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Abstract
Stress is a prevalent and growing phenomenon in the modern world that could lead to significant physical
issues, both physical and mental health. Analyzing physiological signals collected from wearable sensors
using artificial intelligence methods has emerged as a promising approach to predicting and managing stress.
However, conventional models for time series analysis are RNN architectures and encounter challenges like high
computational costs and issues with vanishing or exploding gradients. Inspired by the success of deep learning
methods in computer vision, several studies have proposed transforming time series into images by applying
encoding time series algorithms.

This work intends to compare three time-series encoding methods: Gramian Angular Field (GAF), both
summation and difference, Markovian Transition Field (MTF) and Recurrent Plot (RP) in the stress detection
scenario. We employ two architectures, VGG-16 and ResNet, based on Convolutional Neural Network (CNN), to
evaluate the performance of these methods on a public dataset, WESAD. Our results demonstrate that the GAF
encoding method proves to be the most effective for classifying physiological signals related to stress.
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1. Introduction

Stress, a nonspecific body response to any demand, can affect physiological health and psychological
well-being. Although stress is physiological at a moderate level, chronic stress increases the risk
of developing health problems such as insomnia, obesity, heart disease, and cancer [1]. Its effects
significantly influence overall behaviour and well-being, potentially impacting personal and professional
success. Chronic stress is an increasingly common phenomenon in the modern world. According to
the British Health and Safety Executive, work-related stress, depression, or anxiety accounted for
49% of all work-related ill health and 54% of all working days lost due to work-related ill health
(19.6 days lost per case) in 2022/23 [2]. The development of robust methods for prompt and accurate
detection of human stress plays a significant role in people’s quality of life and wellness: managing
stress before it becomes a more severe problem is crucial. The most common way exploits psychological
assessment questionnaires, like the Perceived Stress Scale [3], able to detect human stress at a specific
moment. Therefore, we need reliable, automatic and non-invasive methods to detect stress. Due to
the nature of stress, i.e., a physiological response to stimuli triggered by the sympathetic nervous
system (SNS), we can exploit physiological signals to monitor the stress responses, as proved by Plarre
et al. [4] and Hovsepian et al. [5]. Such an analysis is an emergent and promising approach based
on artificial intelligence methods to predict and manage stress. It is favoured by increasing wearable
device usage, such as smartphones and smartwatches that permit tracking steps and monitoring other
physical activities of their users non-invasively. However, deep learning models for time series analysis,
such as RNN architectures, face challenges like high computational costs and issues with vanishing
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or exploding gradients. Inspired by the success of deep learning methods in computer vision, several
studies have proposed transforming time series into images using time series encoding algorithms, such
as Gramian Angular Field, Markovian Transition Field and Recurrent Plot. In the scenario of stress
detection, Quadrini et al. introduced STREDWES, an approach for Stress Detection that exploits time
series encoding methods and convolutional neural network [6, 7]. The time series encoding method in
STREDWES is Gramian Angular Field, able to formalizes the temporal correlations among time points
of different signals where a measurement is taken.

In this work, we intend to compare three-time series encoding methods: Gramian Angular Field (GAF),
both summation and difference, Markovian Transition Field (MTF) and Recurrent Plot (RP) in the stress
detection scenario. These methods encodes time series into images avoiding the some issues related to
the time series analysis. The most common models for time series data exploit recurrent neural network
(RNN) architecture that requires a high computational cost and shows some problems, such as vanishing
and exploding gradients. The time-series data properties are defined as 2-dimensional images with
colors, dots, and lines at the corresponding positions in the image in which they are transformed and
differ from each other. To evaluate the effectiveness of these encoding methods, we exploit architectures
based on CNN, such as VGG-16 architecture and ResNet. We conduct such an evaluation on a public
dataset, Wearable Stress and Affect Detection (WESAD) [19]. WESAD is a publicly available dataset
containing data recorded from a wrist-(Empatica E4) and a chest-worn (RespiBAN) device. Our results
demonstrate that the GAF encoding method proves to be the most effective for classifying physiological
signals related to stress. By analyzing the computational results, we observe that the GAF encoding
method surpasses the other techniques in effectively classifying physiological signals. This superior
performance highlights the potential of GAF as a particularly well-suited method for applications in
stress detection.

