, Conversing with Copilot: Exploring Prompt Engineering
for Solving CS1 Problems Using Natural Language, in: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, ACM, Toronto ON Canada, 2023, pp. 1136–1142.
doi:10.1145/3545945.3569823.

[11] G. Manfredi, U. Erra, G. Gilio, A Mixed Reality Approach for Innovative Pair Programming
Education with a Conversational AI Virtual Avatar, in: Proceedings of the 27th International
Conference on Evaluation and Assessment in Software Engineering, ACM, Oulu Finland, 2023, pp.
450–454. doi:10.1145/3593434.3593952.

[12] Q. Ma, T. Wu, K. Koedinger, Is AI the better programming partner? Human-Human Pair Program-
ming vs. Human-AI pAIr Programming, arXiv preprint arXiv:2306.05153 (2023). doi:10.48550/
ARXIV.2306.05153.

[13] S. Ojeda-Ramirez, S. Rismanchian, S. Doroudi, Learning About AI to Learn About Learning:
Artificial Intelligence as a Tool for Metacognitive Reflection, 2023. doi:10.35542/osf.io/64ekv.

[14] H. Hassani, E. S. Silva, S. Unger, M. TajMazinani, S. Mac Feely, Artificial Intelligence (AI) or
Intelligence Augmentation (IA): What Is the Future?, AI 1 (2020) 143–155. doi:10.3390/ai1020008.

[15] M. Liffiton, B. Sheese, J. Savelka, P. Denny, CodeHelp: Using Large Language Models with
Guardrails for Scalable Support in Programming Classes, 2023. doi:10.48550/ARXIV.2308.06921,
version Number: 1.

[16] R. Garcia, A. Csizmadia, J. L. Pearce, B. Alshaigy, O. Glebova, B. Harrington, K. Liaskos, S. J. Lunn,
B. MacKellar, U. Nasir, R. Pettit, T. Prickett, S. Schulz, C. Stewart, A. Zavaleta Bernuy, All for
One and One for All - Collaboration in Computing Education: Policy, Practice, and Professional
Dispositions, in: Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 2, ACM, Milan Italy, 2024, pp. 763–764. doi:10.1145/3649405.3659530.

[17] P. Denny, D. H. Smith, M. Fowler, J. Prather, B. A. Becker, J. Leinonen, Explaining Code with a
Purpose: An Integrated Approach for Developing Code Comprehension and Prompting Skills, in:

http://dx.doi.org/10.1145/3649405.3659527
http://dx.doi.org/10.35542/osf.io/4mec3
http://dx.doi.org/10.1145/3623762.3633499
http://dx.doi.org/10.53761/wzyrwj33
http://dx.doi.org/10.1109/FIE.2018.8659282
http://dx.doi.org/10.1109/ICCE-Asia57006.2022.9954649
http://dx.doi.org/10.1109/ICCE-Asia57006.2022.9954649
http://dx.doi.org/10.1145/3661145
http://dx.doi.org/10.1145/3545945.3569823
http://dx.doi.org/10.1145/3593434.3593952
http://dx.doi.org/10.48550/ARXIV.2306.05153
http://dx.doi.org/10.48550/ARXIV.2306.05153
http://dx.doi.org/10.35542/osf.io/64ekv
http://dx.doi.org/10.3390/ai1020008
http://dx.doi.org/10.48550/ARXIV.2308.06921
http://dx.doi.org/10.1145/3649405.3659530


Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, ACM,
Milan Italy, 2024, pp. 283–289. doi:10.1145/3649217.3653587.

[18] J. Prather, J. Leinonen, N. Kiesler, J. G. Benario, S. Lau, S. MacNeil, N. Norouzi, S. Opel, V. Pettit,
L. Porter, B. N. Reeves, J. Savelka, D. H. Smith, S. Strickroth, D. Zingaro, How Instructors
Incorporate Generative AI into Teaching Computing, in: Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 2, ACM, Milan Italy, 2024, pp. 771–772. doi:10.
1145/3649405.3659534.

[19] J. Hutson, D. Plate, Human-ai collaboration for smart education: Reframing applied learning to
support metacognition, Faculty Scholarship (2023).

[20] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gi-
meno, A. D. Lago, T. Hubert, P. Choy, C. d. M. d’Autume, I. Babuschkin, X. Chen, P.-S. Huang,
J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Freitas,
K. Kavukcuoglu, O. Vinyals, Competition-Level Code Generation with AlphaCode, arXiv preprint
arXiv:2203.07814 (2022). doi:10.48550/ARXIV.2203.07814, publisher: [object Object] Version
Number: 1.

