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Abstract
In the last decades, the growing population of cancer survivors has shifted researchers’ focus from primary
toward tertiary prevention. Particularly, adolescents and young adults (AYAs) breast cancer (BC) survivors may
face long-term outcomes as a result of their treatments, among which cardiovascular diseases (CVDs) are the
most life-threatening ones. To plan effective follow-up guidelines for preventing and treating these events, it is
essential to disentangle the causal role of cancer treatments in these patients. In this work, we aim to extend
the current state of BC treatment guidelines by leveraging on the estimate of the risk of CVDs in AYAs who
underwent BC treatments, as provided by a causal Bayesian network. In these regards, we provide counterfactual
explanations of a causal query, using real-world data, algorithms and methods from the causal inference domain.
We show that while ovarian suppression combined with tamoxifen may be a necessary cause for ischemic heart
disease, it is not a sufficient one, i.e., this treatment alone is not enough to cause the disease, other factors must
also be present. These findings can contribute to support clinicians in the treatment choice and help in refining
treatment strategies and follow-up protocols for AYAs, advancing personalised healthcare in oncology.
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1. Introduction

Chronic diseases are by far the leading causes of mortality world-wide. In the last decades, the prevalence
of chronic diseases is rising due to changes in life-style and the population aging, especially in Italy. Most
of the times, these disorders present co-concurrence of multiple other chronic diseases (co-morbidities)
that require the involvement of several caregivers for proper patient care. However, hospital care,
ambulatory specialist care and primary care are subdivided into numerous entities, based mainly
on medical specialty. Hence, to provide to these patients the optimal and integrated care is a major
challenge for the health care system [1].

Every year in Italy about 400 thousands new cancer diagnosis are registered, with the highest
incidence in older adults. On the other hand, cancer survival is continuously improving thanks to
the innovations in patient care, thus making the proportion of cured patients growing. Oncologists
are in charge of cancer diagnosis and treatment. These tasks require a massive number of visits and
examinations especially during the first year since cancer identification. Once cancer treatment is
concluded, follow-up visits are scheduled to prevent cancer relapse, with the scheduling decreasing
with time and depending on the major cancer prognostic factors. Although oncologists have detailed
information about the treatments their patients received, they do not have the ability to monitor all
of their effects, especially in the long-term. Nevertheless, there is strong evidence in the scientific
literature on the wide variety of long-term effects that cancer therapies can cause, including diseases of
the cardiovascular or endocrine system, reproductive disorders, infections and so on [2]. Moreover,
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cancer is a complex disease treated with combined treatments: the mixed effect of different treatments
makes it even more difficult to predict the possible late outcomes.

General practitioners (GPs) are the only physicians able to monitor the patients throughout their
lifetime. However, they might not have complete access to hospital charts nor the knowledge needed in
all the medical specialties. Moreover, data about the effect of the most innovative cancer treatments
are scarce. Clearly identify who and how should be involved in patients follow-up is essential to help
oncologists and GPs to plan effective follow-up guidelines to prevent and treat long-term outcomes in
cancer survivors. This aspect is also important from a public health prospective and for policy-makers
interested in better organizing resources. Artificial intelligence (AI) and causal inference (CI) can help
in enriching the knowledge of the medical stakeholders building effective tools to be used to quantify
and causally explain the burden of late outcomes in cancer survivors.

Adolescents and young adults (AYAs, patients aged 15 to 39 at first cancer diagnosis) are an hetero-
geneous and peculiar group of cancer patients who deserve special attention. This age-group share
tumours’ case-mix both with the younger and older counterpart. Breast cancer (BC) is the most frequent
cancer in AYA females, as in older women. Nevertheless, there is a survival gap attributable to a more
aggressive biology of BC in AYA than in older patients.

Most patients with BC receive surgery as main treatment. The major surgical procedure can be
preceded or followed by other treatments both systemic (chemotherapy, target therapy or hormones
therapy) or local (radiotherapy). Treatment guidelines are the same both for AYAs and older women and
depend on several factors related to the cancer (e.g., extent of the disease) and the host (e.g., hormonal
status). Oncologists choose the best combination of treatments with two major objective: i) to maximise
the patient chance of survival and ii) to minimise the risk of cancer relapse.

Despite the large knowledge of late effects of cancer treatments in older women, little is known about
the magnitude of the impact of cancer treatments in younger patients, like AYAs. The accumulation of
stress induced by cancer and its treatment may contribute to accelerate aging in young cancer survivors,
inducing premature mortality, frailty and other age-related diseases, like cardiovascular diseases (CVDs)
[3].