The remainder of this paper is organized as follows. Sect. 2 describes the time series encoding
methods, i..e, including Gramian Angular Field, Markovian Transition Field and Recurrent Plot, the
neural network used as computation models (CNN and feed-forward neural network), and the metrics
used to evaluate the approach. In Sect. 2.1, we describe WESAD, the public dataset in this study.
Followed by 3 where we analyzed the obtained results with the introduced approach. The paper ends
with some conclusions and future perspectives, Sect. 4.

2. Materials and Methods

In this work, we propose a comparison among time series encoding algorithms by exploiting a pre-
trained VGG-16 and ResNet-18, two architecture based on CNN, with a custom fully connected block to
detect stress as an image classification task.

2.1. Dataset

WESAD is an open-access multimodal dataset which features lab-sourced data with 15 participants [8].
It uses wearable sensors that record the following physiological signs: blood volume pulse (BVP), ECG,
electrodermal activity (EDA), electromyogram (EMG), respiration (RESP), body temperature (TEMP),
and three-axis acceleration (ACC). The physiological and motion data is of high quality, sampled at
700 Hz, collected through a chest-mounted (RespiBan) device (ECG, EDA, EMG, RESP, and TEMP),
and the ACC signals are sampled at 35 Hz through a wrist-worn device (Empatica E4). The dataset
consists of 14 time series, each about two hours long, covering the entire experiment duration. These
time series depict three major stimuli: amusement, baseline and stress, collected according to the two
versions of protocol shown in Figure 1. According to our aims, in this work, we consider the fragments
representing baseline and stress.

Resampling The dataset contains data sampled at 700 Hz and 35 Hz. First, we standardize the
sampling step of all signals. The signals sampled at 35 Hz are resampled at 700 Hz by up-sampling the



Figure 1: The two versions of the WESAD protocol.

data using linear interpolation. After a resampling, we apply a Butterworth filter [9] to remove any
potential high-frequency noise introduced during the interpolation process. We also apply an Hampel
filter to eliminate some anomalous peaks that the signals exhibit [10]. This filter uses sliding windows
of 1 minute as input, computes the mean 𝜇 and standard deviation 𝜎 of the values within the interval,
and analyzes them using Pearson’s rule. Observations that exceed the threshold of 3𝜎 from the mean
are considered outliers and replaced with the closest chronological value. This method allows us to
replace outliers without introducing high frequencies. After outliers removal, we normalize all signals
in the interval [−1; 1] to ensure a consistent scale across all features.

2.2. Sample Construction

2.2.1. Time Series Encoding Methods

Time series encoding methods are techniques that convert the time series into image. Several approaches
have been introduced in the literature, including GAF, MTF and RP.

Gramian Angular Field (GAF) The GAF method leverages the polar coordinate system to cap-
ture the angular relationships between time series values, providing a unique and informative visual
representation of the data. The first step is to make the time series data normalized so that every
value falls between −1 and 1. Formally, let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the considered time series with 𝑛
components. First, the time serie is rescaled by applying the mean normalization:

�̃�𝑗 =
(𝑥𝑖 −max(𝑋)) + ((𝑥𝑖 −min(𝑋))

max(𝑋)−min(𝑋)
. (1)

Then, the scaled series �̃� = {�̃�1, �̃�2, . . . , �̃�𝑛} is transformed to a polar coordinates as follows{︃
𝜃𝑖 = arccos(�̃�𝑖), �̃�𝑖 ∈ �̃�

𝑟𝑖 =
𝑡𝑖
𝑛 , with 𝑖 ∈ {1, . . . , 𝑁}

(2)

where 𝑡𝑖 is the time stamp and 𝑛 is the number of samples used to regularize the span of the polar
coordinate system.

