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Abstract

The brain network damage provoked by a neurological disease can be modeled as the result of the action
of an operator, K, acting on the brain, inspired by physics. Here, we explore the matrix formulation

of K, analyzing eigenvalues and eigenvectors, with heuristic considerations on different techniques

to approximate it. The primary objective of this paper is to lay the foundational groundwork for
an innovative framework aimed at the development of predictive models regarding the progression

of neurodegenerative diseases. This endeavor will leverage the potential of integrating these novel

representations of brain damage with advanced machine-learning techniques. A case study based on

real-world data is here presented to support the proposed modeling.
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1. Introduction

Reading the mind has been mankind’s dream for centuries. Bridging the gap between physiology
and thinking is a related question. Understanding anatomic structures and physiological pro-
cesses inside the brain is still an ongoing adventure. The association between blood movements
and thinking was an intuition of Angelo Mosso [1], who was working with open-skull patients.
An intuition that led to the first rough but pioneering system of non-invasive neuroimaging.
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In 1890, he developed the so-called human circulation balance, a technique that could non-
invasively measure the redistribution of blood during emotional and intellectual activity. His
experiments provided foundational concepts for modern neuroimaging techniques, highlighting
critical variables such as the signal-to-noise ratio, the appropriate choice of the experimental
paradigm, and the need for the simultaneous recording of several physiological parameters.
Understanding the brain processes can also shed light on the mechanisms leading to diseases.

However, for decades, we viewed neurodegenerative disease anatomy through oversimplified
frameworks. The beginning of human brain mapping in the late 1980s made it possible through
statistical methods to determine disease topographies in vivo with network-based representa-
tion. Noninvasive and computational methods for modeling the connectivity across the whole
brain helped understand the alterations in the brain network architecture [2]. Neuroimaging
techniques play a crucial role in the study of neurodegenerative diseases. According to Seeley
[3], two key concepts that still lead to many open questions are the onset and progression of
these diseases, which have been investigated through the study of epicenters whose connectivity
in health mirrors the spatial patterning of each syndrome. In light of the studies by Royer and
co-authors, atypical hub organization in epilepsy and seizure activity are linked [2]. A network
reorganization is also occurring in Alzheimer-Perusini’s disease [4]. Using graph theory to
study brain networks enabled to calculate topological parameters and identify network hubs
[5]; quantifying them using centrality measures allows for investigations of relative differences
between different types of epileptic patients and normal controls at the nodal level. Several
studies also explored the value of network neuroscience approaches to provide clinically rele-
vant measures in epilepsy, to develop the ability to capture seizures and investigate transient
changes in network properties during the generation and evolution of seizures.

In a recent study, Mannone and co-authors [6] represented the damage to the brain network
caused by some neurological diseases using a physics-inspired mathematical operator, the
Krankheit-operator, in short K -operator. When applied to a diseased brain, K describes the
progression of the disease over time. The authors also denoted the brain network as a block
matrix G, where each diagonal block represents the connections between brain lobes, while the
off-diagonal blocks indicate the inter-lobe connections. In a different study, the authors applied
this formalism specifically to Alzheimer-Perusini’s diseased brains [7].

Starting from [6], the work proposed in this paper explores in detail a mathematical operator
computed from the connectivity matrices of the brain functional network, objects with an
important potential both in the fields of neurology and artificial intelligence. The proposed
study investigates two computational techniques to evaluate the action of the K-operator on
the connectivity matrices. The analogies between the two different resulting objects have been
analyzed, with a focus on their eigenvalues and eigenvectors. Additionally, a case study based
on real-world data has been incorporated into this analysis.

Mainly, the first technique adopts the matrix product for the matrix inversion and the element-
wise product for the computation of K. On the contrary, the second technique adopts the usual
matrix product for the matrix inversion and K computation.

The rationale for adopting these two different computational techniques lies in their different
informational outputs. The first technique provides easily interpretable data regarding which
connections between pairs of brain areas are more damaged. In contrast, the second provides
precise and cumulative information on the amount of damage.



The data analysis conducted in the real case study underscores the similarities in the infor-
mation generated by the two distinct techniques.

