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Abstract
Sepsis is a life-threatening condition with complex and dynamic progression, often requiring timely and per-
sonalized treatment strategies. In this paper, we propose a multivariate longitudinal clustering, an advanced
data analysis technique, as a powerful approach to understanding the diverse trajectories of sepsis by grouping
patients based on multiple clinical variables measured over time. Dynamic Time Warping (DTW) is integrated
into the longitudinal clustering as a distance measure to identify subgroups of patients with similar temporal
patterns in multivariate data. By leveraging sepsis-related electronic health records (EHRs), which provide rich
time-series data on laboratory results along with patient demographics and underlying health conditions, the
proposed method reveals distinct sepsis phenotypes that reflect variations in disease progression. Our results
confirm the critical role of the Thrombin-Antigen complex and the International Normalized Ratio as predictors
of poor outcomes for septic patients. Despite challenges like missing data and interpretability, multivariate
longitudinal clustering in sepsis offers significant potential to enhance clinical decision-making and improve
patient outcomes.
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1. Introduction

Sepsis is a complex, life-threatening condition caused by the body’s overwhelming response to infection,
often leading to multi-organ failure or septic shock [1]. Sepsis can arise from several types of infection,
including bacterial, viral, fungal, or parasitic infections. Familiar sources of infection that lead to sepsis
include Pneumonia, Urinary Tract Infections (UTIs), Abdominal infections, Bloodstream infections
(bacteremia), and surgical site infections. In sepsis, the body’s immune system triggers an excessive
and harmful inflammatory response to fight infection. This can result in (i) Systemic Inflammatory
Response Syndrome (SIRS) [2], namely a widespread release of inflammatory molecules that cause
damage to blood vessels, leading to fluid leakage, edema, and reduced blood flow to vital organs, and
(ii) Coagulopathy [3] caused by the activation of the clotting system, leading to the formation of
small blood clots (microthrombi) in the microcirculation, which can further reduce blood flow and
contribute to organ dysfunction. This can eventually lead to disseminated intravascular coagulation
(DIC), characterized by excessive clotting and bleeding. Finally, Multiple organ dysfunction syndrome
[4], due to the reduced blood flow and tissue damage caused by inflammation and micro-clot formation,
can compromise the function of major organs, including heart, lungs, liver, kidneys, and brain.
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Electronic Health Records (EHRs) play a pivotal role in identifying, managing, and studying sepsis
in clinical practice. Sepsis prediction models integrated into EHRs can exploit real-time patient data,
and advanced machine learning (ML) techniques could enable early identification of patients at risk
of developing sepsis, often before clinical signs become evident. These models have the potential
to significantly improve sepsis outcomes by allowing for earlier interventions, such as antibiotic
administration and fluid resuscitation, reducing the risk of severe complications or death. In [5], the
authors developed a prediction model to evaluate the probability transition between three different
disease states, estimating the daily evolution of disease severity during sepsis. XGBoost and LightGBM
have been applied in [6] to predict early sepsis six hours in advance, while the authors in [7] used an
LSTM network for the early detection of septic shock, showing that the proposed method allows one to
detect patients up to 20 hours earlier.

Among the various ML techniques, unsupervised longitudinal clustering holds considerable potential
for application within the context of electronic health records. The development of an EHR’s longitudinal
clustering allows for the grouping of patients according to their health data collected over time.
Indeed, EHRs are longitudinal by nature: they capture patients’ medical history, diagnoses, treatments,
and outcomes over extended periods. Applying longitudinal clustering to these records involves
analyzing patterns or trajectories within the data to identify subgroups of patients who exhibit simi-
lar health trends or progression of conditions [8].

Besides several works that apply static k-means to investigate phenotypic subgroups, including [9, 10,
11], several traditional unsupervised clustering models have been applied to group patients affected by
sepsis, analyzing their data at specific time points. For instance, spectral clustering has been applied in
[12] to find four groups of patients and study the trajectories of physiological variables associated with
their risk-score clusters. Hierarchical clustering in [13] has been applied to identify clusters of patients
according to clinical and biological characteristics collected at patients’ admission. On the other hand,
to our knowledge, only a few works adopted unsupervised longitudinal machine learning approaches.
Among them, the authors in [14] and in [15] clustered groups of patients in heterogeneous medical
conditions, using longitudinal k-means [16], and tracking longitudinal biomarkers, to understand the
progression of Acute Kidney Injury and sepsis and their impact on mortality in patients with burns.