Finally, we compute the GAFs and GAFd by considering the sum and difference, respectively, between
the points of the time series

GAFs =

⎡⎣cos(𝜃1 + 𝜃1) . . . cos(𝜃1 + 𝜃𝑛)
...

. . .
...

cos(𝜃𝑛 + 𝜃1) . . . cos(𝜃𝑛 + 𝜃𝑛)

⎤⎦ , (3)

GAFd =

⎡⎣sin(𝜃1 − 𝜃1) . . . sin(𝜃1 − 𝜃𝑛)
...

. . .
...

sin(𝜃𝑛 − 𝜃1) . . . sin(𝜃𝑛 − 𝜃𝑛)

⎤⎦ , (4)

Figure 2 shows the GAF-d and GAF-s images of a multivariate time series.



Figure 2: An example of GAF-d and GAF-s images of a multivariate time series.

Markov Transition Field (MTF) The MTF is based on the probabilistic transition between states in
a time series, the dynamic behavior and patterns are captured to be transformed into spatial representa-
tions to fit an image-based analysis. The first step in the MTF method is quantizing the time series data,
by dividing the range of the data into a finite number of discrete states (bins).

Given a time series 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁}, it is first discretized into 𝑄 quantile units: each value of
the time series is assigned a quantile 𝑞𝑗 , where 𝑗 ∈ [1, 𝑄], and each 𝑥𝑖 is mapped to its corresponding.
Subsequently, each quantile is mapped into an adjacent weighted matrix 𝑊 of size 𝑄×𝑄

W =

⎡⎢⎣𝑤1,1 𝑤1,2 . . . 𝑤1,𝑄
...

. . .
...

𝑤𝑄,1 𝑤𝑛,2 . . . 𝑤𝑛,𝑄

⎤⎥⎦ (5)

where 𝑤𝑖,𝑗 = 𝑃 (𝑥𝑡 ∈ 𝑞𝑖|𝑥𝑡−1 ∈ 𝑞𝑗) is the frequency of quantile 𝑞𝑖 converting to quantile 𝑞𝑗 such
that

∑︀
𝑗 𝑤𝑖,𝑗 = 1. Since the Markov transfer matrix disregards the dependency between position and

time step, matrix 𝑊 is augmented with matrix 𝑀 to incorporate temporal correlations between each
quantile and the time step. Formally,

W =

⎡⎢⎣𝑚1,1 𝑚1,2 . . . 𝑚1,𝑁
...

. . .
...

𝑚𝑁,1 𝑚𝑁,2 . . . 𝑚𝑁,𝑁

⎤⎥⎦ (6)

where 𝑚𝑖,𝑗 = 𝑃 (𝑞𝑖 → 𝑞𝑗) is the transfer probability to move from the quantile 𝑞𝑖 to 𝑞𝑗 . The MTF
image encoding method has the following advantages: (a) according to the relationship between quantile
and time step, the temporal correlation of the original signal in different time intervals is retained. (b)
The loss of one-dimensional signal information is avoided through the mapping relationship between
signals. (c) The magnitude of transfer probability between quantiles is reflected by different colors,
which is conducive to making full use of the advantages of CNN in image classification.

Recurrence Plot A recurrence plot (PR) is a framework that encodes a time series into an image
as proposed in [11]. The approach formalizes the pairwise Euclidean distances for each value to
reveal at which points some trajectories return to a previously visited state. Given a time series
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the recurrence states of a point 𝑥𝑖 are states 𝑥𝑗 that fall into 𝑛-dimensional



Figure 3: VGG-16 Architecture

neighborhood of 𝑥𝑖 with a given radius 𝜖. The Recurrence Plot is defined as

R =

⎡⎢⎣𝑟1,1 𝑟1,2 . . . 𝑟1,𝑁
...