[21] A. Beheshti, Natural Language-Oriented Programming (NLOP): Towards Democratizing Software
Creation, 2024. doi:10.48550/ARXIV.2406.05409, version Number: 1.

[22] M. Biasutti, S. Frate, Group metacognition in online collaborative learning: validity and reliability
of the group metacognition scale (GMS), Educational Technology Research and Development 66
(2018) 1321–1338. doi:10.1007/s11423-018-9583-0.

[23] S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, Z. Huang, Generating Diverse Code Expla-
nations using the GPT-3 Large Language Model, in: Proceedings of the 2022 ACM Conference
on International Computing Education Research - Volume 2, ACM, Lugano and Virtual Event
Switzerland, 2022, pp. 37–39. doi:10.1145/3501709.3544280.

[24] J. H. Flavell, Metacognition and cognitive monitoring: A new area of cognitive–developmental
inquiry, American Psychologist 34 (1979) 906–911. doi:10.1037/0003-066X.34.10.906.

[25] C. Cornoldi, Metacognizione e apprendimento, Il mulino, Bologna, 2002. OCLC: 1404999933.
[26] S. R. Raiyan, M. N. Faiyaz, S. M. J. Kabir, M. Kabir, H. Mahmud, M. K. Hasan, Math Word Problem

Solving by Generating Linguistic Variants of Problem Statements, 2023. doi:10.48550/ARXIV.
2306.13899, version Number: 1.

[27] A. F. D. Kittel, T. Seufert, It’s all metacognitive: The relationship between informal learning and
self-regulated learning in the workplace, PLOS ONE 18 (2023) e0286065. doi:10.1371/journal.
pone.0286065.

[28] S. Hennessy, P. Murphy, The Potential for Collaborative Problem Solving in Design and Technol-
ogy, International Journal of Technology and Design Education 9 (1999) 1–36. doi:10.1023/A:
1008855526312.

[29] J. Perry, D. Lundie, G. Golder, Metacognition in schools: what does the literature suggest about
the effectiveness of teaching metacognition in schools?, Educational Review 71 (2019) 483–500.
doi:10.1080/00131911.2018.1441127.

[30] J. Metcalfe, A. P. Shimamura (Eds.), Metacognition: knowing about knowing, first mit press
paperback edition ed., The MIT Press, Cambridge, Massachusetts, 1996. OCLC: 1241904980.

[31] M. V. J. Veenman, B. H. A. M. Van Hout-Wolters, P. Afflerbach, Metacognition and learning:
conceptual and methodological considerations, Metacognition and Learning 1 (2006) 3–14. doi:10.
1007/s11409-006-6893-0.

[32] R. Rianti, Z. A. Aziz, M. Aulia, INCORPORATING HIGHER ORDER THINKING SKILLS INTO
ENGLISH SUMMATIVE ASSESSMENTS, English Review: Journal of English Education 12 (2024)
353–360. doi:10.25134/erjee.v12i1.9301.

[33] K. D. Salzman, K. Allen, K. McAnally, Differences in the detail: Metacognition is better for
seen than sensed changes to visual scenes, Consciousness and Cognition 112 (2023) 103533.
doi:10.1016/j.concog.2023.103533.

[34] A. F. D. Kittel, T. Seufert, It’s all metacognitive: The relationship between informal learning and
self-regulated learning in the workplace, PLOS ONE 18 (2023) e0286065. doi:10.1371/journal.

http://dx.doi.org/10.1145/3649217.3653587
http://dx.doi.org/10.1145/3649405.3659534
http://dx.doi.org/10.1145/3649405.3659534
http://dx.doi.org/10.48550/ARXIV.2203.07814
http://dx.doi.org/10.48550/ARXIV.2406.05409
http://dx.doi.org/10.1007/s11423-018-9583-0
http://dx.doi.org/10.1145/3501709.3544280
http://dx.doi.org/10.1037/0003-066X.34.10.906
http://dx.doi.org/10.48550/ARXIV.2306.13899
http://dx.doi.org/10.48550/ARXIV.2306.13899
http://dx.doi.org/10.1371/journal.pone.0286065
http://dx.doi.org/10.1371/journal.pone.0286065
http://dx.doi.org/10.1023/A:1008855526312
http://dx.doi.org/10.1023/A:1008855526312
http://dx.doi.org/10.1080/00131911.2018.1441127
http://dx.doi.org/10.1007/s11409-006-6893-0
http://dx.doi.org/10.1007/s11409-006-6893-0
http://dx.doi.org/10.25134/erjee.v12i1.9301
http://dx.doi.org/10.1016/j.concog.2023.103533
http://dx.doi.org/10.1371/journal.pone.0286065
http://dx.doi.org/10.1371/journal.pone.0286065


pone.0286065.
[35] F. F. Giulia Paludo, Agnese Del Zozzo, A. Montresor, Beyond coding with ai: an educational

intervention and a research methodology for cs education, in: Proceedings of the 6th Conference
of High Education Learning Methodologies and Technologies Online, Rome, Italy, 2024, submitted.