The main contributions of this manuscript, made by leveraging on the first AI model [4] developed
for estimating the risk of CVDs in AYAs that survived after BC treatments, are the following:

• To enrich BC treatment guidelines with knowledge on CVDs risk in young women;
• To contribute to disentangling uncertainty in treatment choice using counterfactual explanations

on the most relevant late outcome in these patients;
• To help clinicians in tailoring personalised follow-up guidelines for high-risk patients.

The rest of the manuscript is organised as follows. Section 2 introduces the notation and gives the
main definitions to make the paper as much as possible self-contained. The main contributions on
the case study of adolescent and young adults breast cancer survivors are presented in Section 3. We
close the manuscript with the description of the experimental results (Section 3.4) and the discussion of
the achievements (Section 4), with some proposals on how to develop further along the same research
direction for answering more ambitious and complex counterfactual queries.

2. Methods

In this section we introduce the notation, together with the main concepts and the mathematical models
needed to follow the rest of the paper. In particular, we give the definitions of Bayesian network, causal
network and structural causal model, while also describing the three rungs of the ladder of causation
[5] which are fundamental to understand our contributions.

2.1. Bayesian Networks

Bayesian networks (BNs) [6, 7, 8] are a type of probabilistic graphical model (PGM) used for reasoning
under uncertainty. BNs are made of a qualitative component in the form of direct acyclic graph (DAG)



encoding the independence relations between the variables in the problem, while the quantitative
component is a set probability distributions measuring such relations. More formally, BNs can be
defined as follows.

Definition 1 (Bayesian Network (BN)). A Bayesian network is a pair ⟨𝒢,𝒫⟩, where:

• 𝒢 = ⟨V,E⟩ is a DAG, with V a set of vertices and E ⊂ V ×V a set of directed edges,
• 𝒫 is a probability distribution over the random vector X.

Each vertex 𝑉𝑖 ∈ V is mapped to a variable 𝑋𝑖 ∈ X, so that the global probability distribution 𝒫 is
factorised over 𝒢 into local probability terms 𝑃 (𝑋𝑖|𝑃𝑎(𝑋𝑖)), with 𝑃𝑎(𝑋𝑖) the parents1 of 𝑋𝑖.

For each variable 𝑉𝑖 ∈ V, we define the ancestors of 𝑉𝑖 to be the set of variables 𝑉𝑗 ∈ V ∖ {𝑉𝑖} such
that there exists a directed path2. Similarly, we define the descendants of 𝑉𝑖 to be the set of variables
𝑉𝑗 ∈ V ∖ {𝑉𝑖} such that there exists a directed path from 𝑉𝑖 to 𝑉𝑗 . Henceforth, we will refer to a vertex
𝑉𝑖 and its corresponding variable 𝑋𝑖 interchangeably.

Definition 2 (Causal Network (CN)). A Causal Network is a BN in which any edge from parents to
children represents a cause-effect relationship.

2.2. Observational and Interventional Rungs

Standard probabilistic inference involves computing the posterior probability distribution for variables
of interest given evidence about other variables, commonly referred to as observational queries (e.g.,
“what if I see this?”). For instance, given states 𝑥 and 𝑦 of random variables 𝑋 and 𝑌 , respectively,
an observational query might involve computing the conditional probability 𝑃 (𝑥|𝑦). Here, 𝑥 and 𝑦
represent the presence of 𝑋 and 𝑌 , while 𝑥′ and 𝑦′ denote their absence. In this context, the average
treatment effect (ATE) is defined as

ATE(𝑋,𝑌 ) = 𝑃 (𝑦|𝑥)− 𝑃 (𝑦|𝑥′). (1)

Conversely, causal reasoning focuses on hypothetical scenarios where we calculate the probability of
a variable given that we intervene on another. For example, the query 𝑃 (𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) represents
the probability that 𝑌 equals 𝑦 when 𝑋 is intervened to take the value 𝑥. The notation do(𝑋 = 𝑥)
explicitly denotes an intervention, distinguishing it from mere observation. The difference between
two such interventional queries, known as the causal effect difference or average causal effect (ACE), is
defined as

ACE(𝑋,𝑌 ) = 𝑃 (𝑌 = 𝑦 | do(𝑋 = 𝑥))− 𝑃 (𝑌 = 𝑦 | do(𝑋 = 𝑥′)). (2)