. . .
...

𝑟𝑁,1 𝑟𝑁,2 . . . 𝑟𝑁,𝑁

⎤⎥⎦ (7)

where

𝑟𝑖,𝑗 =

{︃
1 if ‖𝑥𝑖 − 𝑥𝑗‖ < 𝜖

0 otherwise

and ‖·‖ is a norm and 𝜖 is the threshold.

2.3. Architectures

We have compared three time-series encoding methods of two different architectures, VGG-16 and
ResNet, in the scenario of stress detection. It aims to understand which time series encoding method
is most effective in detecting affect states. GAF-s, GAF-d, MTF and RP are two-dimensional matrices.
Therefore, we can treat them as images and face the problem of stress detection as image classification by
exploiting deep learning techniques, like convolutional neural networks (CNN), a kind of network that
plays a fundamental role in various computer vision tasks. CNNs, able to analyze spatial information
without requiring hand-crafted feature extraction, consist of multiple building blocks, such as an input
layer, convolution layers, pooling layers, and fully connected layers. In the past decade, several CNN
architectures have been introduced in the literature to improve performance across diverse applications,
including the Visual Geometry Group 16 (VGG-16) [12] and layer residual nets (ResNets) [13].

VGG-16 VGG is an architecture based on the idea of reducing filter sizes and increasing the network
depth. VGG-16 consist of 16 trainable layers connected in a feed-forward fashion, of which 13 layers are
convolutional. The network has a small receptive field of 3× 3. It has a Max pooling layer of size 2× 2
and has a total of 5 such layers. These layers are organized into blocks, with each block containing
multiple convolutional layers followed by a max-pooling layer for downsampling. Figure 3 shows a
schema of the architecture.

ResNet-18 ResNet is a residual learning method to train deeper networks that are practically difficult
to train [13]. The residual network layers, reformulated to learn residual functions relative to the layer
inputs, solve the problem of accuracy degradation in deeper networks. In residual networks, the ResNet
layers are stacked to learn a residual mapping, different from plain networks that stack together several
layers to learn the mapping directly. The mapping function, denoted by H(x), features a few stacked
layers. Residual learning exploits the idea that if several nonlinear layers can asymptotically estimate a
complicated mapping function, then they can asymptotically estimate the residual function denoted



Figure 4: ResNet-18 Architecture

as F(x) that can be expressed as 𝐹 (𝑥) = 𝐻(𝑥)− 𝑥, where 𝐻(𝑥) is the original function. This method
assumes that the residual mapping function is easier to optimize than the original function. Figure 4
shows the ResNet-18 architecture. It consists of eighteen layers in the network, among which 17 are
convolutional layers. Such convolutional layers use 3× 3 filters, and the network is designed so that
layers producing output feature maps of the same size have the same number of filters. However, when
the output feature map size is halved, the number of filters is doubled in the layers. Convolutional
layers with a stride of 2 perform the downsampling. Throughout the network, residual link connections
are inserted between the layers. There are two types of connections, denoted by solid lines or dotted
lines in Figure 4. The former is used when input and output have the same dimensions, while the latter
is used when dimensions increase.

The two architectures, VGG-16 and ResNet-18, show a final fully connected block. In our models, we
define such a block with only one layer with dropout.

2.4. Evaluation Metrics

Stess detection can be formulated as a binary classification problem where each image can represent
stress or non-stress. We evaluate the performance of our approach and compare it with one of some
other methods in the literature using six evaluation metrics: Accuracy (𝐴𝑐𝑐), Precision (𝑃 ), Recall
(𝑅), F-measure (𝐹1), the area under the receiver operator characteristic curve (𝐴𝑈𝐶 − 𝑅𝑂𝐶), Avg.
precision score (PR)

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 · 𝑃 ·𝑅
𝑃 +𝑅

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

where 𝑇𝑃 represents the number of samples representing stress identified correctly (true positive),
𝐹𝑁 denotes the number of images of stress identified incorrectly (false negative), 𝐹𝑃 represents the
number of stress identified incorrectly (false positive), 𝑇𝑁 denotes the number of stress identified
correctly (true negative).