Building upon these insights, we are establishing the groundwork for an innovative
foundational framework aimed at developing predictive models for neurodegenera-
tive diseases. This model primarily aims to integrate the K-operator with advanced
machine learning techniques to predict the disease progression in patients at elevated
risk. The application of machine learning to brain networks is a promising research field [8],
and our work can be integrated within this domain. Our study is a preliminary one, and we
will give a first and qualitative glance at the properties of a mathematical object that we will
draw from the concept of connectivity matrices.

The article is organized as follows. In Section 2, we describe the formalism. In Section 3, we
propose some examples of applications. In Section 4, we discuss a real-data example in light of
our findings, and finally, we sketch some possible directions of research (Section 5). For the
sake of notation, it is also necessary to stress that, in the following, the Hadamard product,
also known as element-wise product, usually indicated with ®, will be reported here as *, to
maintain conformity with the Python code, while the ordinary matrix multiplication will be
referred to as @.

2. Formalism and methods

2.1. The K-operator

Let us denote a healthy brain as a block matrix G, where the block on the diagonal represents
the connections inside the same lobe, and the others stand for the inter-lobe links. The damage
provoked by a brain-based neurological disease can be modeled as the action of the K -operator:

KG =gk, (1)

where the apex k is alabel, and G k is the matrix of a brain characterized by disease manifestations
[6]. For different diseases, there will be different matrix elements of K. A possible choice for G
is the matrix of weights of the connections between brain hubs. For instance, we can identify
these matrices with the connectivity matrices derived from fMRI [7, 9].
We first analyze the action of the K -operator through the computation of G¥ with two
different product methods:
K«xG KaQdG (2)

first, the so-called element-wise product, denoted by * in Python, and the matrix product, the
row-by-column product between matrices, showed as @. In the rest of the article, we will also
use these symbols as upper indices to distinguish between the action of K computed through the
element-wise product (Hadamard product) from the K computed through the row-by-column-wise
product (matrix product).

When G, G* are known, how can we compute K? We can use a matrix inversion and an
appropriate choice of the matrix product, one formally justified (row-by-column), the other
yielding a similar sparsity of the results (element-wise). We want to investigate the similarities
between these operators.



In the following, we show how K can act in simple cases and how it can be computed through
the operation of matrix inversion. We will also analyze its mathematical properties. We consider
two different kinds of products here to allow a more intuitive understanding of the action of K.

2.2. Analysis of the K-operator with classic tools of matrix algebra

Let us denote with A, B, C, and D the elements of a 4 x 4 K-operator. Let a toy G be defined as
another 4 x 4 matrix, having as diagonal elements (1-element blocks in this initial example) the
connectivity inside the frontal lobe f, seen as a whole block, and c¢, the cerebellum, also seen as
a whole block. The off-diagonal elements, also 1-element blocks, are the connectivity between
f and c. In a real connectivity matrix, they are equal. If we consider the signal transmission
from one area to another, we can separate the pathways according to the direction so that we
can distinguish between f — cand ¢ — f. The K acting row-by-column is defined as follows:

K@g:<A B><f fc):(Af—i—Bcf Afc—i—Bc)' 3)

C D) \cf c Cf+ Dcf Cfc+ Dc
For the sake of simplicity, let us indicate the inverse of G as:
-1 _ (M N
gt = (1 ") @
Using the classical product, and imposing fc = cf = 2, K© can be obtained as:
Eook k k k k
@ _ ka1 (f8 oo m n\ __(ffm+4+2% ffn+2p
Ko=66" = (xk ck>@<0 p> - (mkm+cko xkn+ckp>' ®)

2.3. Formal relationship between K computed through two different products
in a simple case

If we consider K as a matrix of multiplying factors of the corresponding elements of the brain
matrix, its element-wise action can be described as:

«r (A B f fe\ _ (Af Bfe
K°G = (C” D’) (cf c) \C¢f Dec)’ (©)
Keeping the idea of the matrix inversion but using the element-wise product, we can develop
a mixed technique that yields a symmetric and more easily interpretable form of the K -operator,

k k k k
_ x m n ffm xn
g*g ok ok o p %o (7)
Although we can obtain the K -operator through two different mathematical methods, thanks
to the theory of diagonalization of matrices, we can notice some similarities between the
computed operators, see Section 4. Analyzing the mathematical properties, such as their

eigenvalues and eigenvectors, we can justify the empirical evidence we can see through the
simple visualization of K.