To calculate an interventional query, a process often referred to as "surgery" is employed. This
graphical operation involves removing the incoming arcs to the intervened variable 𝑋 and setting the
node to a specific value 𝑋 = 𝑥. The model that results from this surgical intervention is known as the
"post-intervention" model. This process is performed to restrict the natural tendency of the variable to
change in response to other variables in the environment.
Performing graph surgery is the initial step required to distinguish the associative effect from the purely
causal effect. However, a causal estimand cannot be directly estimated using a statistical estimator; it
must first be translated into a statistical estimand by removing the intervention. This process is known
as the identification of the causal effect.

If there exists a set of covariates Z that satisfies the back-door criterion [5] in the model, then there
exists a consistent estimator for the causal effect of 𝑋 on 𝑌 :

𝑃 (𝑌 = 𝑦 | do(𝑋 = 𝑥)) =
∑︁
z

𝑃 (𝑌 = 𝑦 | 𝑋 = 𝑥,Z = z)𝑃 (Z = z). (3)

1A vertex 𝑉𝑗 is said to be a parent of 𝑉𝑖 if there exists a directed edge from 𝑉𝑗 to 𝑉𝑖.
2A directed path from 𝑉𝑖 to 𝑉𝑗 is sequence of directed edges starting from 𝑉𝑖 and ending in 𝑉𝑗



Under the condition of exogeneity (also known as no-confounding) [9], the way 𝑌 would potentially
respond to experimental conditions 𝑥 or 𝑥′ is independent of the actual value of 𝑋 . This implies that
𝑃 (𝑌 = 𝑦|do(𝑋 = 𝑥)) = 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥) and 𝑃 (𝑌 = 𝑦|do(𝑋 = 𝑥′)) = 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥′), thus
making 𝐴𝐶𝐸(𝑋,𝑌 ) = 𝐴𝑇𝐸(𝑋,𝑌 ). A graphical criterion to identify the condition of exogeneity is
the absence of a common ancestor of 𝑋 and 𝑌 connected to 𝑌 through a directed path that does not
include 𝑋 .

2.3. Counterfactual Rung

Counterfactual queries [5] explore hypothetical scenarios, such as, "What would the outcome have
been if the variable had taken a different value?" For example, 𝑃 (𝑌𝑥|𝑋 = 𝑥′) represents the probability
of 𝑌 if 𝑋 had taken the value 𝑥 instead of 𝑥′. Here, 𝑌𝑥 relates to the hypothetical scenario, while 𝑋 is
in the real scenario.

A key concept in this context is the probability of necessity (PN), which measures the extent to which
one event is a necessary condition for another. The PN is defined as:

PN(𝑋,𝑌 ) = 𝑃 (𝑌𝑥′ = 𝑦′|𝑋 = 𝑥, 𝑌 = 𝑦). (4)

Here, 𝑋 is considered a necessary cause for 𝑌 if 𝑦 would not have occurred without 𝑥, given that both
𝑥 and 𝑦 actually occurred. Therefore, PN represents our certainty about 𝑋 being a necessary cause of
𝑌 .

Similarly, we may also be interested in determining whether an event is a sufficient condition. To
address this, we define the probability of sufficiency (PS) as:

PS(𝑋,𝑌 ) = 𝑃 (𝑌𝑥 = 𝑦|𝑋 = 𝑥′, 𝑌 = 𝑦′). (5)

𝑋 is considered a sufficient cause for 𝑌 if 𝑦 occurs whenever 𝑥 occurs. Thus, PS represents the
probability that 𝑋 is a sufficient cause of 𝑌 . In other words, it is the probability that setting 𝑥 would
lead to 𝑦 in a scenario where both 𝑥 and 𝑦 are currently absent.

Counterfactual queries cannot be directly computed from a CN. Instead, structural causal models
(SCMs) [5], which can be viewed as an extension of CNs, are required. SCMs consist of endogenous
variables, which represent internal elements of the model, and exogenous variables, which often lack a
clear semantic interpretation. SCMs can be formally defined as follows [10].