Table 1
Description of the employed hyperparameters with the relative used values.

Hyperparameter Description Value

batch size batch dimension 32
image size the dimension of images 224x224
learning rate learning rate of the optimization algorithm 0.0012
optimizer optimization algorithms Adam
time step the step of the sliding window 1 second
window size the dimension of the sliding window 60 seconds

3. Results

3.1. Dataset Entries

The entries of our model consist of images encoded from multivariate time series fragments stored
in WESAD. To encode the signals into images, we consider several variables, such as the frequency
to resample the time series, time window length, the step for the slide of the window, and the image
size. By taking inspiration from the work proposed in [7], and after multiple iterations, we set up the
values of the frequency to 700Hz, the window length to 1 minute and the step to 1 second, along with
an image size of 224x224 to match the requirements of the ResNet and VGG network. We realized,
that if considered as a binary classification problem, the dataset was somewhat unbalanced, 65% for
Baseline and 35% for Stress, with a bias towards the baseline class. To address this imbalance, we applied
Synthetic Minority Over-sampling Technique (SMOTE) [14] to upsample the minority class (stress).

3.2. Implementation

We implemented our approach in Python by exploiting the PyTorch package [15]. For obtaining the
GAFd, GAFs and MTF images, we leveraged the pyts package [16]. The activation function used is
the PreLU for all layers except the last one that uses the softmax function. Adam is the optimization
algorithm with the learning rate set as a definable parameter. The used hyperparameters equipped with
their description and the used values are listed in Table 1.

All experiments were performed on a machine with the following characteristics, RAM 32 GB, CPU
Ryzen 7 3700X, and GPU NVIDIA RTX 3090. The code used to develop this project is available at
https://github.com/marcoserenelli/Encoding-Methods-Comparison-for-Stress-Detection

3.3. Computation Results

We can now compare the effectiveness of the four time-series encoding methods in the stress detection
scenario. For this reason, we consider two different architectures, ResNet-18f and VGG-16. Note that, in
our approach, the last blocks of the two architectures are costumed.

The Table 2 show the computational results, evaluated by considering the standard metrics. The

Table 2
Performance of ResNet-18 and VGG-16 using different encoding methods

CNN Architecture Encoding Methods Accuracy Precision Recall Weighted F1-score

ResNe-18t

GAF-s 0.9039 0.9033 0.9039 0.904
GAF-d 0.9392 0.9210 0.920 0.920

MTF 0.890 0.884 0.92 0.904
RP 0.590 0.461 1.0 0.631

VGG-16

GAF-s 0.958 0.932 0.933 0.9317
GAF-d 0.944 0.932 0.920 0.9262
MTF 0.75 0.885 0.701 0.782
RP 0.72 0.857 0.660 0.746

https://github.com/marcoserenelli/Encoding-Methods-Comparison-for-Stress-Detection


ResNet behavior changes variably for different encoding methods, achieving maximum accuracy and
F1 when using GAF-d at 93.92% and 92.0%, respectively. The RP approach performs much worse,
its accuracy is only 59.0%, while the recall is 100%, meaning that it manages to detect every single
relevant case correctly but produces many false positives Recall and F1-measure are a bit lower with
VGG-16, maintaining an accuracy of 95.8% using the encoding GAF-s. Both RP and MTF encodings of
VGG-16 show reduced performance in accuracy and F1-measure compared to the GAF encodings. This
information indicates that the choice of the encoding method plays a vital role in obtaining improved
performance from CNN architectures, with GAF-s and GAF-d generally performing better.