In this paper, we propose a multivariate longitudinal clustering for stratifying patients based on the
similarity of their time-series profiles over the course of sepsis. We adopt Dynamic Time Warping
(DTW) as a method for measuring the similarity between two time-series data points even if their
trajectories differ in timing. The goal is to group patients based on the similarity of their sepsis-related
trajectories rather than static measurements. For sepsis, DTW can align different patients’ clinical
variables, even if they deteriorate or recover at different rates. Patients in the same cluster are
expected to have similar sepsis progression patterns across multiple variables. In contrast, those in
different clusters might represent distinct clinical phenotypes of sepsis (e.g., fast vs. slow progres-
sion).

The rest of the paper is organized as follows. Section 2 introduces the materials and methods used in
this work. Results and discussions are presented in Section 3. Finally, conclusions are drawn in Section
4.

2. Materials and Methods

2.1. Dataset

The dataset we analyze in this study was collected at the Jichi Medical University Hospital in Shimotsuke,
Tochigi, Japan and was derived from data of patients admitted to the intensive care unit (ICU) of the
university hospital between April 2014 and September 2016 [17]. The dataset was described by the
data curators and released publicly in a 2018 study [17], following the FAIR (findability, accessibility,
interoperability, and reusability) principles [18].

The original dataset contains data from 205 patients and includes both static (single-visit or status)
features and longitudinal (multi-visit) variables. The static features indicate the sex of the patient, the
source of sepsis (one among pulmonary, abdominal, urinary tract, soft tissue, bloodstream, or other),



and one or more comorbidities that could be present in addition to sepsis (ischemic heart disease,
congestive heart failure, arrhythmia, chronic obstructive pulmonary disease, chronic kidney dis-
ease, and/or cardiovascular diseases). The dataset includes other static variables, such as APACHE II
(Acute Physiology and Chronic Health Evaluation) score, which is commonly used in the ICU to pre-
dict outcomes in critically ill patients, including those with sepsis. The dataset considers a variety
of physiological parameters (e.g., temperature, blood pressure, heart rate, oxygenation) along with
chronic health conditions to estimate the risk of mortality.

The SOFA (Sequential Organ Failure Assessment) score is also present and includes INR (International
Normalized Ratio) as a component to assess liver function, and coagulopathy is used to predict mortality
in septic patients. Higher INR values contribute to a higher SOFA score, indicating a greater likelihood
of death. Moreover, the dataset also incorporates the days spent by the patient in the ICU, if a patient
died during the 28 days after the septic episode, and the number of days from the septic episode to the
death (in case of death).

For the objective of this study, we do not consider both clinical variables strictly correlated to the
prognosis and severity of sepsis to avoid bias in the results and static variables that are not useful in a
longitudinal study. We only consider clinical variables that have a temporal dynamic and are monitored
during the ICU stay. Hence, for each patient, the following sets of predictors from the first seven days
after the start time of clinical concern were considered:

• The Thrombin-Antithrombin (TAT) complex is a biomarker that indicates the activation of the
coagulation system. The TAT complex is often measured in clinical settings to assess the level of
thrombin generation and overall coagulation activity;

• The International Normalized Ratio (INR) is a laboratory measurement used to assess the time it
takes for blood to clot. It is a standardized Prothrombin Time (PT) version, allowing consistent
results across different labs [19];

• The Fibrin Degradation Products (FDP) are fragments resulting from fibrin breakdown in blood
clots. They are a crucial marker of fibrinolysis, which dissolves blood clots;

• The Absolute Immature Platelet Count (AIPC) measures the number of immature platelets in
the bloodstream. Immature platelets are newly produced by the bone marrow and released into
circulation. They reflect the bone marrow’s platelet production rate and are often used as a
marker of thrombopoiesis (platelet formation);

• Protein C (also called Anticoagulant Protein C, APC) is a vital anticoagulant protein in the body,
playing a key role in regulating blood clotting and preventing excessive clot formation [20];

• Platelet Count (PlC) is a crucial component of a Complete Blood Count (CBC) that measures the
number of platelets in a given blood volume. Platelets are small cell fragments that play a key
role in blood clotting and wound repair by aggregating at the site of vascular injury and forming
a clot.