as follows:



We can establish a relationship between K* and K Q defining a suitable 7T-matrix, such that:

k k k k k k
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2.4. Eigenvalues and eigenvectors

In the context of this first symbolic computation, we can re-write Eq. (8) as:

K@:K*+T:<‘C‘ 2)+(; £> (9)

which yields the eigenvalues:'

Ao = % {:F\/(—a—d—e—hﬁ—4(ad+ah—bc—bg—cf+de+eh—fg)+a—|—d+e—|—h}
(10)

Neglecting the second-order elements depending on parts of the T™-matrix, highlighting in bold

the residual contribution of T', and re-arranging the terms, the equation reads:

Mzt [#v/(Ca— P~ aad —be) + (atd)] + 5 (et h). (1)

Thus, the difference between the eigenvalues of K computed with the two techniques is mostly
weighted by the e and h (i.e., 2¥0 and x*n, respectively), the anti-diagonal elements of K*.

Concerning the K -operators obtained with the two different methods, we can think of getting
K® from K* with some perturbation that we called T, see Eq. (8). Perturbation theory for
matrices and linear algebra means estimating the change in the solution to a linear algebra
problem caused by a small change in the input [10]. In this case, we can see the difference
between the K -operators obtained with the two techniques as a perturbation; this allows us to
see one technique as the perturbation of the other.

A detailed study of the perturbation-based approach is out of the scope of this article. In the
next section, we propose a sequence of examples to apply in different ways the formalism of
the K -operator to some arbitrarily-defined matrices.

3. Toy examples of application

In this section, we analyze some toy examples. In the first one, we will see the action of the
K-operator on a healthy brain, modeled in four lobes, where each lobe is composed of 4 hubs,
each one described by a 4 x 4 matrix. In the second example, we will see the same action of
the K -operator on a healthy brain, but with a simpler and more little model. On the other
hand, in the last and third examples, we will see how to obtain K from an inverse operation
from the healthy and corrupted networks. What we propose in this analysis are some formal
considerations and a qualitative evaluation of the patterns of eigenvalues, belonging to matrices
obtained with different computational methods.

'Obtained through https://www.wolframalpha.com/
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3.1. Given G and K, find G”: four lobes, four hubs

For a first experimental analysis, let us consider a model representing the healthy brain as a
matrix. The K -operator is the action of a disease, while the output is a matrix of the diseased
brain. Our healthy matrix is a diagonal block matrix, thus a square matrix 16 x 16 such that the
main diagonal blocks are square matrices, namely A, B, C, D in Eq. (12), each one a 4 X 4 matrix,
while all the off-diagonal blocks as 0-matrices, see Figure 1. Also, the compromised-brain matrix
is a diagonal block because K is shaped to act only on the diagonal blocks, this operator is
defined according to [6]. The action of K is pictorially represented in Figure 1.

Figure 1: Action of K on a 16 x 16 simplified brain (neglecting inter-lobe links as in [6]). Drawing by
M. Mannone, graphs by S. Fazio.

For our purposes, we define symmetric matrices with 1 along the diagonal to have undirected
graphs and the same weights from the j-th node to the i-th and vice-versa. Then, we define
the K-operator according to [6], and we compute the matrices related to the diseased brain
first applying an element-wise product (K G) and then using the so-called matrix multiplication,
computed row by column (K @QG). The first experimental analysis applied to these product
matrices is the computation of their eigenvalues and eigenvectors. From this method, we
could infer some analogies between the two techniques, above all among their eigenvalues.
The eigenvalues and eigenvectors of the main matrix are simply those of the diagonal blocks
combined. It means that when we have the eigenvalues and eigenvectors of Ak Bk CFk Dk,
we can also get the ones of the main matrix 16 x 16 G* representing the whole diseased brain,
see Eq. (12).