[36] L. Sulistiyani, H. Habiddin, Y. Yahmin, HOTS & Problem-Based Learning (PBL) with blended
learning, J-PEK (Jurnal Pembelajaran Kimia) 7 (2022) 1–8. doi:10.17977/um026v7i12022p001.

[37] I. Goldstein, S. Papert, Artificial intelligence, language, and the study of knowledge, Cognitive
Science 1 (1977) 84–123. doi:10.1016/S0364-0213(77)80006-2.

[38] H. J. Swanson, A. Ojutiku, B. Dewsbury, The Impacts of an Academic Intervention Based in
Metacognition on Academic Performance, Teaching and Learning Inquiry 12 (2024). doi:10.
20343/teachlearninqu.12.12.

[39] Western Colleges, Inc., A. Famarin, Metacognition in General Science to Improve the Academic
Performance of Students, Pedagogy Review: An International Journal of Educational Theories,
Approaches and Strategies 2 (2024) 109–118. doi:10.62718/vmca.pr-ijetas.2.1.SC-0624-028.

[40] K.-W. Han, E. Lee, Y. Lee, The Impact of a Peer-Learning Agent Based on Pair Programming in a
Programming Course, IEEE Transactions on Education 53 (2010) 318–327. doi:10.1109/TE.2009.
2019121.

[41] M. Guzdial, Providing Students with Computational Literacy for Learning About Everything, in:
S.-C. Kong, H. Abelson (Eds.), Computational Thinking Education in K–12, The MIT Press, 2022,
pp. 29–48. doi:10.7551/mitpress/13375.003.0005.

[42] S. Skalicky, S. A. Crossley, D. S. McNamara, K. Muldner, Identifying Creativity During Problem
Solving Using Linguistic Features, Creativity Research Journal 29 (2017) 343–353. doi:10.1080/
10400419.2017.1376490.

[43] R. M. Marra, D. J. Hacker, C. Plumb, Metacognition and the development of self‐directed learning
in a problem‐based engineering curriculum, Journal of Engineering Education 111 (2022) 137–161.
doi:10.1002/jee.20437, publisher: Wiley.

http://dx.doi.org/10.1371/journal.pone.0286065
http://dx.doi.org/10.1371/journal.pone.0286065
http://dx.doi.org/10.17977/um026v7i12022p001
http://dx.doi.org/10.1016/S0364-0213(77)80006-2
http://dx.doi.org/10.20343/teachlearninqu.12.12
http://dx.doi.org/10.20343/teachlearninqu.12.12
http://dx.doi.org/10.62718/vmca.pr-ijetas.2.1.SC-0624-028
http://dx.doi.org/10.1109/TE.2009.2019121
http://dx.doi.org/10.1109/TE.2009.2019121
http://dx.doi.org/10.7551/mitpress/13375.003.0005
http://dx.doi.org/10.1080/10400419.2017.1376490
http://dx.doi.org/10.1080/10400419.2017.1376490
http://dx.doi.org/10.1002/jee.20437

	1 Introduction
	1.1 Context and Problem Statement
	1.2 Contribution

	2 State of the Art
	2.1 Current Practices in Programming Education with AI
	2.1.1 AI Tutors and AI Driven Feedback for Programming Education
	2.1.2 Assessment Challenges and Practice Shifts
	2.1.3 From Code Writers to Code Editors
	2.1.4 Explaining Code in Natural Language
	2.1.5 Boosting Code Comprehension
	2.1.6 Impact and Use Differentiation

	2.2 Metacognition, Metalearning and Reflective Learning
	2.3 Previous Pilot

	3 Metacognition and CS Education
	3.1 Metacognitive Strategies in CS Education through AI
	3.2 Prompt Engineering to Enhance Metacognitive Skills

	4 The Reflective Programming AI Lab: Overview, Applications and Educational Implications
	5 Conclusions