2.2. Multivariate Longitudinal Cluster Analysis

The values of clinical variables over time for each patient can be seen as trajectories in a multidimensional
space. We intend to cluster patients’ trajectories according to their similarity and use this information
to make predictions of medical interest. To this aim, we develop a k-means longitudinal clustering with
soft Dynamic Time Warping (DTW) to discover patterns of joint trajectory in multivariate time series.
Let us summarize the key ideas of the proposed method.

The first element of the algorithm is the well-known k-means. In a nutshell, a given dataset is
partitioned into k parts, whose centroids are computed. Then, each data point is assigned to its closest
cluster center, and the average of data points close to each centroid is considered a new set of centroids.
The procedure is iterated until the algorithm converges toward an optimal cluster-center assignment
[21, 22]. The second element of the algorithm is DTW, that is, an instance of shape-respecting distance.
While the Euclidean distance fails to detect a similarity of shape between two curves, this information
is caught by DTW. Considering as (discrete) curves the polylines joining the points of two time series,



respectively, the shift between them can occur over time. Considering time as the dependent variable,
DTW finds the optimal correspondence between the two considered time series [23]. Here, we adopt
soft-DTW, with a smoothed and differentiable cost function. In soft-DTW, all possible alignments, rather
than the optimal one (as for DTW), are considered [24]. The smoothing degree is user-adjusted via the
parameter 𝛾. Such a technique shows a better performance for clustering. Furthermore, thanks to the
differentiability of the soft-DTW cost function, this method can also be exploited for machine learning.

2.2.1. Cluster evaluation

The following clustering metrics have been considered to evaluate the performance of the longitudinal
clustering. The Silhouette coefficient (S) [25], which measures the quality of cluster placement for each
individual 𝑖, is computed as:

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
, (1)

where 𝑎(𝑖) is the tightness, that is, the average distance from subject 𝑖 to all other subjects in the same
cluster, and 𝑏(𝑖) is the degree of separation, that is, the shortest average distance from subject 𝑖 to any
other cluster. The overall clustering quality is obtained by calculating the average silhouette score
across all data points. The range of a silhouette coefficient is between −1 and 1.

The Calinski-Harabasz index (CHI) [26] assesses how well-defined and distinct the clusters are,
according to their intra-cluster and inter-cluster variability, and is computed as:

𝐶𝐻𝐼 =
𝐵𝐶𝑆𝑆/(𝑘 − 1)
𝑊𝐶𝑆𝑆/(𝑛 − 𝑘)

, (2)

where WCSS is the sum of squared distances from each point to its cluster mean,BCSS is the sum of
squared distances between each cluster mean and the overall mean, weighted by the number of data
points in each cluster, 𝑛 is the total number of data points, and 𝑘 is the number of clusters. High
CHI values indicate that the clusters are well-separated and compact. Low CHI values indicate that
the clusters are less distinct and may overlap. A lower value suggests poor clustering performance.

Finally, the Davies-Bouldin Index [27] is a metric based on the average similarity ratio of each cluster
with its most similar (i.e., closest) cluster, computed as follows:

𝐷𝐵𝐼 = 1
𝑘

𝑘
∑
𝑖=1

max
𝑗≠𝑖

𝑅𝑖𝑗, (3)

where 𝑅𝑖𝑗 is the ratio of the inter-cluster distance to the intra-cluster distance, and 𝑘 is the number of
clusters.

While in the classical approach S, CHI, and DBI are evaluated according to the distance between data
points, here, since we are working with longitudinal data, these indexes are evaluated with respect to
the distance between a longitudinal patient profile and a set of multiple profiles.