A AF
B Bk

K g‘no inter-lobe submatrices — K C = oL (12)

D DF

The healthy-brain (sub)matrices are defined with entries’ values between 0 and 1, included.
Up to a rescaling to [—1, 1], this is coherent with the connectivity matrices and the connections
from brains’ real data [9]. Our choice is shown in Figure 2 left. Having this knowledge, we
should also remember that the matrices that we find through the element-wise products will
still have entries between 0 and 1. On the other hand, matrices found with the row-by-column
matrix multiplication will admit several entries with values exceeding 1. So, the defined matrices
are biologically plausible, considering a normalization. Another noteworthy element is that
if we apply a symmetric K to a symmetric G, in the element-wise computation case, we still
get a symmetric G¥; while if we get an asymmetric K acting row-by-column, and obtain a
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Figure 2: Graphs representing the intra-lobe connections of the healthy brain and of the compromised
brain after the application of the K-operator both with the row-by-column matrix multiplication (@)
and the element-wise product (x).

diseased-brain matrix, we notice that the weights between the j-th and i-th and between the
j-th and i-th elements (intra-lobe connections) of the matrix are not the same.

The result of the row-by-column and element-wise action of K, yielding the diseased brain
(sub)matrices, are shown in Figures 2 center and right, respectively.

3.2. Given G and K, find G*: four lobes, one hub per lobe

Let us consider here the case of four lobes, with one hub per lobe, as shown in Figure 3.

Figure 3: Action of K on a 4 x 4 simplified brain. Drawing by M. Mannone, graphs by S. Fazio.

As a further example, we choose a different shape of G and of K to compute G* according to
the diverse techniques (Figure 4). Here, a 4 X 4 matrix represents the whole brain to have a
more suitable example of application of the theory presented in section 2.4, yet simplified with
respect to the example of section 3.1. Darker pixels are in the first column-first row and vice
versa, for the results obtained with both techniques. Also, the first eigenvalue is the highest
in both cases. Here, we can also see some analogies, above all, among the eigenvalues of the
different matrices, even if we chose a simpler model.
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Figure 4: (a) KQG and eigenvalues (b), K * G (c) and their eigenvalues (d). We notice a vertical
correspondence between (a) and (c) and the higher value of the first eigenvalue (b, d).

3.3. Given G and G*, find K

In Section 3.1, we defined an example of a simplified healthy brain matrix and an example of the
K -operator, computing the diseased brain matrix according to two different kinds of product. In
this section, we suppose to know the healthy brain matrix and the diseased one, and we compute
K. We exploit the trick of matrix inversion, and compute K according to classic algebra for a
simple 2 X 2 matrix (Subsection 2.2). Then, we compare the K @ with K*, obtained through the
element-wise product (Subsection 2.3), and finally, we compute eigenvalues and eigenvectors of
the two K's for a 4 x 4 brain matrix (Subsection 2.4), and we discuss the possible connections
between them. We compare instances of K (Figures 5 and 6). A possible symmetry between
the operators can emerge, as we can deduce from the study of eigenvalues and eigenvectors
belonging to the K -operator obtained with the two considered methods. Above all, eigenvalues
mark some analogies between the different operators.
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Figure 5: Two instances of K-operator visualized as heat-maps, computed rows-by-columns (a) and
element-wise (c), and the corresponding eigenvalues (b, d).

Our study is the first detailed and eigenvalue-based exploration of the possible analogies
between the K -operators acting or computed through two different techniques. For this reason,
we focused on eigenvalues, because they allow us to extract information concerning the matrices.
So, we collected our observations and we noticed some correspondences and regularities. Further
research will aim to develop a theory of a generalized K -operator, and, from the algebraic point



of view, theoretically justifying the correspondences we observed.
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Figure 6: Other instances of K-operator, rows-by-columns (a) and element-wise (c), and the corre-
sponding eigenvalues (b, d).

4. An example with real data

We can apply the reasoning to one of the patients considered in previous studies, commenting
on eigenvalues and eigenvectors of the K -operator derived for real data. We consider a female
patient, 56 years old at the baseline, affected by Parkinson’s disease [9]. K is derived from the
connectivity matrices at the baseline and follow-up, derived from the resting-state functional
magnetic resonance rsfMRI_RL, see Figure 7. There are different analysis and processing tools
for functional MRI brain imaging data, see for example [11, 12, 13]. For our purposes, fMRI
measurements are the starting point for the definition of instances of the K-operator. In
particular, we considered the fMRI collected at the baseline and at the first follow-up. We
downloaded the corresponding DICOM (Digital Imaging and Communications in Medicine)
folder from the PPMI dataset (Parkinson’s Progression Markers Initiative),” from which we
derived the NIfTI file (Neuroimaging Informatics Technology Initiative). Choosing a parcellation
of the brain (division into regions of interest), we finally extracted the time series for each
region. From the time series for a set of fMRI, we computed the connectivity matrix. Let us
now provide some further information on parcellation and connectivity matrices.