Definition 3 (Structural Causal Model (SCM)). A structural causal model is defined as a 4-tuple
⟨U,V,ℱ ,𝒫⟩, where:

• U is the set of exogenous variables;
• V is the set of endogenous variables;
• ℱ = {𝑓𝑖 : U𝑖 ∪ 𝑃𝑎(𝑉𝑖) → 𝑉𝑖, ∀𝑉𝑖 ∈ V} is the set of structural equations;
• 𝒫 is the set containing the exogenous probability distributions 𝑃 (𝑈𝑖) for each 𝑈𝑖 ∈ U.

Note that the structural equations ℱ actually define a DAG over the variables in U ∪V, with an
edge from each variable in U𝑖 ∪ 𝑃𝑎(𝑉𝑖) to 𝑉𝑖.

3. Answering a Challenging Causal Query

In this section we first formulate the causal query representing the subject of this paper, then we show
how such a query translates to the language of SCMs. Furthermore, we show how the obtained SCM
can be simplified to efficiently answer the causal query. The section closes by answering the causal
query.



3.1. The Causal Query

The starting point of this work is the causal network described in [4]. This causal network is the first
one developed for estimating the risk of cardiovascular diseases (CVDs) in adolescent and young adults
(AYAs) that have been treated and survived breast cancer (BC). It has been developed by combining
clinical knowledge with two different patients cohorts, namely a population cohort and a clinical cohort.

Figure 1: DAG of the CN model describing the interplay of observable factors that contribute to the risk of
CVDs in AYA with BC.

The causal network is depicted in Figure 1. The cancer prognostic factors (coloured in Yellow ) and
the major CVDs risk factors (coloured in Blue ) are non modifiable risk factors. To reduce and prevent
the risk of developing a CVD or its sub-forms (i.e., ischemic heart diseases or cardiotoxicity, coloured
in Orange ), clinicians can intervene on the treatments only (those coloured in Green ). Thus, in our
work we will interpret the risk of CVDs according to treatment recommendations included within the
treatment guidelines as queries.

Breast cancer treatment is regulated in Italy by Italian national guidelines, discussed every year by a
panel of experts. The aims of these guidelines are:

• To improve and standardise the clinical practice;



• To offer all patient throughout the country the possibility of best care;
• To ensure an evidence-based reference for national and regional institutions.

In this paper, the major clinical recommendations are presented in the form of clinical queries
accompanied by the quality of their supporting evidence together with the strength of the associated
recommendation. In particular, we are interested to answer the following causal query:

CAUSAL QUERY: In pre-menopausal women, with a surgically treated breast cancer, positive to
hormonal receptors, HER2 negative, low risk for recurrences, is it recommendable to add ovarian
suppression to tamoxifen treatment?

The clinical recommendation about this casual query is STRONG IN FAVOUR to the addition of
the ovarian suppression. This recommendation was voted by the panelists in light of the significant
improvement in both overall and progression-free survival. Among the side effects of this combination
of treatments the more relevant listed were: mood alterations, sexual dysfunction and osteoporosis.
Despite the toxicity profile highlighted, the benefit-to-damage ratio was considered in favour of the
addition of ovarian suppression to tamoxifen treatment.

Nevertheless, no evidence is provided about the potential role of this treatment combination to the
CVD risk. When it is unethical to conduct a randomised clinical trial, observational data and causal
inference are the only way to integrate the clinical recommendation with knowledge on CVD risk.
Hence, in this work we are answering to three queries, formulated according to the three rungs of the
ladder of causation proposed by Judea Pearl [5]:

In pre-menopausal women, with a surgically treated breast cancer, positive to hormonal receptors, HER2
negative, low risk for recurrences...

ASSOCIATION ...which is the observed risk of CVDs in those patients that received ovarian
suppression in combination with tamoxifen treatment?

INTERVENTION ...which is the risk of CVDs if we administer ovarian suppression
in combination with tamoxifen treatment?

COUNTERFACTUALS ...which would have been the risk of CVDs if we did not administered
ovarian suppression?

3.2. Translating the Causal Query into a Structural Causal Model

The causal network depicted in Figure 1 is used to translate the causal query of interest (CAUSAL
QUERY) into the corresponding structural causal model. This is achieved by first oberving that the
ovarian suppression is administered in young patients as neo-adjuvant (i.e., pre-surgical) treatment
to blocks the body’s ability to produce hormones, particularly estrogen, to preserve ovarian fertility
that could be compromised by the toxicity of cancer treatments (like chemotherapy). Nevertheless,
estrogens have a cardioprotective effect in young females. Thus, the loss of estrogen during menopause is
associated with increased risk of ischemic heart disease [11, 12]. Hence, the causal query investigates the
relationship: [hormons_neo]→[ischemic_heart_diseases] with the aim to determine whether
the former variable is a necessary, a sufficient or both a necessary and sufficient cause of the latter.