3. Clustering Results

The multivariate longitudinal clustering method has been applied to the cohort of individuals defined
in Section 2.1, to identify clinical sub-types in septic patients with different outcomes during ICU stays.
Several tests were run by varying the number of clusters and the number and combinations of features.
Table 1 reports the value of the Silhouette score, Caliski-Harabasz Index, and Davies-Bouldin Index
related to the best configurations obtained by varying 𝑘 and the feature combinations. As we can
see, the best result was obtained by stratifying into two clusters and considering two features, the
Thrombin-Antithrombin complex and the International Normalized Ratio.

Figure 1 illustrates the trajectories of the Thrombin-Antithrombin complex and International Nor-
malized Ratio over the seven-day ICU period, corresponding to the patient profiles categorized within
Cluster 0 and Cluster 1, found via the multivariate longitudinal cluster described in Section



Number of clusters = 2

# Features Features
Name

Silhouette
Score

Calinski-Harabasz
Index

Davies-Bouldin
Index

2 TAT - INR 0.85*** 199.98*** 0.57***
3 TAT - INR - FDP 0.52 53.04 1.3
4 TAT - INR - FDP - PlC 0.67 172.83 0.8
5 TAT - INR - PlC - AIPC - ProteinC 0.32 30.66 1.8
6 TAT - INR - PlC - FDP - AIPC - ProteinC 0.26 27.99 1.87

Number of clusters = 3

# Features Features
Name

Silhouette
Score

Calinski-Harabasz
Index

Davies-Bouldin
Index

2 INR-FDP 0.82 231.02 0.81
3 TAT - INR - FDP 0.55 104.75 1.0
4 TAT - INR - FDP - ProteinC 0.47 114.10 1.11
5 TAT - INR - PlC - AIPC - FDP 0.39 39.27 1.37
6 TAT - INR - PlC - FDP - AIPC - ProteinC 0.29 90.61 1.29

Number of clusters = 4

# Features Features
Name

Silhouette
Score

Calinski-Harabasz
Index

Davies-Bouldin
Index

2 TAT - INR 0.65 137.05 1.01
3 TAT - INR - FDP 0.55 64.78 1.67
4 TAT - INR - FDP - ProteinC 0.43 60.72 1.45
5 INR - PlC - AIPC - FDP- ProteinC 0.31 15.65 2.72
6 TAT - INR - PlC - FDP - AIPC - ProteinC 0.27 17.29 2.09

Table 1
Clustering results for 𝑘 = 2, 3, 4. Silhouette score interval: [−1; +1], higher the better. Calinski-Harabasz index
interval: [0; +∞), the higher the better. Davies-Bouldin index interval: [0; +∞), the lower the better. *** best
result for each index.

2.2. The observed trend indicates that ICU patients categorized within Cluster 0 exhibit, on average,
elevated levels of Thrombin-Antithrombin Complex and International Normalized Ratio upon admission
compared to individuals in Cluster 1. The INR values remained elevated for several days during
the patient’s stay in the intensive care unit. Then, these values deteriorated to a state deemed irre-
versible.

Conversely, ICU patients in Cluster 1 exhibit a more stable trajectory characterized, on average, by
lower values than individuals in Cluster 0.

The characteristics of the cluster, including its size, average age, clinical variables, and the two
primary patient outcomes of most relevant significance, are presented in Table 2. In such a table, a
parameter called 28-day death is also reported. It refers to the occurrence of death within 28 days of a
specific event or condition, that is, sepsis in our case study. The distinctions among the clusters are
further elucidated through the application of statistical methods, which assess their levels of statistical
significance. To examine continuous data in relation to the normality of distributions, either analysis of
variance (ANOVA) or the Kruskal-Wallis test was utilized. The chi-square test was exploited to assess
the differences in the frequencies of categorical data. The significance level was set at 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01.