The parcellation is performed through the choice of an atlas. Among the possible brain
atlases, we chose the Automated Anatomical Labeling (AAL3), for the detail provided in limbic
and subcortical regions. A detailed analysis of the results that can be obtained with this method
in the case of Parkinson’s Disease and their medical meaning are discussed in detail in [9].
However, a detailed discussion of them is out of the scope of this article.

A connectivity matrix of the brain contains what can be seen as an estimation of the
strength of the connections between the specific chosen regions. For different choices of atlases,
we get different connectivity matrices. They are, in general, the object of study of several works,
where they are specifically analyzed and investigated in detail on their own [14]. However, we
are here studying a mathematical object derived from them, the K -operator. From a pair of

*https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
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connectivity matrices, considering them as the brain matrices characterizing the functional
network at two-time points, we compute the K -operator. Our specific example is derived from
[9]. We notice that the first eigenvalues are higher, also in the case of a larger matrix and
real data, as it can be seen from Figure 7. This confirms our observation for small matrices of
synthetic data, considered in the previous Sections. In addition, observing the two K matrices
(a, ¢) in Figure 7, it seems that the first was cut and partially mirrored, to yield the symmetry of
the second.

Eigenvalue

Eigenvalue

(c)
Figure 7: K computed from real data of a Parkinson’s disease female patient (atlas AAL3), with row-
by-column (a) and element-wise product (c), and the respective eigenvalues (b,d). In (a), the elements
above 12 are shown; in (c), above 0.8. (a) and (c) are taken from [9].

We can see some similarities, especially concerning the eigenvalues, aside from the computa-
tion technique adopted to find K. In particular, we notice the prevalence of the first eigenvalues
for both techniques. Nevertheless, the scarceness of data regarding a full trend of Parkinson’s
or Alzheimer-Perusini’s disruption [4], above all about the first stages of the disease, prevents
us from investigating the detail of the mathematical properties of the K-operator, which will
be the object of future studies.



5. Discussion and Conclusions

In our study, we proposed a method to investigate the K -operator and its properties from
a mathematical point of view, namely the computation of its eigenvalues and eigenvectors.
We applied this to the matrix representing the compromised brain G* and to the K -operators
obtained with two different computational techniques, i.e., the element-wise multiplication
and the row-by-column one. According to our results, we can find some analogies between
the general matrices obtained through the two methods, above all for what concerns their
eigenvalues. We applied such a technique to some real data as well, finding results similar to
the theoretical ones. This leads us to think about a possible link between the two computational
techniques, that could be further investigated through a perturbation-based approach, as we
mentioned in Section 2.4. Some limits that could be overcome in future studies are that the
matrices we used in our toy examples, Section 3.1, are simplified and fictitious. It would also be
interesting to study and compare more real-life data to understand better to which extent the
individual impact of a disease differs from its general consequences and to distinguish more
classes of K -operators representing different diseases. Moreover, considering the differences
between male and female brains’ disease development, we could aim for a better understanding
of the differences between their aging processes. Age is a risk factor for neurodegenerative
diseases; further research should also address other risk factors, genetic conditions, and other
kinds of data to analyze, such as EEG and MRI, in addition to the fMRI. Unfortunately, the
availability of data, especially concerning the brains of healthy volunteers, is limited.

We have several open questions: for instance, we aim to find a general theoretical property
underlying the K -operator obtained with different computational methods, that could justify
the analogies between the patterns of eigenvalues that we noticed. For now, we focused on
some mathematical details of the K -operator, obtaining a “photography” of K, that is, a specific
form of the operator for a patient, and between two-time points, that means between the fMRI
data collected in two different stages of the disease. The more data information we have, the
better we can approximate the action of K across time, that is, approximating its form as a
time-dependent operator. Then, we could also define its dynamics.