Before starting the experiments, we had to select the group of patients described in the causal query
(Section 3.1). All patients included in the dataset were surgically treated, thus, no restriction was done
in this regard. To select patients positive to hormonal receptors and HER2 negative only, we set the
variable [Receptors] to "Luminal" OR "Luminal A" OR "Luminal B". Moreover, to select patients
receiving tamoxifen, we set the variable [Hormons_adiu] to "Yes"; thus, tamoxifen is the elective
hormonal adjuvant (i.e., post-surgery) treatment, administered for a minimum of 5-10 years.



The model depicted in Figure 1 was developed using data coming from two different retrospective
cohorts of AYA BC patients: a population-based cohort [13], identified in population-based cancer
registries, and a single-institution clinical cohort. Population-based cancer registries have the unique
opportunity to collect information on all cancer cases diagnosed in a given area with poor clinical
details. The clinical cohort, on the opposite, has more detailed information on cancer prognostic
factors but suffers from selection bias. For this work, we decided to focus on the population-based data
(setting the node [Cohort] to "Population-based") because we wanted our results to be valid for all
AYAs with BC. By consequence, a group of patients was selected based on the values of the variables
[receptors],[hormons_adiu] and [cohort]. From a graphical perspective, in CNs this translates
to removing the outgoing edges from such variables, which brings us to obtain the DAG shown in
Figure 2.

Moreover, while in the original model (Figure 1), the variables [hypertension], [t2db] and
[dyslipidemia] (that represent hypertension, dyslipidemia and type 2 diabestes, respectively), were
coded as "pre" (if the diseases was diagnosed before BC diagnosis), "post" (if the diseases was diagnosed
after BC diagnosis) or "no"; in this work, they were binarised by grouping together "pre" and "post" into
the same label named ”yes”.
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Figure 2: DAG of the CN model after selecting the group of patients.



3.3. Simplifying the Structural Causal Model

Counterfactual reasoning with probabilistic graphical models typically requires significant compu-
tational power, making it challenging to manage large problems. To address this issue, we further
simplified the model depicted in Figure 2 and the dataset described in Section 1.

In causal and counterfactual queries, a variable is often referred to as either the causes or the effect.
In our case study, the node [hormons_neo]represents the cause, while the node [ischemic_heart_
disease] is the effect.

A barren variable (or node) [7] with respect to a causal query is a variable that does not influence the
probability distribution of any variables of interest for that causal query. Consequently, such variables
can be pruned from the model without affecting the outcome of the inference. In a CN, a variable is
considered barren if it is not included in the causal query and either has no descendants or only has
descendants that are themselves barren.

In our case study, barren variables are those that are not ancestors of the effect variable [ischemic_
heart_disease]. The result of pruning barren variables is shown in Figure 3 (left).
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Figure 3: DAGs of the CN model after pruning barren variables (left) and after removing the d-separated
variables (right).

However, the model depicted in Figure 3 (left) can be further simplified using d-separation3. Specifi-
cally, all ancestors of the cause variable [hormons_neo]are conditionally independent of [ischemic_
heart_disease] given [hormons_neo]. Consequently, these variables can be removed, resulting in
the simplified model shown in Figure 3 (right). For simplicity, variable names were abbreviated as fol-
lows: 𝐻𝑁 represents [hormons_neo], 𝐷 represents [ischemic_heart_disease], 𝐻𝑇 represents
[hypertension], 𝐷𝐵 represents [t2db] and 𝐷𝑃 represents [dyslipidemia].

The original dataset was also simplified, thus, only the rows related to the selected patients were
considered, all the columns for the irrelevant variables were removed, i.e., the variables except those
shown in Figure 3 (right).

According to the the queries of interest, we investigate the causal effects of the variable [hormons_
neo] on the outcome variable [ischemic_heart_disease]in the model shown in Figure 3 (left).

3For more details on d-separation, readers can refer to [7].
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Figure 4: DAG of the SCM of the use case (left) and twin model for calculating 𝑃𝑁(𝐻𝑁,𝐷) (center) and for
𝑃𝑆(𝐻𝑁,𝐷) (right). Endogenous variables are depicted in black while the exogenous in gray.