As we can see, there is no statistical difference in age and gender between Cluster 0 and Cluster 1.
There are statistically more individuals with sepsis caused by pulmonary infections than other sources
of sepsis in Cluster 0. The significant differences between patients in Cluster 0 and patients in Cluster 1
are related to the severity of their conditions. Patients in Cluster 0 show the worst APACHE II score and
SOFA score with respect to patients in Cluster 1 (𝑝𝑣𝑎𝑙𝑢𝑒 = 4.6𝐸 − 05 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 1.9𝐸 − 03). The most
noteworthy finding was that no individuals classified within Cluster 0 survived beyond 28 days. The
28-day death measure indicates that patients in Cluster 1 have a better chance of survival than patients
in Cluster 0 (𝑝𝑣𝑎𝑙𝑢𝑒 = 1.3𝐸 − 18). The duration between the patient’s admission to the intensive care
unit and the event’s occurrence was remarkably short for patients in Cluster 0: five days on average. On



Figure 1: Joint progression of Thrombin-Antithrombin Complex and International Normalized Ratio for patients
in Cluster 0 and Cluster 1

the contrary, the event for patients in Cluster 1 occurred on average after 20 days of ICU admission.

3.1. Discussions of the clustering results

This study focused on leveraging temporal clinical markers for stratifying septic patients according to
their health status progression. By analyzing the longitudinal clinical variable measurements using
an unsupervised clustering approach, which was opportunely developed for studying the temporal
dynamics of patient health-status changes, we identified two groups of septic patients, where TAT and
INR were identified as the two clinical variables most correlated to the different prognoses of ICU
patients into different clusters.

Our results confirm that the Thrombin-Antithrombin Complex [20] and the International Normalized
Ratio [19] are two biomarkers crucial in assessing and predicting sepsis progression. These markers
help monitor coagulation and liver function, which are commonly affected in sepsis. Indeed, the
Thrombin-Antithrombin Complex is a biomarker that indicates activation of coagulation. Thrombin is
a key enzyme in blood clotting, while Antithrombin inhibits thrombin to prevent excessive clotting.
When thrombin is activated during coagulation, it binds to antithrombin, forming the TAT complex.
Elevated TAT levels in sepsis indicate hypercoagulation and may suggest the onset of Disseminated
Intravascular Coagulation (DIC) [28], a serious complication of sepsis in which widespread clotting and
bleeding occur simultaneously. As the medical literature reveals, high TAT levels are often correlated
with poor outcomes in septic patients, including a higher risk of organ dysfunction and mortality.
Moreover, TAT elevation is associated with increased thrombotic complications and coagulopathy,
which are risk factors for multi-organ failure.

On the contrary, INR measures blood coagulation calculated from the prothrombin time (PT), which
measures how long it takes to clot [19]. It is often used to assess the coagulation pathway and monitor
patients on anticoagulant therapy. Sepsis affects coagulation by promoting excessive clot formation
and reducing the blood’s ability to clot when needed. This leads to an imbalance between procoagulant
and anticoagulant factors. Elevated INR indicates impaired coagulation and suggests a deficiency in
clotting factors. Higher INR values are associated with increased bleeding risk and are often a sign of
liver dysfunction in septic patients. Elevated INR is a predictor of worse outcomes in sepsis, especially
when it is accompanied by organ failure or the development of DIC. In sepsis, INR elevation may signal



Variables Cluster 0 Cluster 1 p-value
(𝑁 = 9) (𝑁 = 195)

Age (years) 3.1E-01†
mean ± SD 64.9 ± 12.9 68.5 ± 14.6
[min, max] [34, 81] [19,101]

Gender 1.6E-01‡
Male (%) 3 (33.3%) 114 (58.5%)
Female (%) 6 (66.7%) 81 (41.5%)

APACHE II score 4.6E-05†
mean ± SD 39.3 ± 8.8 24.6 ± 7.5
[min, max] [30, 53] [7, 42]

SOFA score 1.9E-03∗

mean ± SD 11.7 ± 3.9 8 ± 3.3
[min, max] [4, 17] [2, 19]

ICU days 3.9E-04†
mean ± SD 4.6 ± 4.8 10.9 ± 7.7
[min, max] [2, 17] [2, 58]

28-day death 1.3E-18‡
survived (%) 0 (0%) 182 (93.3%)
death (%) 9 (100%) 13 (6.7%)