From the pioneering intuition leading to non-invasive neuroimaging to our progressive
steps with the formalization and exploration of the K-operator, our article may help pave
the way toward the new informative yet ethical investigation of the brain and its network-
related diseases. Hence, the final objective of this research is to establish a foundational
framework for the development of predictive models pertaining to the progression of
neurodegenerative diseases. The mathematical representation adopted could improve
the performance of predictive models by giving some prediction rules, for example,
depending on the stage of the disease, it could be applied to predict the timing and
severity of the disease. Neurodegenerative diseases are a class of disorders characterized
by the progressive degeneration of the nervous system’s structure and function. This
study aims to provide the basis for exploiting the potential inherent in integrating
innovative representations of brain impairment with sophisticated machine-learning
methodologies.



Code availability

The code can be accessed at https://github.com/sofiafazio/K_operator_Jupyter_eigenavalues
(DOI 10.5281/zenodo.14281405). For Section 4, see https://github.com/medusamedusa/K_
operator_parkinson (DOI 10.5281/zenodo.14162649), patient B, #100006, atlas AAL3.

Data availability

The real data we analyzed are derived from the Parkinson’s Progression Markers Initiative
(PPMI) dataset, with the following licenses and restrictions: “Investigators seeking access to
PPMI data must sign the Data Use Agreement, submit an Online Application and comply with
the study Publications Policy. Requests to access these datasets should be directed to PPMI,
https://ida.loni.usc.edu/collaboration/access/appLicense.jsp.”

Acknowledgments

This paper was developed within the project funded by Next Generation EU - “Age-It — Ageing
well in an ageing society” project (PE0000015), National Recovery and Resilience Plan (NRRP)
— PE8 - Mission 4, C2, Intervention 1.3. The views and opinions expressed are only those
of the authors and do not necessarily reflect those of the European Union or the European
Commission.

References

[1] S. Sandrone, M. Bacigaluppi, M. R. Galloni, S. F. Cappa, V. Moro, M. Catani, M. Filippi,
M. M. Monti, D. Perani, G. Martino, Weighing brain activity with the balance: Angelo
Mosso’s original manuscripts come to light, Brain 137 (2014) 621-633. doi:10.1093/
brain/awt091. arXiv:2013 May 17.

(2] J. Royer, B. C. Bernhardt, S. Lariviere, E. Gleichgerrcht, B. J. Vorderwiilbecke, S. Vulliémoz,
L. Bonilha, Epilepsy and brain network hubs, Epilepsia 63 (2022) 537-550. doi:10.1111/
epi.17171.

[3] W. W. Seeley, Mapping Neurodegenerative Disease Onset and Progression, Cold Spring
Harbor Perspectives in Biology 9 (2017) a023622. doi:10.1101/cshperspect.a023622.

[4] A. Fathian, Y. Jamali, M. R. Raoufy, the Alzheimer’s Disease Neuroimaging Initiative,
The trend of disruption in the functional brain network topology of Alzheimer’s disease,
Scientific Reports 12 (2022) 14998. do0i:10.1038/s41598-022-18987-.

[5] A.Pathak, D. Roy, A. Banerjee, Whole-brain network models: From physics to bedside,
Frontiers in Computational Neuroscience 16 (2022). URL: https://www.frontiersin.org/
journals/computational-neuroscience/articles/10.3389/fncom.2022.866517. doi:10.3389/
fncom.2022.866517.

[6] M. Mannone, P. Fazio, N. Marwan, Modeling a Neurological Disorder as the Result of
an Operator Acting on The Brain: A First Sketch Based on Network Channel Modeling,
Chaos 34 (2024) 053133. d0i:10.1063/5.0199988.


https://github.com/sofiafazio/K_operator_Jupyter_eigenavalues
https://github.com/medusamedusa/K_operator_parkinson
https://github.com/medusamedusa/K_operator_parkinson
https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
http://dx.doi.org/10.1093/brain/awt091
http://dx.doi.org/10.1093/brain/awt091
http://arxiv.org/abs/2013 May 17
http://dx.doi.org/10.1111/epi.17171
http://dx.doi.org/10.1111/epi.17171
http://dx.doi.org/10.1101/cshperspect.a023622
http://dx.doi.org/10.1038/s41598-022-18987-y
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.866517
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.866517
http://dx.doi.org/10.3389/fncom.2022.866517
http://dx.doi.org/10.3389/fncom.2022.866517
http://dx.doi.org/10.1063/5.0199988

(7]

(8]

(9]

M. Mannone, P. Fazio, N. Marwan, P. Ribino, K-operator as a predictor for Alzheimer-
Perusini’s disease, in: Proceedings of the HCist — International Conference on Health and
Social Care Information Systems and Technologies, 2024, 2024, in press.