These two variables satisfy the exogeneity condition; hence, the 𝐴𝐶𝐸(𝐻𝑁,𝐷) was calculated as the
variation on the conditional probability 𝑃 (𝐷 = 𝑦𝑒𝑠|𝐻𝑁 = 𝑦𝑒𝑠) − 𝑃 (𝐷 = 𝑦𝑒𝑠|𝐻𝑁 = 𝑛𝑜) using
inference on junction trees [14].

In our use case, the endogenous variables were those remaining after the removal of barren and
d-separated variables. Then, an exogenous variable was added as a parent to each endogenous variable.
The resulting DAG is shown in Figure 4 (left). In contrast, exogenous variables are denoted by the letter
𝑈 followed by the name of the corresponding child variable.

Equations were automatically inferred from the causal graph, without any loss of generality, via a
canonical specification [15]. Each equation is then a deterministic function, in which the states of an
exogenous variable will then represent all possible function mappings between its children domains
from their respective endogenous parents domains. In practice, the equations can be represented as a
degenerated conditional probability table containing just ones and zeros.

In contrast, the distributions associated with the exogenous variables are initially unknown. To
address this, we propose utilizing the innovative technique known as EMCC (Expectation Maximization
for Causal Computation), as detailed in [16, 17]. This method treats an SCM as a BN with exogenous
variables considered latent. The core idea is to repeatedly apply a learning algorithm designed for BNs
with latent variables.

While other methods for computing counterfactual queries exist — such as solving structural equations
manually or using potential outcomes frameworks — we focus on the EMCC approach due to its efficiency
and scalability in handling complex models with latent variables. This method allows for automatic
estimation of exogenous distributions directly from data, which is particularly advantageous when
dealing with large-scale or high-dimensional problems.

After each run, the specification for the exogenous distributions are available and counterfactual
queries can be computed using an extended model known as the counterfactual model (or twin model).

The twin model is a SCM that includes endogenous variables from both the real and hypothetical
scenarios, achieved by duplicating the sub-graph composed of the endogenous nodes for the real
scenario and then applying the intervention. In our case study, 𝑃𝑁(𝐻𝑁,𝐷) was calculated as the
causal query 𝑃 (𝐷𝐻𝑁=𝑛𝑜 = 𝑛𝑜|𝐻𝑁 = 𝑦𝑒𝑠,𝐷 = 𝑦𝑒𝑠) in the model shown in the Figure 4 (center), for
which any inference algorithm can be used.

This can be interpreted as the probability that a patient would not have suffered the disease if they
had not received the hormonal treatment, given that they actually did receive the treatment and suffered
the disease.

Similarly for 𝑃𝑆(𝐻𝑁,𝐷) was calculated as the causal query 𝑃 (𝐷𝐻𝑁=𝑦𝑒𝑠 = 𝑦𝑒𝑠|𝐻𝑁 = 𝑛𝑜,𝐷 =
𝑛𝑜) in the model shown in the Figure 4 (right). Analogously, this can be viewed as the probability that
a patient would have suffered the disease if they had received the ovarian suppression treatment, given
that they actually did not receive the treatment and did not suffered the disease.

3.4. Answering the Causal Query

For the causal analysis, our objective was to calculate the average causal effect (ACE) of the variable
[hormons_neo]on [ischemic_heart_disease]. This can be directly computed as the average
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Figure 5: Values of the probability of necessity (left) and probability of sufficiency (right) of variable
[hormons_neo]for [ischemic_heart_disease].

treatment effect (ATE). We found that 𝑃 (𝐷 = 𝑦𝑒𝑠|𝐻𝑁 = 𝑦𝑒𝑠) = 1.45% and 𝑃 (𝐷 = 𝑦𝑒𝑠|𝐻𝑁 =
𝑛𝑜) = 0.22%. Consequently, we obtain 𝐴𝐶𝐸(𝐻𝑁,𝐷) = 1.23%, that means that the probability of
developing a CVD increase only about 1% if the patient receives ovarian suppression together with
tamoxifen treatment. This result indicate that this treatment does not significantly influence the outcome
of the disease.

In the context of counterfactual analysis4, we investigated the likelihood that the variable [hormons_
neo] is a necessary and sufficient cause for [ischemic_heart_disease]. To achieve this, we
conducted 100 runs of the previously described EMCC algorithm. For each run, we obtained a value for
the causal query 𝑃𝑁(𝐻𝑁,𝐷) and another one for 𝑃𝑆(𝐻𝑁,𝐷). The distribution of these values is
depicted in Figure 5. In the case of 𝑃𝑁 , all values exceeded 97.83%. Conversely, the values for 𝑃𝑆
remained below 1.97%.