Time to event 8.6E-04†
mean ± SD 5.3 ± 6.5 19.9 ± 5.1
[min, max] [2, 22] [11, 27]

Source of sepsis 4.6E-60‡
Pulmonary (%) 6 (66.7%) 44 (22.6%)
Abdominal (%) 2 (22.2%) 99 (50.8%)
Urinary tract (%) 0 (0%) 11 (5.6%)
Soft tissue (%) 0 (0%) 26 (13.3%)
Blood stream (%) 0 (0%) 2 (1%)
other (%) 1 (11.1%) 13 (6.7%)

Table 2
Demographics and clinical characteristics of ICU patients at the admission. ∗ One-way ANOVA, † Kruskal‐Wallis
test, ‡chi-square test

progression toward severe sepsis or septic shock, where coagulopathies and multi-organ failure are
common.

Since TAT and INR are critical markers of sepsis coagulation dysfunction, their combined assessment
can provide valuable insight into a patient’s risk of progressing to more severe stages of sepsis, such as
severe sepsis, septic shock, or multi-organ failure. As confirmed by our findings, a high TAT (indicating
a pro-thrombotic state) and elevated INR (indicating impaired clotting) that has been present for days
can indicate that a septic patient is at a critical point in disease progression and needs further urgent
medical treatment.

4. Conclusions

The study proposed in this paper leverages the potentiality of longitudinal clustering to discover different
profiles of septic patients, by including the temporal aspect of clinical variables delineating patients’
health conditions. The main finding of this study is the distinction of patients with poorer prognoses
within a brief timeframe of only a few days, by identifying the Thrombin–Antithrombin complex
and International Normalized Ratio as the most critical clinical variables mainly correlated with
adverse outcomes. This stratification has the potential to facilitate the development of tailored
therapeutic strategies, such as implementing more aggressive care protocols designed explicitly
for high-risk cohorts of septic patients.



Moreover, considering the high-dimensional characteristics of Electronic Health Records (EHR), par-
ticularly in the context of sepsis, which encompasses a diverse array of vital signs (such as heart
rate, blood pressure, body temperature, and oxygen saturation), laboratory results (including white
blood cell count, C-protein levels, platelet count, and Thrombin-Antithrombin complex, among oth-
ers), as well as patient demographics (including age, sex, and underlying health conditions), the ap-
plication of multivariate longitudinal clustering proves advantageous in discerning patient sub-
groups that may exhibit distinct patterns of sepsis progression. Hence, multivariate longitudinal clus-
tering in the EHR of septic patients offers a powerful tool for better understanding patient health tra-
jectories, supporting decision-making, and contributing to advances in personalized medicine.

However, the major limitation of this study is that the analytical framework relied exclusively on data
derived from a single dataset. An analysis encompassing a larger dataset, and more datasets, may en-
hance the validity of the generalizations derived from our findings. In addition, the reported results
have to be supported by clinicians to assess their clinical validity. For future work, we plan to de-
velop different kinds of longitudinal clustering based on probabilistic approaches and fuzzy clus-
tering. This could be more helpful when the boundaries between clusters are not well-defined, as
may occur in medical settings. .

List of abbreviations AIPC: absolute immature platelet counts. APACHE II: Acute Physiology
and Chronic Health Evaluation II. CHI: Calinski-Harabasz index. CHF: congestive heart failure.
CKD: chronic kidney disease. COPD: chronic obstructive pulmonary disease. CVD: cardiovascu-
lar disease. DBI: Davies-Bouldin index. DIC: disseminated intravascular coagulation. DTW: Dynamic
Time Warping. EHR: electronic health record. FDP: fibrin degradation product. ICU: intensive care
unit. IHD: ischemic heart disease. INR: international normalized ratio. LSTM: Long short-term memory.
ML: machine learning. S: Silhouette. SIRS: Systemic Inflammatory Response Syndrome. SOFA: sequen-
tial organ failure assessment. TAT: Thrombin–Antithrombin complex. UTIs: Urinary tract infections;
infections; DIC: Disseminated Intravascular Coagulation. .
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