Finally, we also compare the performance of our approach with others based on classical machine
learning algorithms [8] and the multimodal-multisensory sequential fusion model (MMSF) [17] proposed
in the literature. MMSF is a model based on a multimodal fusion scheme for merging heterogeneous
signals [18]. The used fusion scheme is ’late fusion’. It trains multiple submodels individually and
combines the obtained outputs as input for a final supervised classifier, different from the approaches
based on time series encoding methods that first aggregate the heterogeneous signals and map them
into an image, avoiding the overfitting problem related to the signal length. Table 3 shows the accuracy
and F1 score of each approach.

Table 3
Accuracy and F1-score of the considered approaches.

Method Accuracy (%) Weighted F1-score (%)

k-nearest 56.14 48.70
Decision Tree 63.56 58.05
Random Forest 74.97 64.08
AdaBoost 79.57 68.85
Linear discriminant analysis 75.80 71.56
MMSF 85.00 86.00
STREDWES 91.11 90.40

By analyzing the results, we can observe that both VGG-16 with GAF-s and ResNet with GAF-d
outperform all the classical baseline methods and the MMSF model, in terms of accuracy and F1-score.
This highlights the effectiveness of advanced CNN architectures in capturing complex patterns in the
data, likely benefiting from deeper layers and more advanced feature extraction capabilities. In many
cases, particularly with the GAF-s and GAF-d encodings, it is shown that the CNN can reach higher
metric values, indicating that these methods are a solid way to preprocess and present data to networks.
Even if the MMSF model outperforms the classical machine learning models, it still cannot catch up
with the results achieved by the CNN architectures indicating that while the multimodal approaches
are formidable, further improvement can be achieved in the specific designs of the CNNs with optimal
encoding techniques. The comparison shows that CNN architectures, particularly when paired with
effective encoding methods like GAF-s and GAF-d, offer superior performance over both classical
machine learning methods and newer models like MMSF, underlining the importance of choosing the
right architectural and preprocessing strategies to maximize the efficacy of machine learning models in
complex classification tasks.

4. Conclusion and Future Work

Developing robust and non-invasive methods to detect stress plays a fundamental role in everyday
life since stress is a significant and growing phenomenon that can lead to numerous health problems.
Detection and managing stress can greatly improve people’s quality of life and overall well-being. The
social acceptance of smartphones and wearable sensors, able to track physiological parameters and
monitor the physical activities of users, allows us to establish reliable non-invasive methods for stress
detection. In this work, we compared the GAF-s, GAF-d, MTF and RP time series encoding techniques
to determine which one is most effective for stress detection. Since GAF-s, GAF-d, MTF and RP are



two-dimensional matrices, we can treat them as images and face the problem of stress detection as
image classification by two architectures based on CNN, i.e., VGG-16 and ResNet-18. By analyzing
the results, we observe that the GAF (Gramian Angular Field) encoding method consistently performs
best for encoding physiological signals as images across both networks. Specifically, for ResNet-18, the
GAF-s method excels, while for VGG-16, the GAF-d method shows better performance. The approach
showed promising results in controlled laboratory environments. However, their application in real-time
scenarios poses several challenges, such as high computational costs on mobile devices or the variability
in environmental factors that may reduce the accuracy of the results.

In the future, we plan to include other time-series encoding methods and to study the limitations of
such approaches. Moreover, we intend to investigate the approach for obtaining the sliding. An approach
to implement sliding windows could follow the methods proposed in [6, 7] or exploit techniques based
on entropy like [19]. Another interesting feature direction is to convert time series into a graph under a
geometric principle of visibility or a simplicial complex. These conversions allow us to exploit other
deep-learning architectures, like Graph Neural Networks, to develop approaches similar to the ones
proposed for other fields [20], or methods based on logic frameworks to verify propertiess [21]. These
data structures enables the application of innovative approaches, exploiting the concept that graph
neural networks can be programmed to achieve explainable results [22, 23].
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