These results suggest that, with a high probability, the ovarian suppression treatment is a necessary
cause but not a sufficient cause for the ischemic heart disease. That means that the latter factor is
essential for the disease to occur, i.e., the disease cannot happen without the presence of this hormonal
treatment. However, this treatment alone is not enough to cause the disease; other factors must also be
present.

4. Conclusions and Future work

In this work we showed how causal networks can be effectively used to disentangle uncertainty in
treatment choices, while helping clinicians in better tailoring personalised follow-up guidelines for
chronic patients, like cancer survivors. Moreover, the evidence derived from the experimental results
can integrate the actual state of the treatment guidelines, enriching them with knowledge on the CVD
risk of AYA BC patients. Starting from a clinical question on the recommendability of the ovarian
suppression addition to tamoxifen treatment, the counterfactual explanations made it evident that
while [hormons_neo]is necessary to induce [ischemic_heart_disease]it is not a sufficient cause.
Thus, while it is true that no patient not receiving ovarian suppression will develop a CVD, receiving
ovarian suppression is not sufficient to explain an increase in the risk of CVDs.

This work is an important use case which concretely shows how effective observational real-world
data can be to answer clinical questions. In these regards, the overlapping of association and intervention
results support the idea that, despite confounding is present, clinicians are able to deal with it in the
everyday clinical practice, even without ad hoc strict guidelines. This result makes even more important
and relevant the evidence driven by the third ladder of causation (counterfactuals) that mimics the

4Code available at: https://github.com/AlessioZanga/cardiovascular-counterfactuals.git

https://github.com/AlessioZanga/cardiovascular-counterfactuals.git


results of a randomised controlled trial, the gold standard in medicine. This approach, applied to
observational data, can be particularly important especially when evidence from trials is not available
nor ethic to be obtained [18].

However, despite its relevance this work has some limitations too. First of all, while 𝐴𝑇𝐸 and 𝐴𝐶𝐸
are calculated using a statistical estimand, the computation of 𝑃𝑁 and 𝑃𝑆 is more complex and requires
a SCM. As described in Section 3.3, in our proposed approach an exogenous variable was added as a
parent to each endogenous variable. Given the unknown distributions of the exogenous variable we
learn it by repeatedly applying a learning algorithm. This approach makes all the process extremely
computationally expensive which allows to handle only queries in which the effect node can have
maximum of three parents. Methodological work is needed to extend this approach to be able to answer
to more complex queries. Moreover, attention should be paid when interpreting the results of 𝐴𝐶𝐸,
𝑃𝑁 and 𝑃𝑆 with regards to the rarity of the events. Thus, CVDs are really rare in AYA surviving
BC [19], so even though 𝐴𝐶𝐸 and 𝑃𝑆 are very low they may be relevant for this specific population.
Furthermore, a discussion with clinicians (oncologists and cardio-oncologists) will be needed to validate
the clinical plausibility of the presented results.

Finally, as illustrated in the experimental results, the ovarian suppression is not a sufficient cause
of the ischemic events, under the assumption of causal sufficiency (all the causes needed to explain
the causal mechanisms are included in the model). Nevertheless, this assumption is difficult to be
valid especially considering the vast literature that describes the role of lifestyle factors (like smoking,
physical inactivity, obesity and poor diet) on the development of cardiovascular diseases both directly and
indirectly through type 2 diabetes, hypertension and dyslipidemia [20, 21, 22]. Planning interventions
on lifestyle modifiable factors would be more effective than treating their effects only, hence, the
addition of these variables to the model would be essential to better stratify the CVD risk and develop
more personalised follow-up strategies. To conclude, to achieve transportability of results, the model
needs external validation. The external validation is already ongoing in similar cohorts of AYA BC
survivors in 6 different areas of Italy (Veneto, Friuli-Venezia-Giulia, Tuscany, Apulia regions and two
Sicilian provinces) and in 4 European Countries (Estonia, Norway, Denmark and Belgium) thanks to
pilot studies nested in international Joint Actions, namely Innovative Partnership for Action Against
Cancer (iPAAC) and Prevent Non-Communicable Diseases and Cancer (Prevent NCD).
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