I.-M. Adrian, K. Gabriel, S. Claudio, M. S. Diana, V. H. Francoise, D.-D. adn Sabine, S.-M.
Dominique, Machine Learning Approach for Classifying Multiple Sclerosis Courses by
Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features,
Front Neurosci. (2017). URL: https://pubmed.ncbi.nlm.nih.gov/28744195/.

M. Mannone, P. Fazio, P. Ribino, N. Marwan, J. Kurths, A Brain Network Operator for
Modeling Disease: A First Data-Based Application for Parkinson’s Disease, European
Physical Journal, Special Topics (2024). doi:10.1140/epjs/s11734-024-01345-6.

[10] J. Goodman, Scientific Computing, Fall 2022, http://www.math.nyu.edu/faculty/goodman/

[11]

teaching/SciComp2022/index.html, 2022. Accessed: 2024-08-08.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, S. M. Smith, FSL,
Neurolmage 62 (2012) 782-790. URL: https://www.sciencedirect.com/science/article/pii/
$1053811911010603. doi:10.1016/j .neuroimage.2011.09.015, 20 YEARS OF fMRL

[12] J.-D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens,

[13]

B. Jeurissen, C.-H. Yeh, A. Connelly, MRtrix3: A fast, flexible and open software framework
for medical image processing and visualisation, NeuroImage 202 (2019) 116137. URL:
https://www.sciencedirect.com/science/article/pii/S1053811919307281. doi:10.1016/7 .
neuroimage.2019.116137.

R. E. Smith, J.-D. Tournier, F. Calamante, A. Connelly, Anatomically-constrained tractogra-
phy: Improved diffusion MRI streamlines tractography through effective use of anatomical
information, Neurolmage 62 (2012) 1924-1938. URL: https://www.sciencedirect.com/
science/article/pii/S1053811912005824. doi:10.1016/j .neuroimage.2012.06.005.

G. Kocevar, C. Stamile, S. Hannoun, F. Cotton, S. Vukusic, F. Durand-Dubief, D. Sappey-
Marinier, Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple
Sclerosis Clinical Courses, Front Neurosci. (2016). URL: https://pubmed.ncbi.nlm.nih.gov/
27826224/. doi:10.3389/fnins.2016.00478.


https://pubmed.ncbi.nlm.nih.gov/28744195/
http://dx.doi.org/10.1140/epjs/s11734-024-01345-6
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html
https://www.sciencedirect.com/science/article/pii/S1053811911010603
https://www.sciencedirect.com/science/article/pii/S1053811911010603
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
https://www.sciencedirect.com/science/article/pii/S1053811919307281
http://dx.doi.org/10.1016/j.neuroimage.2019.116137
http://dx.doi.org/10.1016/j.neuroimage.2019.116137
https://www.sciencedirect.com/science/article/pii/S1053811912005824
https://www.sciencedirect.com/science/article/pii/S1053811912005824
http://dx.doi.org/10.1016/j.neuroimage.2012.06.005
https://pubmed.ncbi.nlm.nih.gov/27826224/
https://pubmed.ncbi.nlm.nih.gov/27826224/
http://dx.doi.org/10.3389/fnins.2016.00478

	1 Introduction
	2 Formalism and methods
	2.1 The K-operator
	2.2 Analysis of the K-operator with classic tools of matrix algebra
	2.3 Formal relationship between K computed through two different products in a simple case
	2.4 Eigenvalues and eigenvectors

	3 Toy examples of application
	3.1 Given G and K, find Gk: four lobes, four hubs
	3.2 Given G and K, find Gk: four lobes, one hub per lobe
	3.3 Given G and Gk, find K

	4 An example with real data
	5 Discussion and Conclusions

